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Abstract. We investigate the behaviour of short-range order (SRO) parameters with tem- 
perature and system size in several versions of the Ising model, namely the pure and dilute 
models, the impure case where a fraction of spins are maintained fixed at one of the two 
possible states, and a driven-diffusive (non-equilibrium) lattice gas. The behaviour shown by 
SRO parameters is interesting, and reveals itself to be most useful in practice for determining 
qualitative and quantitative properties of phase transitions. 

1. Introduction 

The modern theory of phase transitions and critical phenomena has revealed, in par- 
ticular, that a systematic study of finite-size effects (Ferdinand and Fisher 1969, Fisher 
1971, Binder 1972) may uncover the relevant, limiting behaviour characterising a large 
variety of macroscopic (thermodynamic-limit) systems under very different conditions 
(see, for instance, Landau 1976, Marro and Torall983, Toral and Marro 1985, Labarta 
et a1 1986, Challa et a1 1986, Toral and Wall 1987, VallCs and Marro 1987, Gonzalez- 
Miranda et a1 1987, Garrido et a1 1989). One usually proceeds either from first principles 
or from empirical scaling expressions (Barmatz et a1 1975) for some physical quantity as 
a function of the system size Nand of the temperature parameter E = 1 - T/T,, where 
T, represents the critical temperature of the infinite system, and performs either exact 
or numerical (e.g. Monte Carlo) computations on finite systems. An outstanding fact is 
that, while those expressions are defined formally valid in the limit N-. x ,  E - - ,  0, they 
turn out also to be applicable in practice not so close to T, and to rather small systems, 
say to temperatures and sizes which are well within present computational capabilities. 
As a consequence, finite-size scaling analysis is nowadays an excellent complement to 
other, more conventional methods such as series expansions and renormalisation group 
techniques, and they often lead to the best available accuracy (see, for instance, Barber 
1983). 

A series of recent Monte Carlo analyses, concerning both equilibrium (Labarta et a1 
1986) and non-equilibrium problems (Valles and Marro 1987, Gonzalez-Miranda et a1 
$ Present address: Hill Center for Mathematical Sciences Research, Rutgers University, Busch Campus, New 
Brunswick, NJ 08903, USA. 
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Figure 1. The parameter U defined in 
equation (2.1), as a function of tem- 
perature, in the case of the pure 3~ I skg  
model as obtained from Monte Carlo com- 
putations for sizes L = 8 (crosses), 12 (tri- 
angles), 16 (open circles), 24 (asterisks), 
30 (squares) and 40 (full circles). The full 
curve represents the value for the infinite 
system which follows from equation (2.4) 
by using series expansions form and U. 

1987, Garrido et a1 1989), revealed to us that the study of short-range order (SRO) may 
easily allow to clarify most important properties of the phase transition involved. As a 
matter of fact, SRO parameters behave differently in qualitative terms for every type of 
phase transition, thus clearly uncovering the nature of the latter. In addition, SRO 
parameters usually remain bounded at finite temperatures, thus helping to locate the 
transition temperature and even to compute the critical indexes of the corresponding 
infinite system more precisely and economically than other quantities whose use is more 
standard nowadays. It is the purpose of this paper to illustrate those facts concerning 
the potential utility of SRO parameters. With that aim we analyse a variety of Monte- 
Carlo data and study the critical and finite-size scaling properties of SRO. 

2. Definitions 

For the sake of simplicity, we shall restrict ourselves to the familiar nearest-neighbour 
spin-3 ferromagnetic Ising model on a &dimensional simple (hyper-) cubic lattice with 
Ld = N lattice sites, and to the corresponding infinite L -3 x. system (see, for instance, 
Thompson 1972). The main conclusion here, as stated before, should nonetheless 
hold for more general model systems. Let us denote by n + ,  n-,  nL+, a---, IZ+- = n-+, 
respectively, the density (per lattice site) of spins up, spins down, up-up pairs of spins, 
down-down pairs of spins, and updown pairs of spins. An appropriate measure of 
SRO may then be introduced, as in the pioneering studies by Bethe, Rushbrooke, 
Guggenheim and Fowler (see, for instance, Pathria 1977), as 

(2.1) n -- >(n+-)-2 

where the brackets represent an average over system configurations at temperature T .  
Notice that, for all practical purposes, the parameter (2.1) may be assumed to be 
equivalent to 0’ = ((n++n--)(nf-)-2),  e.g. in the usual case of sharp distributions for 
at+, etc., neglecting finite-temperature configurations where n+- vanishes. Actually, 
this is confirmed by some of the data below. In any case, our main conclusions here are 
independent of that assumption, and one may in practice obtain interesting properties 
of the phase transition involved either from U’ or else from 0. 

Figures 1-4 depict the behaviour of U,  computed by using the Monte Carlo method, 
as a function of Tand, eventually, L in the case of three equilibrium 3D models, namely 
the pure Ising model (Thompson 1972), the dilute Ising model for several fractions of 
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Figure 2. The parameter a defined in 
equation (2.1) as a function of temperature 
in the case of the dilute 3D Ising model 
(Labarta et a1 1986) for several concen- 
trations of (non-magnetic) impure sites: 
no = 0.0125 (squares, L = 30), 0.05 (open 
circles, L = 30), 0.1 (triangles, L = 40), 
and 0.2 (crosses, L = 40). 
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Figure 3. The parameter a defined in equation (2.1) as a function of temperature in the case 
of an impure 3D Ising model where 12.5% of the lattice sites, the ones corresponding to a 
simple cubic sublattice with twice the original lattice spacing, are occupied by spins regularly 
fixedup, down, up. down, etc., the impuresitesproducingnonet magnetisation (Labartaetal 
1988). Samesymbols asin figure 1. Inset: thedependenceofaonlatticesizefortemperatures, 
respectively: Tk,/J = 3.79 (curve A), 3.90 (curve B), 4.00 (curve C) and 3.70 (curve D); 
T,k , /J= 3.797 and v = 0.6295. 

non-magnetic sites (Labarta et a1 1986), and an impure Ising model where 12.5% of 
spins, regularly distributed on a simple cubic sublattice, are maintained fixed either at 
+l or else at -1 (instead of allowing each spin to fluctuate between those two values) 
(Labarta eta1 1988), and a non-equilibrium, 2~ driven-diffusive lattice gas model of fast- 
ionic conductors (Valles and Marro 1987), respectively. The qualitative behaviour 
shown by G = G( T )  in those graphs can be understood on simple grounds. 

With that aim, it is convenient to relate 0 to the system magnetisation and energy. 
These are given respectively by 

m = (n+ - n - )  (2.2) 

(2.3) 

and 

e -J(n++ + n-- - n T - )  = J(2(n+-)  - d)  

whereJ(which, for simplicity, isJ > 0 hereafter) represents the spin interaction strength. 
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Figure 4. The parameter U defined in (2.1) as a 
function of T (in units of the equilibrium critical 
temperature T,(O) in the case of a ZD lattice-gas 
model with attractive interactions and particle- 
conserving hopping dynamics under the influence 
of a saturating external electric field along a prin- 
cipal axis (VallCs and Marro 1987). The data refer 
to the infinite lattice as obtained by extrapolating 
data for finite systems. The full curve is a guide to 
the eye; the broken line represents the cor- 
responding critical temperature. 
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(Notice that e ( < O )  is a nearest-neighbour correlation function, i.e. it is also a measure 
of SRO.) Thus, one readily has that 

where U = e( T) /eo ,  1 2 U 2 0, and eo = -Jd. The equivalence of expressions (2.1) and 
(2.4), and the good asymptotic behaviour of the data for finite lattices, is confirmed, for 
instance, by comparing in figure 1 the Monte Carlo data for L = 40, computed according 
to (2.1), with the corresponding infinite system behaviour obtained from (2.4) after 
series expansions for U and m (Essam and Fisher 1963, Sykes et a1 1972, Binder 1972). 
3. Further properties of SRO 

Expression (2.4) and the definition du/d T = Cveo imply that 

within the range m = 0, i.e. for T > T,. Thus, given that eo < 0 and Cv 2 0, a( T) is 
expected to decrease monotonically with increasing temperature from maximum value 
a, E a( T,) > 4, in agreement with the situation in figures 1-4. Also, a( T )  can only 
diverge when T, = 0 (the only situation where one could have U, = u(T,) = 1) and, 
excluding that case, the fact that da/dT (<0) reaches either a finite or an infinite value 
at T,f (>0) corresponds respectively to C v ( T , f )  being finite or infinite. Our data in 
figures 1-4, which were not specifically produced with that aim and are not very close 
to T f ,  hardly allow one to distinguish between those two cases; nevertheless that 
property may be very useful given both the relevance of the value C,(T;) to conclude 
about the nature of a phase transition and the fact that a can usually be computed more 
precisely and economically than Cv. 

The qualitative differences observed at low temperatures between figure 3, on the 
one hand, and figures 1 , 2  and 4 on the other, are related to the fact that (nf-) has a non- 
zero limit at T 4  0 in the case of the impure system in figure 3. Further information for 
the range T < T,, where m > 0, follows from (2.4) and 

For instance, the situation near T ;  may be investigated by introducing the asymptotic 
behaviours m - BE@, p > 0, and Cv - 0 < CY S 1, whereA and B are both positive 
and smooth functions of E ,  to write, 

Here, a,isnon-singular, anda,  = A' ( l  + u,)/(l - u , )~ ,  withA' = -AT,/(l - cu)eo, and 
a2 = B2(1 - u, ) -~  are both positive. It follows immediately that 

and one may also work out a similar expression for d20/dT2. 

a = (1 - u ) - ~ [ ~ ( I  + u ) ~  - m2] (2.4) 

all2 = (1 + u)/2(1 - U), d a / d T =  Cv( l  + u)/eo(l - u ) ~  (3.1) 

d a / d T =  (1 - ~ ) - ~ [ ( l  + U - 2m2)(du/dT) - 2m(l - u)(dm/dT)]. ( 3 4  

a- U, + a l E 1 - a  - a2E? 

T,(da/dT) = 2 p ~ 2 ~ ~ @ - '  - (1 - a)a lE-@ 

(3 3) 

(3.4) 
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According to equations (3.3), (3.4) and the corresponding ones for T+ T:, a mean- 
field behaviour (e.g. @ = f, a = 0) will be characterised by a smooth variation of a(T)  
and da/dT near T,. This is indeed the behaviour shown by the Bethe-Peierls solution 
of the Ising model (cf. the evidence in figure 4 by Labarta et a1 (1986), for instance). 
Then, it seems interesting to point out, as a further example of the utility of SRO 
parameters, that the situation depicted by figure 4 excludes the possibility of the 2~ fast- 
ionic conductor model under avery strong external electric field having a classical critical 
behaviour; the latter was a conjecture guided by the situation in other non-equilibrium 
systems (cf VallCs and Marro 1987, Marro et a1 1987). 

In fact, excluding for simplicity the cases (which may also be worked out) where a 
decreases or remains constant as T + T; , the most usual, non-classical critical behaviour 
is characterised by well-defined maximum around T,, as in figures 1-4. Thus, the good 
quality of the data for o, and the facts that the critical behaviour of a i s  mostly dominated 
by p and that a,is finite for T, > 0, should usually allow an easy and accurate computation 
of T, and critical indexes. Actually, by using only some limited data at hand we can 
estimate with little effort that T,k,/J = 4.5108 k 0.0001 and p = 0.312 ? 0.001 for the 
pure 3~ Ising model; further specific numerical results are reported below. The inves- 
tigation of a( T) turns out to be even more convenient given its simple scaling behaviour. 

The expected dominant scaling behaviour of o, as implied by (2.4), (3.3) and usual 
hypotheses (Barber 1983), is 

( 3 . 5 ~ )  O ( E ,  L )  - a(0, m) - a& = L - ~ ~ ( E L ’ / ’ )  

where 

2Pl. T <  T ,  
((1 - a)/. T >  T,. 

X =  (3.5b) 

It follows the same behaviour ( 3 . 5 ~ )  for the energy except that x = (1 - a) /v .  That is, 
one should try to demonstrate that short-range correlation functions scale quite generally 
according to 

g(E,  L )  - L-y(ELl’u) (3.6) 
with an asymptotic behaviourf(z) - zx for large z = EL‘’” giving the correct exponent 
x. This is nicely confirmed by figures 5 and 6 revealing the smooth and accurate scaling 
behaviour of e and a, respectively, for several interesting lattice systems. 

Concerning figure 5 ,  we used e, = 0.9921 as given by series expansions (Sykes et a1 
1972) for the infinite system, and the constant affecting the regular term a& was related 
to the specific heat critical amplitude. That is, we obtain for the latter -u/Tc = A = 
-1.24 t 0.08for T > T,and -2.44 k 0.20for T <  T,;bothvaluesareinagreementwith 
series (Sykes et a1 1972) and recent renormalisation group &-expansions (Chase and 
Kaufman 1986). It is also noticeable that we only obtain the asymptotic slope 1 - (Y 

when A -  = -2.44 (while the specific heat for the pure Ising model was previously shown 
(Landau 1976) to scale for -4 s A- s -2). The inset in figure 5 is drawn to reveal the 
unique behaviour when one avoids the sign manipulation and the logarithmic scale in 
the main graph. 

Concerning figure 6, we used x = 1.41 for T > T, and 0.993 for T < T,; this again 
implies different values for a above and below T,. The scaling law (3.5) was seen to be 
valid for all data within the ranges 0.15 2 E 2 0 when T < T, and E s -0.005 when 
T > T,; the fact that the data for -0.005 s E 6 0 in the latter case deviates from scaling 
is an artefact associated with the hopping of the system very near T, between +m states. 
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Figure 5. Log-log plot showing the scaling behaviour of the energy e in the case of the pure 

Ising model; the broken line represents the asymptotic behaviour. Same symbols as in 
figure 1. Inset: data from which the main graph was plotted. 
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Figure 6. Log-log plot showing the scaling behaviour of the parameter U, as defined by (2.1), 
in the cases of the pure system in figure 1 (curves A) and impure system (with fixed spins) in 
figure 3 (curves B). The behaviour for the system in figure 2 is similar. The broken lines 
represent the asymptotic behaviour. Inset: data from which the main graph was plotted. 
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Figure 7. Size dependence of the par- 
ameter U as defined by (2.1) for the pure 
system in figure 1 when T < T,, namely 
for T/T ,  = 0.9978(curveA),0.9867(curve 
B),0,9756(curveC),0,9534(curveD)and 
0.9313 (curve E). The symbols are for L = 
8 (crosses), 12 (open triangles), 16 (open 
circles), 24 (asterisks), 30 (open squares) 
and 40 (full circles). The full squares rep- 
resent U as given by (2.4). 

Figure 8. Same as figure 7 but for TIT, = 
1.0022 (curve A), 1.0200 (curve B) and 
1.0421 (curve C). L - l l v  

The scaling shown by figure 6 is for a, = 0.9882 (pure system) and 0.764 k 0.006 (impure 
system) as obtained from the critical energy values, and for T,k,/J = 4.5108 (pure) and 
3.797 (impure), 6- = 4 ? 0.5 (pure) and 1.5 ? 0.5 (impure), andd' = - 11 5 1 (pure), 
and - 8 1. 1 (impure). 

Finally, we mention that, as shown by figures 7 and 8 (cf. also figures 1 and 3 for 
finite-size effects), the most important finite-size effects occur very near T,, being larger 
above (figure 8) than below T, (figure 7). Figures 1-3,7 and 8 also provide evidence that 
one may define the temperature T,(L) locating the maximum of arather accurately; this 
fact should in general allow an easy determination of the critical temperature of the 
infinite system. 

4. Conclusion 

The quantity odefined by (2.1) and, eventually, other SRO parameters possess a number 
of interesting properties, and they behave more simply and smoothly than other quanti- 
ties more generally used in the modern theory of phase transitions and critical pheno- 
mena. In particular, U has a simple scaling behaviour with system size, and it usually 
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shows afinite and well-defined peak at T,, whose shape is simply determined by familiar 
quantities, so that it provides a simple and economical method to evaluate T, and critical 
indexes accurately. Moreover, even a visual examination of the behaviour of 0 may 
allow one to distinguish between different universality classes, for instance. Actually, 
we were able to discard with confidence an expected classical critical behaviour for a 
fast-ionic conductor model. Those and other properties we suggested above seem indeed 
to justify the study of SRO parameters when trying to determine, either analytically or 
numerically (e.g. by Monte Carlo methods), the relevant features of a given phase 
transition. 
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