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We report theoretical and computer studies of steady states in a particle-conserving lattice gas near 2D. The system comprises 
two equal parallel square lattice planes; any particle can hop between them, and there is attraction only between particles on 
nearest neighbor sites within the same plane. Surprisingly enough, we find an equilibrium critical point for each particle density, 
and two different phase transitions (one of them is discontinuous while the other is similar to a nonclassical one in several 
nonequilibrium systems) when a large driving constant field is applied. 

The nature o f  a phase transition is known to de- 
pend essentially on the dimension D and symmetries 
characterizing a system. We present here a (quasi) 
2D lattice gas model in which an additional degree 
o f  freedom (the particles can hop to other planes) 
induces the existence o f  novel phase transitions. 
Namely, equilibrium and nonequilibrium phase 
transitions can occur (the latter, in the presence o f  
a driving field) which have no counterpart  in the fa- 
miliar cases lacking that peculiarity. Furthermore, 
our system admits various nontrivial generalizations. 

Let us denote by 2 the standard lattice gas [ 1,2 ] 
on a square (e.g.) lattice which we shall imagine 
either infinite or with periodic boundary conditions. 
The configurational energy is H ( ~ )  = - 4J)~',v a ,  ay, 
where J > 0 ,  ~ =  {ax; xe Z  2, ax=0,  l}, and the sum is 
over pairs o f  NN lattice sites. Thus, p-= IAI-1 ~x ax 
is a density, 121 stands for the volume, and N - p l 2 1 .  
In the infinite-volume limit, 2 is known to undergo 
a continuous phase transition for p =  ½ at a temper- 
ature T c ~  2.269 (J /kn- -  1 ), while the phase transi- 
tion is of  first order at temperature Tx(p)  for p ~  ½; 
e.g., T x ( p = O . l ) ~ O . 9 6 4 T c  and T T ( p = 0 . 2 ) ~  
0.996Tc, and Tx(p= ½ ) = Tc. 

Consider the system A = 2. l w 22, 21 n 22 = 0, of  vol- 
ume I A I = 212 l, whose configurations have energy 
H A ( t v ) = H ( ~ ) + H ( t v 2 ) ,  where a /={ax;  xe2i},  i= 
l, 2. That is, A consists o f  two twin square lattices, 

one on top o f  the other, such that any site has five 
NN, with one of  them in the other plane. There is no 
restriction on the possible configurations o f  A, e.g., 
any given particle has access to any of  the two lat- 
tices. Note, however, that any two particles interact 
only when they are located at NN sites such that both 
belong either to 21 or to ~.2, i.e., all bonds between 
the planes are broken. 

Next, consider a Markovian kinetic version o f  A. 
The probability o f  any configuration at time t, 
PE(~; t), is governed by the master equation [ 3 ] 

aPE(a; t) 
Ot - ~ '  [CE(tr~;X'y)PE(tr~; t )  

x , y  

- cE(~; x, y)PE(O:, t) ] ,  

where cr~ represents ~r with the occupation variables 
at NN sites x and y interchanged, and ce(o', x, y )  is 
the transition probability per unit time for that in- 
terchange given tT. Thus, the kinetics consists of  sto- 
chastic jumps of  particles to NN empty sites, in- 
cluding jumps from one plane to the other. This 
process is driven by aheat  bath at temperature Tand,  
eventually, also by an external electric field E, which 
is constant in both space and time and points along 
one o f  the principal lattice directions. This is imple- 
mented by 
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cE(m x, y )  =.f[#H(a x~) -/~H(~) 

- E . ( x - y ) ( a ~ - a ~ )  ] , 

where fl is the inverse temperature and f ( X ) =  
e - X f ( - X ) ,  f ( 0 ) = l ,  and f ( X ) - . 0  as X - ~ .  For 
E = 0 ,  cE(a;  x, y)  satisfies a detailed balance which 
guarantees that the master equation goes asymptot- 
ically to canonical equilibrium states. For E- . ao  (the 
only field case which we examine here), cL.(g; x, y)  
introduces a preferential hopping in the field direc- 
tion, and the steady state is a nonequilibrium one. In 
fact: (a) E is not the gradient of  a potential, so that 
the electric energy cannot be included in the 
Hamiltonian; (b)  CE(~r; X, y)  only satisfies a de- 
tailed balance condition locally; and (c) a net steady 
dissipative current sets in for periodic boundary con- 
ditions. Let us denote by Ao~ the nonequilibrium sys- 
tem; it is a nontrivial variation of  the standard dri- 
ven diffusive system (DDS);  the latter has been used 
before to study nonequilibrium steady states and 
critical phenomena and also to model fast (solid) 
ionic conductors [ 3,4 ]. 

The study of  A~ may help to answer two inter- 
esting questions concerning both equilibrium and 
nonequilibrium phase transitions: (i) The influence 
on macroscopic behavior of  the extra degree of  free- 
dom in A. In particular, one would like to know the 
nature of  the expected phase transitions in A, and 
their relation to the familiar ones in 2. (it) In spite 
of  much recent effort, the issue of  the universality 
class to which the DDS and some related nonequi- 
librium systems belong is controversial, and A~ may 
perhaps undergo a sharp, well-defined phase tran- 
sition which is related to the one in the DDS. We have 
studied these questions and some related ones by 
various methods: analysis of  the exact partition 
function for A, (MC)  computer  simulations of  both 
A and Ao~, and by a field theoretic approach. We de- 
scribe the main results obtained in this Letter. The 
details, including a kinetic mean-field theory, a fi- 
nite-size scaling analysis of  MC data, and the study 
of  some natural generalizations of  our model (e.g., 
J has a different sign for each lattice, and n > 2 lat- 
tices, each having a different D, are placed side by 
side) will be reported elsewhere. 

Neglecting terms of  order [A I-1/2 or smaller, the 
steepest descent method allows us to write the ca- 

nonical partition function of  A after some algebra, 

ZA ~. exp [ - fl[A [g(fl, p*)  ] . ( I ) 

Here, g(fl, p )  = pLg° (fl, pL ) + pzg° (fl, ( p -  p~p~ ) / P2 ) , 
P = ( P l ,  P2), P i - [ 2 , [ [ A [  - l  (=½) ,  gO(fl, Pi) repre- 
sents the free-energy density describing 2 with given 
density Pi, and p * =  (p~', p~) is a function offl, p, p~ 
and P2 which is defined as the solution of  

Og°/OPl Ip~=pT = Og°/OP 2 Ip2-(p p,p,)/p2. Thus, g(fl. 
p*) which characterizes A may have a much richer 
unstable behavior than gO(fl, p . ) :  perhaps surpris- 
ingly, the properties of  A and 2 are not simply re- 
lated. The only expected result which is necessarily 
implied by (1) is, on the one hand, that both sys- 
tems have identical high-T (homogeneous)  ther- 
modynamics.  This follows (e.g.) by noticing that the 
case of  an even distribution of  particles between the 
planes is a solution p*, i.e., p* =p,  which makes suc- 
cessively g(fl, p*)  =plg°( f l ,  p~ ) + p2g°(fl ,  P2) =g0(fl, 
p). On the other hand, global stability (i.e., g(fl, p )  
is an absolute minimum at p = p * )  implies that the 
critical point in 2 for Pi= ½ occurs in A for p = p i =  ½ 
at Tc also; in particular, 2 and A have the same crit- 
ical exponents when p = ½ (see below for p < ½ ). Fur- 
ther interesting consequences may be obtained from 
(1) by considering sub-systems 2 whose function 
gO(fl, p) is known, e.g., the 1D lattice gas or a lattice 
gas under a mean-field hypothesis, but that is not our 
aim here. Instead, we report now some observations 
from a series of  computer  experiments on A and A~, 
as defined above, and try to relate them to some 
theory. 

A and A~ have been studied by the standard MC 
algorithm, i.e., w i th f (X)  =min{ 1, e-X}, forp~< ½ and 
[A [ = 2 [hl ~< 2 × 1282. While the particles distribute 
evenly between the planes at high enough T (as pre- 
dicted above), both systems segregate for T <  T* into 
a particle-rich (l iquid) phase in one of  the planes and 
a particle-poor (gas)  phase in the other; cf. figs. la, 
lb. For A, each phase seems isotropic and macros- 
topically homogeneous. Thus, we have studied the 
order parameter Ao(T) - IPl (T)  -P2  (T)  I, where 
p , (T)  is the actual density in plane i at T; cf. fig. 2a. 
It confirms how the data for p=½ agree with the 
Onsager solution, apart from the expected finite size 
effects. We also find [ E l - E 2 1  = 0  for p=½, where 
E ,=  [ 2 1 - ~ / + -  and q + -  is the stationary mean num- 
ber of  particle-hole pairs in plane i, as expected. For 
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Fig. 1. Low-temperature typical stationary configurations in each plane for p = 0.2: (a) for A when T< T* (p), (b) for A~ when T< T ~ (p), 
(c) for A= when T ~ (p) < T< T= (p), (d) same as (a), but a transient state. (A horizontal field exists in (b) and (c). ) 

p <  ½, the segregation in A is qualitatively similar, i.e., 
it occurs in one o f  the planes and it is o f  second order 
(we find no evidence of  any discontinuity),  and 
T*(p)  decreases with p. Namely, we estimate 
T * ( p =  ½ ) ~ Tc (as predicted above),  T*(p=0 .2  ) ~. 
0.97Tc and T*(p=O.1 )~0 .93Tc;  the latter two are 
in contradistinction with the values of  TT(p) for ;t 
mentioned above• Summing up, the segregation in A 
of  a liquid phase into one of  the planes seems to dif- 
fer essentially from the familiar first- order phase 
transition in 2; this is confirmed theoretically below• 

The nonequilibrium phase transitions occurring in 
A= are also most interesting; we would like, in par- 
ticular, to relate the behaviors of  Aoo and of  the stan- 
dard 2D DDS [4].  Perhaps surprisingly, the MC data 
reveal two different phase transitions in Aoo as T is 
decreased from T = ~  (cf. figs. lb, lc) .  First, the liq- 
uid phase segregates itself highly anisotropically be- 
low T~o (p); i.e., two approximately equal strips form 
along the field direction, one on top o f  the other (cf. 
fig. lc) .  This is continuous f o r p =  ½ and of  first order 
when p<½ (at least for p<<½); we find 
Too(p=½).~ l .3Tc  and Too(p=O.2)~ l .14Tc. One 
may describe this phase transition by the morpho- 
logical order parameter m = ½ ( m ~ + m 2 ) ,  where 

mi= I < M 2 > -  <M2>I l/2 and 

2 ( )2 
M h ( v ) = 1 2 1 - 3 / 2 ~  ~ (1 -2 t rx )  

h ( v ) \ v ( h )  

( h / v  indicate summation along the two directions) 
on each plane; cf. fig. 2b. The critical behavior 
m ~ I T -  T~ (p = ½ ) I b is a specific question here. Pre- 
vious MC experiments indicated b~  ~ for several 2D 
nonequilibrium conservative lattice systems involv- 
ing anisotropies. Namely, the standard DDS [4], the 
cases in which kinetics is speeded up by involving 
also a relatively small amount  o f  creation-annihi-  
lation processes [ 5 ] or in which exchanges along one 
of  the lattice axes are performed completely at ran- 
dom with no field [ 6 ], and a model with broken 
bonds between site pairs oriented parallel to  E [ 7 ]. 
Against that convergence of  numerical results, a field 
theoretic argument has been claimed to predict b=  ½ 
with possible logarithmic corrections [ 8 ] for the DDS 
with E = c o n s t  (while a similar argument when E is 
random predicts b ~ ~ also [ 9 ] ). Our data, which ex- 
cludes the case b =  ½ and deviates clearly from the 
Onsager equilibrium value, suggest instead b~  ¼; cf. 

31 



Volume 172, number 1,2 PHYSICS LETTERS A 21 December 1992 

Ap 0.5 

0 
0 .5  

• - \ ,, 

x 

ca 

p 
A 0.5 
O 0.35 

0,2 
D 0.1 

T I T  c 

(a) 

1 .5  

0 .5  

Ap 

m 

(b) 

Q, 

\ 

O . .  

/ 
! 
! 

m q~ Ap 

0.7 1.0 1.4 
T / T  

c 

Fig. 2. Temperature variation of the order parameters: (a) for ,4 
and different values of p, as indicated; the solid line represents 
the Onsager solution; (b) for A~ when p = ~. 
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Fig. 3. Plots of m ~/b versus T under different hypotheses, as in- 
dicated, forA~ obtained as an extrapolation IAI - ,~.  

some evidence in fig. 3 concerning an empirical ex- 
trapolation to IAI ~o0. Furthermore, we find a phase 
transition in Aoo which is revealed by Ap( T); cf. fig. 
2b. That is, Ap increases sharply (as in a first-order 
phase transition for any p) at T * ( p ) ;  e.g., 
T *  (p=½)~O.95Tc and T *  (p=O.2)~O.88To As 
illustrated in fig. lb, a liquid phase which exhibits a 
strong anisotropy induced by the field segregates in 
only one of  the planes below T *  (p). 

The system A may be analyzed by a field-theoretic 
approach of  the Ginzburg-Landau type [2 ] that in- 
corporates all facts reported above which then allows 
a conclusion about critical properties. 2i may be de- 
scribed by the functional g{Oi} = ½ (V~,) 2+ ½re 2 + 
u¢~ in terms of  thefields at each plane, ~ai=O,(x). 
Then, 

Z,t= fDq) lDO2exp( -  fdx(g{Oll+g{(02}))  

X S ( #  d x ( % + 0 2 ) , l A l q 0 ) ,  
IAI 

where 4 =  1 - 2 p .  Let us write % ( x ) = ~ u + O ( x )  and 
02(x)=~ ' -O(x) .  More precisely, one is thinking 
about homogeneous solutions (i.e., p ~  ½) in which 
the spatial variations within each plane are smooth 
enough, as compared to the field variations at each 
site between the two planes, to write ~'(x) ~ ~'=const. 
One thus finds after substitution that ZA is governed 
by ½ (VO) 2 "F ½ refrO 2 + uO 4 with reff-- r +  12U~/2. Since 
the eigenvalues of  a matrix are invariant under 
changes of  basis, standard renormalization group ar- 
guments [ 2 ] then lead to the existence for A of  a crit- 
ical point, whose associated critical exponents are the 
ones characterizing a 0 4 theory, .for each value of p, 
thus generalizing the result above for p =  I. Also, a 
perturbative treatment suggests T* (p ) = T c -  
1 2 u ( l - 2 p )  2 from r*= 1 2 u ( ~ + ~ d q q  -2)  obtained 
in the one-loop approximation. This is in rough 
agreement with the MC values reported above for 
T*(p) and, in particular, it implies T * ( p =  ½ ) =  Tc 
as concluded exactly after eq. ( 1 ). This is puzzling 
because preliminary MC data for A seem to suggest 
that the order parameter critical exponent b in- 
creases with decreasingp from b~  ~ f o r p =  ½. Would 
that be the case, there would follow both: ( 1 ) A il- 
lustrates a rather uncommon situation in statistical 
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mechanics o f  critical phenomena which is to be 
understood, and (2) our field-theoretic argument 
above is not valid except f o r p =  ½ (in which case the 
argument is rigorous). We are presently running 
larger systems as a first step trying to settle this issue. 

Finally, we mention that A sometimes exhibits 
states in which the low-T segregation occurs in both 
planes, as in fig. ld. While the general rule seems to 
be that such states decay with time into states with 
the liquid phase in only one o f  the planes (in fact, 
the configuration in fig. la occurred after the one in 
fig. ld) ,  they did not evolve like that at all in some 
of  our MC experiments. One may convince oneself 
that both kinds o f  states are characterized by the same 
bulk free-energy density in the infinite-volume limit, 
but states such as those in fig. 1 d have an extra sur- 
face energy which justifies our MC observation that 
the other ones are the real stable ones. On the con- 
trary, the same comment  does not apply to the states 
of  Aoo in figs. lb  and lc, respectively, which are both 
stable states but corresponding to different temper- 
atures. 
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