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NONEQUILIBRIUM MODEL OF NEURAL NETWORKS

P.L. Garrido and J. Marro

Departamentos de Fisica Moderna y de Fisica Aplicada.
FPacultad de Ciencias. Universidad de Granada.
E~18071-Granada.

Abstract

We introduce a kinetic lattice model of neural networks
whose main novel features are that it may present nonequilibrium
steady states, that it generalizes certain previous proposals,
and that it admits a relatively simple analytical treatment in
some limiting conditions.

Introduction

The brain is nowadays idealized [1] as a large number of
neurons interacting with each other through synapsis: when the
sumn of the signals a neuron receives through their synapsis is
larger that a certain amount, the neuron itself fires a signal.
Even though these elementary processes are simple, the global,
observable or macroscopic behavior of a large set of neurons is
exceptionally rich: they can learn, remind, compare, compute,..,
usually much more efficiently than a large computer.

Getting complex macroscopic behavior from simple microscopic
laws has been very successful in physics during the last few
decades. In particular, statistical physics has shown how many
relevant macroscopic phenomena, such as phase transitions,
critical phenomena, hydrodynamics, etc., are a cocperative effect
which is also present in oversimplified microscopic models, i.e.
in mathematically well defined models which contain certain
essential features which characterize different classes of
natural systems. The philosophy and techniques of statistical
physics also maybe applied to model the behavior of an ideal
brain by considering the so called neural networks. Following
some seminal work in the field (2] and previous studies of
nonequilibrium disordered systems ([3-6], we present here a
lattice model with competing dynamics which may be relevant to
the study of the neural network problem, e.g. in a sense it
generalizes familiar model systems while presenting
nonequilibrium steady states and instabilities.

Consider a d-dimensional lattice, 2¢. At each lattice site,
x, there is a variable that can take two values, s.=t1,
representing the two only possible states of the neuron in that
site, i.e. firing or not a signal. The state of the systenm is
defined by s={s,,xE%%}.Neurons interact through synapsis in such
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a way that the contribution to the potential of the neuron at x
of a signal fired by the neuron at y is Jyi the J’'s are assumed
to have either a genetic origin or to be acquired by a learning
process. The total potential arriving to the neuron at x is then
defined: .

V=Y I, [8,41] (1.1)
¥

Assuming no other effects present, each neuron will fire a
signal, acquiring the state s~+1, when its potential is above a
" threshold wvalue, U,; in other case it remains in its original
state. That is, over each neuron there is a local field,

h (8)=V U, (1.2)
such that always h.s,>0

Giving an initial neuron configuration, s(0), we define a
dynamical mechanism to update it,

s {t+1) =s, (t) sgnlH (8(t)|T)] VxeZd (1.3)

where

H (8ld) sh s, =s, [}yj mesy-r; Jx,y-U,] _ (1.4)

In general, this dynamics will drive the system to an stationary
state when t-w. Following Hebb’s hypothesis about learning [7],
cne locates memory in the synapses, that is, there is a one to
one relation between an stored pattern of J’s and the stationary
state associated to the dynamical process defined by equation
(1.3). Then, we consider that we remind a concrete pattern when
the state of the neurons are compatible with the stationary state
associated with the pattern. Sometimes different patterns will
have same states, implying there is not possible a process of
pattern rececgnition and differentiation i.e. even though our
perception has stored the patterns in the synapsis, we are not
capable to remind them.

To complete and make more realistic the model it is
necessary to notice that the dynamical process we built in
equation (1.3) for the neurons evolution is fully deterministic
and assumes fixed the value of synapsis. We know that real systen
evolutions involve some amount of uncertainty or noise which come
from the interaction of the system with a thermal bath
surrounding it. In our case we can think that the interaction of
a neurcon with some fluid and other cells around, or different
chemical reactions taking place inside it, might produce,
eventually, an spontaneous c¢hange of the neuron state
independently of the potential energy produced by the other
neurons. We assume that these processes don’t follow any
deterministic rule and, consequently, are of stochastic nature.
Usually, the level of this noise is measured by a parameter T
which is similar to the temperature for the usual equilibrium
processes.
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But not only the neurons might change spontaneously their

.. .state, the synapsis also can change their value over the time in

an stochastic way. The process of storing the pattern in the
synapsis is done in a finite time interval. In this interval the
pattern might change, implying changes in the value of J’s. We
assume that the synapsis doesn’t memorize the last value of the
pattern (i.e. J’s) but its average distribution during that time
interval. Then, when the learning process has finished, the
synapsis will retrieve patterns following the memorized
distribution, P(J). That is, a pattern will be characterized not
by a fix configuration of J’s but by a fix distribution of J's.

The relevant mnagnitude which take account of those
stochastic processes is the probability to find the system in a
neuron configuration s and a synapsis configuration J at time t,
P (s,J), which obeys a marcovian master equation:

d
==P. (8,0 =Y (P8, d)c(s!,d-5,J)
at ¢ ,;,, ¢ ! (1.5)

"Pt(slmc(sra‘—'slt J[)]

where c(s,J-»s’J’} is the transition probability per unit time
from the configuration s,J to sf,3’. Given the rates, c, the
dynamics of the process is completely defined and the solution
of eq. (1.5) gives the behavior of P(s,J). Obviously all the
dynamical properties we commented above have to be introduced in
an adequate form in the rates. We assume in our model: 1) The
stochastic change of the pattern does not depend on the neuron
state configuration and, 2) the time scale we use is such that
only one neuron or one synapsis can change its state in the unit
time interval. Both assumptions are equivalent to write:

cls, g8, d) =pc, (8-817 8 (J, ") +(1-p) ¢, (T~T) 8 (8, 8) (1.6)

where
c, (s~a'la) =E[H5<sx,s;)}a(sy,—s,’,> w, (8:¥10) (1.7)
¥y |y
C(d=a) =Y [ 3 (Jw,J,';y)}(l—ﬁ (T Tag) ) Wy (T T (1.8)
<X,y [{u, vredlx, >

and we have introduced the parameter p&({0,1] which measures the
probability of neuron processes with respect synapsis ones. The
rates w;(s;x%|J) and w,(J~J’) are the probabilities per unit time
to do the change s, - -s, , fixed J, and J -+ J/ , independently
on 8 , respectively. Introducing egs. (1.6)-(1.8) in the master
equation (1.5) we obtain:
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"—a*a-E.Pt(S,J) = pE[Wl(Sy;)“|J) Pt(ser) _Wl(sl'le) Pt(S,J)]

¥ (1.9)
w(1-p) 3 30 [wy (T T P (8, T5¥) -, (T Ty) Po{8, ) ]
<X,y J:’:r
where
(8%) = 85, , If Xy
-Sg , if X=¥
(1.10)
(TEY) o= Tyy » 1L U, W#CX, PP
Jhy . 1F U, v=<x, 3>
and we choose
w, (8; x17) =P2BH (&ld)) (1.11)

where B=(kgT)" and ¥ is an arbitrary positive function having the
so called '“detailed bhalance" property, i.e. ¥(x)=¥(-x)e™. Usual
elections in the literature of these functions are: ¥ (x)=min(l,e
*}  (Metropolis), ¥(x)=e™® (Van Beijeren-Schulmann) and
¥ (x)=2(1+e*)! (Kawasaki). Notice that the explicit form of w, will
depend on the concrete type of stored pattern.

This model have two natural limits. When p=1 the evolution
mechanism of J’s have probability zero to oceurs, that is, the
initial distribution of J‘s remain f£ixed all over the time. In
particular, when the interactions satisfy the symmetry property:
Jey™Tyx and, because of the detailed balance property for the
rates given by equation (1.11), the resulting stationary state
is an equilibrium state characterized by the hamiltonian

H(s)=-Y H,(sEJ)w%E Te ySx8,- Y B25. (1.12)
= x. ¥ x

where

1
h.::'é'z ey~ U {1.13)

Common realizations of this hamiltonian are: the well known Ising
model when all the J’s are equal, i.e, J,,~J , and the Edwards-
Anderson spin-glass model [8] when the J’s are randomly
distributed along the lattice with respect te a distribution
Ppa(J) .

The other natural limit appears when p—=0. In this case the
synapsis evolution is much more probable than the neuron
evolution in such a form that during the time interval between
two neuron flips, the synapsis have evolved so fast that they are
already in their staticnary state. Then, we can distinguish a
microscopic time scale, t, in which synapsis evolve from an
initial distribution with neurons freezed, and a macroscopic time
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scale, T=pt, p~0, t-w and 7 finite, in which synapsis are already
in thelr stationary state, P,{J), and neurons evolve. Then, in
this 1limit, both time scales are separable and we can write
different evolution equations for the synapsis and for the
neurons,

%?P,:(J) =<;§o JZ;: [Wz (J;V"JW) PAT®) ~w, (T ) Pc(‘T}] (1.14)
and
wQ () ):[ Wors (8% X) Q. (87) ~W,zr (8: %) 0, (8) ] (1.15)
where
Wore (81 X) = [dTP,, () w, (5: 1) (1.16)

and P, (J}{Q,(s)} is the probability to find the configurations of
synapsis {neurons} J {s} at time t {r}. Notice that in the case
p=1 the stationary state of the system may be an equilibrium one
and then we can use the standard tools of the equilibrium
statistical mechanics, for any other p values, in particular the
limiting case p-0, the system has a nonequilibrium stationary
state and actuwally there are not general theory as in equilibrium
to study those systems, making the study and analysis of those
cases nuch difficult.

To get some insight of our model we describe a mean field
case. We assume that J=£, /N ; where N is the number of lattice
sites and we 1ntroduce in equation (1.4} the mean field
approximation by substituting the wvalue of the neurons
interacting with neuron x® by their mean value, i.e. s,~<s,> in
eg. (1.4}, then we get

H.(slE) s-—EE <8, =s5,m (E) (1.17)

* where for 51mp11c1ty we have taken UsEJ, . The first case we
study is p=1, i.e. the synapsis conflguratlon is frozen. Using
the master equation (1.9), we realize that there is only one
relevant dynamical equation

-§%<sx>hc=—2<sgf(zﬁs;nk(ﬁ))>Lt (1.18)
where <. e indicates the average value of neurons with fixed

~ configuration of synap51s at time t. The stationary solution of
equation (1.18) is given by

<s,>=tanh(pm,(£)) (1.19)
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and the implicit equation

me(E) == Y £ tanh (Bm, (E)) (1.20)
¥

In particular, if we choose

Eg=) efel (1.21)

where €=l , we obtain the neural network equations describing
the model by Amit et al. [2], whose main feature is the existence
of a second order phase transition at #=8=1 from a disordered
phase to a phase where 2p degenerate and thermodynamically stable
‘states appear, each one associated to a learned rattern, {e*}.
When p=aN , the network can retrieve patterns, i.e. exists the
phase transition described above, if a<e=0.14 , implying the
existence of a maximum in the network storage capacity.

For the other limiting case, p~0, we use equations (1.15)
and {1.16}. Then, the stationary state for the neurons is given

by )

fdﬁPs,:(E} [¥ (-2Bm, (E))-—F (2Pm, (E)) ]
<g >= - (1.22)

dePS,;(F.) [P (-2Bm (8} )} +F (2Bm (E))]

where

mx(E)siEE,qxs,» (1..23)
H ¥

and P,(f{) is the stationary distribution of synapsis patterns.
Let us study the particular case of a linear superposition of
patterns, i.e.

D D
P& =) a,8{&-n") , Y a,-=1 (1.24)

a=1 gl
Then, from eqguation (1.22) we get

D
Y a, [T (-2Pmy) -¥ (2pm®) ]
v _1 v oa=l
m:‘wz Nxy >
7 Y a, [F(-2pm}) + ¥ (2pm) )

=1

=|h

Y nu<s,> (1.25)
¥

The system has a second order phase transition at inverse
temperature, §,, which is solution of the implicit egquation
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detM=0 , M_“, lav'q,y xr
V

(1.26)

In particular when all synapsis of a pattern have the same
strength, i.e. 7 "=y (case 1), we get B=[3%., aqpy"‘]‘ ; if the
patterns are of Mattis type, i.e. g,'=¢¢/ with e/ =+1
independent random variables(case 2), then Bﬂ[max (a.) 1.

_ The zero temperature properties depend on how the rate ¥ (x)
~behaves when x—»-« that, in general, is of the form

¥(x)~f.exp(-nx) . When n=0 and T=0 the equaticn (1.25) reduces
7 to

B
mi= ¥ a, = Y 0k, sen (nf) (1.27)
w=1 ¥

- and, par example, in the case 1 we get

P P
=28 (- i‘gau sgn(n®) , if 2_; a, sgr(n®) >0
0 , Otherwise

~.and in the c¢ase 2

m== Eey<sy>=iav (1.29)
¥

If az0and T=0 the eq. (1.25) reads

ml=71vZn§wsgn{m;") (1.30)
¥

© where mS=max,m?. Then for case 1

+max {n¥) , if max(n¥) >0 :
<sp= 'y n ” ‘(“ ) (1.31)
0 , otherwise

“and for the case 2 we obtain

=8z, . ®=1,2,...,D (1.31)

* Notice how in case 1 for both types of dynamics, the ground state
- of the system is degenerate but with only two states which are
+ mixtures of all the patterns. Then, a distribution of J’s
. superposition of space homogeneous distributions, are useless to
. store patterns in the network. By contrast, in case ii the ground
.. state is p-degenerate. When 7=0 we reproduce an original pattern
iy with an error 1-a, and, par example, if the patterns have the
i same probability to appear, i.e. a~1/p , then the error
©: reproducing a pattern at zero temperature is (p-1)/p and if p
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goes to infinity the error is one. That is, the network can store
an arbitrary large number of patterns but with large errors to
reproduce them. In contrast, when zZ#0, the network can store and
retrieve any number of patterns without error, being this, the
most relevant feature of the network.

Also remark the releéevant role that neuron dynamics plays in
the macroscopic system behavior to compare with the usual
equilibrium systems in which dynamics is irrelevant. There is
work in progress to study the attraction domains of these
solutions, their stability properties and the influence of
different patterns and dynamics on the system behavior.

We have seen in the above mean field model of a neural
network, how the distribution of J's, the explicit form of the
rates and the value of the parameter p determine the macroscopic
behavior of the network. In future work, the study of the
learning process, the influence of the p parameter in the
retrisval of the memories and the use of models with a finite
range of interaction between neurons, opens a new way in the
understanding of the neural networks systems.
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