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Abstract. - We present exact results for Ising-like model systems in which a competing kinetie
process induces the presence of steady states dominated by a kind of dynamieal randomness
and frustration. The models, which may be relevant to the spin-slass problem, underge
interesting critical phenomena. Unlike more familiar cases, the latter and other properties of
steady states reveal nonuniversal behaviour.

The unusual macroscopic behaviour first discovered in diluted metallic alloys such as
CuMn with only a few percent of magnetic Mn ions [1] was soon attributed to the structural
impossibility (frustration) to satisfy all the interactions at low temperature due to
microscopic disorder [2, 3]. Despite much effort along that line, however, exact results
remain scarce and, consequently, the present understanding of spin-glasses is not totally
satisfactory [4]. In particular, no solvable microscopic model is admitted to capture all the
essential features of ideal spin-glasses, and full agreement on the meaning of macroscopic
spin-glass behaviour seems to be lacking. The most outstanding result from the recent
study of the spin-glass problem is perhaps the recognition that this may be a nonequilibrium
problem, e.g., frustration may avoid a system to reach a single (equilibrium) steady state
and cause the macroscopic behaviour to be determined by dynamies.

We here present Ising-like systems in which a competing kinetic process may induce the
presence of nonequilibrium steady states which are dominated by a kind of randomness.
This is relevant to the general study of nonequilibrium steady states, phase transitions and
critical phenomena, and it represents an effort trying to clarify the possible influence of
dynamics on spin-glass behaviour. Qur kinetically disordered systems are solved for one-
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dimensional lattices under certain conditions; even though those situations are apparently
cancnical, dynamical frustration induces a behaviour which essentially differs from the
familiar one in equilibrium phenomena. We also present exact results for two- and three-
dimensional lattices, where the system has full nonequilibrium behaviour, and a simple
representation of dynamies at zero temperature for arbitrary dimension.

Consider a d-dimensional lattice Q which is in contact with a thermal bath at temperature
T. The probability of any configuration 8= {s,= +1; x €2} at time # satisfies the usual
Markovian master equation [5, 6]:

dP(s; t)/dt = 3 [w(s®; x) P(s%; £) — w(s; x) P(s; t)]. o)

This deseribes stochastic changes s, — — s, of the (spin) variable at site x which generate a
new configuration 8* from 8 with probability w(s; x) per unit time. Unlike in the familiar
Glauber case [5], however, microscopic dynamics here involve n competing spin-flip or
Glauber mechanisms. That is

wis; x) =% p,wis; x), Zp,:l (i=1,..,n), (2)

where, for simplicity, w; is assumed to satisfy a kind of individual detailed balance condition,
namely that

wi(s; X} = w;(8*; x) exp[—¢H,], 8H,=H.(8")— Hs), 3)
with respect to some specific «Hamiltonian», e.g.,

kyT-Hi8)=~J;3 sp,80—hYs,. CY)

The family of models we have just defined has a simple interpretation. Each Glauber
mechanism acts with probability p; at each kinetic step, as if the interaction strengths had a
given value J; chosen at random from some distribution p(J). This is precisely the kinetic
Ising model with nonconserved magnetization [5], excluding the fact that the coupling
constant in the «Hamiltonian» changes.randomly at each step according to p(J). When
p(J) = 8(J — const), any spin-flip rate satisfying (3) drives the system to the Gibbs (equilib-
rium) state corresponding to temperature T and energy H(s) = H,(s) whose nature is well
known, e.g., the system with k=0 undergoes a continuous phase transition at critical
temperature T, = 0 for d =1, respectively. Thus, the model has two well-defined limits for
pWJ) =48(J £ Jy), Jy>0, corresponding, respectively, to the familiar antiferromagnetic and
ferromagnetic cases. The interest here is on the crossover between those two limits, a case
where the (kinetic} competition between /s will in general drive asymptotically the system
towards a nonequilibrium steady state, as if it were acted on by some external {(non-
Hamiltonian) agent. One would like to comprehend the dependence of that state on p(J), T,
h and w(s;x), and the possible relevance of that situation to understanding some
peculiarities of disordered systems. Concerning the latter objective, one may note that,
given the local nature of Glauber kinetic processes, one may interpret either that the
interaction strength is changed at each step to take the same value J; all over the system, or
else that it is only changed to J; around the involved spin(s); moreover, except for energy
fluctuations, thermodynamics is the same for those two interpretations. A littie thought
then suggests that the latter case asymptotically produces a situation at each t which is
identical in a sense to the random spatial quenched distribution of /s in the model by
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Edwards and Anderson{2]. This is interesting because one may argue that some of the
reported unusual observations in real disordered materials might also be related to the
diffusion of disorder (e.g., due to atomic migration); thus, one may conceive the existence of
dynamical frustration in the real world, which is an effect contained in our model, to be
denoted nonequilibrium spin-glass model (NSGM) in the following. Notice also that our
gystem has some other obvious realizations, 7.e. one may consider as well the competition
between several T”s, #'s or, in general, a Hamiltonian distribution p(H) with an expression
for H more realistic than (4) {7]; although those cases are amenable to a treatment whickh is
formally close to the one in this letter, they correspond to other physical situations, behave
quite differently, and consequently will be described separately.

Ilustrative of that family of models is the simple ease of competing J’s with =0 and
d= 1. In addition, we shall only consider rates w.(s; x) = p(H), where ¢(X) is an arbitrary
function with properties p(X) = e™* o(— X), ¢(0) = 1, and o(X) — 0 as X — . Actually, most
familiar choices in different problems correspond to that with ¢(X) =1~ tgh((1/2)X) [5, 8],
o(X) =min(1, e¥)[9] or p(X)=e"9PX[6]. The resulting system is still interesting and
rather general, and may be the goal of some concepts and theorems developed before
[10, 11]. That is, the stationary solution of (1) or limit of P(s; £) as { — © may in principle be
written as P*(s) = Z ! exp [~ E(s)], Z =3, exp[— E(s)], where E(s) will in fact play the role

of an effective Hamiltonian, roughly as far as it involves only a finite number of items. The
simplest situation occurs when the latter and the effective rate (2) are related by
w(s; x) exp [— E(s)] = w(s*; x) exp [— E(s")]. Previous theorems [10] then allow to conclude
that, under the conditions enumerated in this paragraph, one simply has E(s) = — K, > 8, 8,1

for the NSGM. The effective coupling constant is, however, rather complex: K,=
=—(1/4) m[{pUK)) {p(—4K)) '], where K=J/ksT and {-) represents an average
with the (normalized) distribution p(J).

Though it is clear that one may conceive more involved and perhaps interesting situations
by varying the choices for w;(s; x) and/or H(s), the above simple case is far from trivial. It
may be noticed, in particular, that the annealed version of the Edwards-Anderson [2] spin-
glass model, where impurities have reached equilibrium with the other degrees of freedom
instead - of remaining frozen in, may bhe characterized by an effective Hamiltonian
K,=—(1/2) In[{e %) {5) ']. Consequently, there is a similarity between the annealed
and NSGM systems only in some particular cases when d=1 and »=0. Namely, the two
expressions for K, are alike for all p(J/) when o(X)=¢®%X and for all p(X) when
PN =1 —q)éJ —Jy) + ¢gé(J + Jy). Even then, however, those two systems differ essen-
tially in some respects. Consider, for instance, the latter case with J,>0, It follows for the
NSGM that K,= —(1/4) In{[1 — ¢+ ge’™ Vg + (1 — q) ]}, K,=Jy/ksT, independent of
dynamies (contrary to the usual situation far from equilibrium [7], by the way). Moreover,
T— x leads to K, ~ K1 —2q), and T— 0 produces

K.~ (1/4) In[(1 — g)/g] — (VDI - 29)/g(1 — g)le™*%,

which remains finite. The latter indicates that the pure (i.e. the one for ¢ =0 or 1) critical
point is washed out by the additional disorder. Other system properties follow from
u=tghK,. For instance, the correlation function is given by {sys,) = ¢*™ =~ This implies
in particular that the correlation length £ remains finite at T =0 except for ¢— 0 where it
diverges according to £=~Aq¢ . The susceptibility ¥ =3 (88,) =1 +u)/(1 —n) is also

diverging at T, ¢— 0 with exponent y, = 1/2. That is, v, =y, =1/2 instead of 1 as in the
annealed version. In the case of our first interpretation of the NSGM given two paragraphs
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above, the energy density is naturally defined as e= — {J) » = (2¢ — 1) Jyu, and one has for
its temperature derivative and squared mean fluctuations, respectively, that 3e/3T =
= kg — 1) Ko(1 — u®(QK,/0K;) and (e®) — {e)*=J31 —uDH N+ 4J3¢(1 — ¢)u?, where N
represents the volume. This uncovers the presence of specific fluctuations for the NSGM
having a finite relative magnitude in the thermodynamic limit. Consequently, there is no
fluctuation-dissipation theorem. Of course, one might define instead Cy=03¢/8T. with
T.={J) (ks K.)™", but this is not appropriate here, e.g., such «specific heat» cannot be
interpreted as a response function. Our conclusions remain qualitatively the same when
dealing with the second interpretation of the NSGM, except for the definition of the energy
and magnitude of its fluctuations, as one may easily infer by himself. One may also note that
the cluster distribution is P, = 2""U(1 — u)2(1 + )", 2 P, ={1/2)(1 — %), and that the mean
cluster size is (n) =2/(1—w).

To illustrate the role played in general by dynamies in this problem, one may consider any
distribution such that p(J) = g(J ~ J,) with g(X) = g(— X). Again, ¢(X) = ¢ 2% reveals itself
singular: this is the only rate in the family we have considered for which any distribution
having that symmetry produces K,=Jy/ksT. (As a trivial corollary, K,=0 for such
dynamics when p(J) is symmetrieal around zere, i.e. J,=0.) It also follows, for instance,
that the steady properties when ¢(X)= e‘“"?*)"’f and the distribution is Gaussian, i.e.
p(J) < exp [— (J — Jp)*/20%], are independent of the parameter o.

The above cases suggest looking for more striking behaviour when d=1 and A= 0 by
considering, for instance, p(J) = [|Jo/|/(J1 + |28 — Jp + [J1/(J1 + | T8 — ), J<0.
This is a relatively general, nontrivial case with {J) =0. It follows at high 7' that
K, = —8(1/3)[1/2 — 3" (M1 — )/ TY¥ + O(J ks TY, where p=|J,|/J, [0, ®]. The
maximum value of |K,| occurs for x=1/2, while £ =0,1 correspond to the completely
disordered systems with p(J) = 8(J) and p(J) = (1/2)8(J — J)) + (1/2) &(J + J), respectively,
considered before. In any case, the behaviour at high 7 is inspired by the curvature of ¢ near
the origin, and the effective temperature appears proportional to T?, in contrast,
respectively, to universality with respect to ¢, and to linear dependence, both found above
for p() =1 - @) é(J —Jp} + ¢&(J +Jo). When T—0, it.is interesting to distinguish case
1) rates characterized by the property ¢(—X)—a as X— «, where it follows that
K.=(1/4) Ing, and case i) rates for which ¢(—X)—e™, n<1, as X — o, where K,~
=a(l —w)J1/kg T + (1/4) Iny; p(X) is assumed to be differentiable at the origin (in which the
Metropolis rate [9] is excluded). Those cases essentially differ from each other: in case i), -
there is no zero-T critical point, and the effective ground state is ferromagnetic (antiferro- '
magnetic) when the antiferromagnetic (ferromagnetic) interaction is stronger than the !
ferromagnetic (antlferromagnetlc) one, u>1 (p<1). Even when one allows, say, that ]
|Je| > =, the situation remains the same because it then decreases the probability of J,.
That is, the probability coefficient dominates the value of the impurity strength in l
determining the state. In case ii), on the contrary, there is a critical point at T =0, and the X
ground state is antiferromagnetic (ferromagnetic) for 4 >1 (u<1). That is, the impurity t
strength now plays the dominant role. Notice also that it simply follows from the expression
for K, above that for both rates of type i) with 2¢"(0)>1/8 or rates of type ii) with 8
2¢"(0) <1/3, K, changes sign at some finite T' revealing a (continuous!) changeover between U
ferro and antiferromagnetic macroscopic behaviours. The relevance of the dynamics shows P
up again when considering the Metropolis rates ¢(X)=min(1, ™). This produces K.=
=—1/4) In{[1+u exp [~ 4 /kg Tl + » exp[— 4/, 2/ks T1]™*} implying again a novel
behaviour as 7'— %, namely the effective temperature becomes proportional to T2, while it
reduces to case i) above when T— 0. a

The critical behaviour for case ii) is very interesting. Thermal critical exponents (defined
for T— T differ from the pure ones at equilibrium in a factor (1 — )=, e.g., one obtains
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here v=2(1 - u)» and & =2(1 — @) . This is surprising: eritical exponents not only depend
on asymptotic features of dynamics, such as 7, which one might have expected would here
play a role similar to the one by the Hamiltonian in familiar problems, but they also depend
on an apparently irrelevant parameter such as #. This is a rare example where one can prove
that universality is lost. It seems that the specific system we are analysing has a relevant
Symmetry parameter, u«, such that u = 1 corresponds to p(J) with a kind of symmetry, while
## 1 denounces lack of that symmet » and that fact is unambiguously reflected by the
critical exponents which are zero for %=1, while they have a continyum of impure values
when the symmetry is broken. '

Under the same conditions as for d=1 above, the NSGM with d=2 has no effective
Hamiltonian [11). We may still bound the temperature locating a phase transition, however.
Concerning, for instance, case h =0 with (X} =min(1, e*) and p(J) = (1 - QT —Jy) +
+qd(J +Jy) with J,>0, one may prove from the positivity property of transition rates [6]
the existence for d =2 of a unique phase at any temperature when 7 < 169 =9; also, one may
guarantee that for 9/16<g<1land 0< g <"/16 there exists a unique phase as far as T> Ty,
where Tyl=-(1/4)In {@B3)2|2g-1|-1)+ (1/3)[16(29 — 1)* — 40|2¢ — 1 |+ 1]*2}.  Conse-
quently, any sharp phase transition may only occur when T'< T, as far as 7> 16q or 16g>9,
The case d = 3 presents no similar gap: for any g, there exists 7, % 0 which is the solution of
(1-4)2g — 1) a®+ 3022 + (15 + 60129 — 1)« — 14 — 56|2¢ — 1|, a=exp[—27T,]. It also seems
valuable to note that the above version of the N, SGM may be represented at T = 0 for any d
by a simple random cellular automaton which is close to the so-called voter model [6]:
w(s;x)=¢,1—gand 1fors, 28>0,<00r=9, respectively, where the sum is over all n.n,

of site x. It then follows, in particular, that the system at 7= 0 is always ergodic when d = 1,
is ergodic for 7< 16¢ <9 when d = 2, and we cannot claim when d = 8 of any region where it
is necessarily ergodic.

Summing up, the NSGM defined by way of eqs. (1)-(4) presents a variety of
nonequilibrium steady states and critical phenomena. This is illustrated here by solving the
simple case h=0, d=1 and w;(8; ©) = @(8H), when system and external constraint may be
represented by a simple effective Hamiltonian (involving an effective detailed condition), and
by deducting exact upper bounds locating possible phase transitions for d> 1. Ford=1,
when p(J) is the sum of two symmetric delta-functions with {.J) = 0, there follows the lack
of a fluctuation-dissipation theorem due to the presence of some excess fluctuations, and the
divergence of the correlation length and susceptibility as T—0 and ¢—0 which is
characterized by universal critical exponents, namely v =y = 1/2, When p(J) has zero mean,
however, even the behaviour at high T' depends on the details of transition rates. Moreogver,
there is then a family of rates for which the zero-T critical point has exponents depending
both on the asymptotic features of dynamics and the details of p(J). Such nonuniversal
behaviour for d = 1 seems basically a consequence of the dynamicel frustration involved by
the model. For d>1, this will add up to other nonequilibrium effects; a very rich phase
diagram should thus be expected. Finally, the study here for d=1 indicates that further
studies of the NSGM by computer simulations and other techniques may indeed help the
anderstanding both of disordered systems and nonequilibrium phase transitions and critical
phenomena,
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