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Abstract. A one-dimensional mixture system of impenetrable, hard-core particles is 
analysed numerically. The particles have masses either m, or m 2 ,  with U -  m , / m z  = 1 and 
1.2. Several realisations of stochastic boundary conditions simulating the contact with 
thermal walls are considered. We report on the relaxation from initial states with velocities 
i l  and on the properties of the final stationary non-equilibrium state. In particular, we 
describe the breakdown of Fourier’s law when U = 1 and the good ergodic properties of 
the case U > 1, and compare with some existing theories for ~7 = 1. 

1. Introduction 

The study of one-dimensional systems of hard points with stochastic boundary condi- 
tions (SBC) is of considerable interest as a simple, non-trivial basis for investigating 
the nature of stationary non-equilibrium states (see, e.g., de  Groot and Mazur (1984), 
Glansdorff and  Prigogine (1971) and Haken (1975) for the classical theory of stationary 
states). Moreover, that study may provide some insight into the problem of thermal 
conductivity (Lebowitz and  Spohn 1978, Ciccotti and Tenenbaum 1980, Tenenbaum 
et a1 1982, Kipnis et a1 1982; see also, e.g., Visscher and Gubernatis 1980 and references 
therein). Unfortunately, exact results are rather scarce here, even for such simple 
one-dimensional systems. This situation is aggravated in practice by the fact that 
statistical mechanics has no general formalism for non-equilibrium phenomena which 
is comparable to the well defined Gibbs ensemble theory for equilibrium states (see, 
however, for instance, Lebowitz and  Bergmann 1957). As a consequence, the simulation 
of the behaviour of one-dimensional mixtures of hard points in a computer seems 
nowadays most suitable for extracting relevant information, e.g. tLat needed to develop 
a theory. 

Tkie prime motivation of the present work is in a paper by Mokross and Buttner 
(1983) (see also, e.g., Lebowitz and Frisch 1957, Benettin et a1 1987, Mareschal and 
Amellal 1988, Erpenbeck and  Cohen 1988, and references therein). Mokross and 
Buttner (1983) studied numerically a (small) diatomic linear chain with exponential 
nearest-neighbour forces (the so-called Toda lattice) with SBC. They concluded that 
the system only seems to support a linear temperature gradient, as in Fourier’s law, 
in the case of different masses, i.e. when the system is non-integrable. We analyse in 
detail that property by considering ‘large’ linear chains of hard-core particles of masses 
either m, or m2 with different realisations of SBC simulating the contact with thermal 
walls. The same system has previously been studied (with a different goal) either with 
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periodic boundary conditions ( PBC) or in the thermodynamic limit, both numerically 
(Masoliver and Marro 1983, Marro and Masoliver 1985a, b )  and analytically (Aizenman 
et al 1978, Kasperkowitz and  Reisenberger 1985a, b, Dickman 1985, Foidl 1986, Foidl 
et a1 1987). 

2. Description of the model 

The model system of interest here is, except for boundary conditions, similar to the 
one considered previously by Masoliver and  Marro (1983) and Marro and Masoliver 
(1985a, b).  It consists of N impenetrable, hard-core points with masses either m ,  or 
mz moving freely, except when they collide, on a line of length L. When two particles 
collide, the new velocities are computed according to the energy and  momentum 
conservation laws by using a standard algorithm (Masoliver and  Marro 1983; see also 
Alder and  Wainwright 1959). Note that in this case, collisions between particles with 
equal masses just produce an  interchange of identity. 

The particles are placed initially at random on the line, with masses either m ,  or  
m, and, independently, velocities C1, or -1, both properties also given at random. 
This allows the study of the system relaxation towards a stationary state in the case 
of a simple initial condition. 

The linear chain ends at two walls, a distance L apart from each other, at tem- 
peratures T, (right-hand end)  and  T2 (left-hand end). The walls are treated in the 
algorithm as special particles with zero velocity: when a particle collides with a wall, 
the direction of the particle velocity is reversed and  its magnitude is chosen at random 
from a given distribution f ( v ) .  We have investigated two different wall velocity 
distributions. 

Lebowitz and  Frisch (1957) studied the case of particles with equal masses, with 
f ( u )  = f X ( u ) ,  

f r ( v )  = ( m / k T ) u  exp(-mv2/2kT) U S 0  (2.1) 
where m represents the mass of the particle colliding with the wall at temperature T, 
and k is Boltzmann's constant. That kind of SBC is known to drive the system with 
equal masses to a Maxwellian stationary velocity distribution when TI = T,; our interest 
here is on the system's temporal evolution and  stationary properties for the mixture 
when TI f T2. 

It also seems interesting to investigate the behaviour of the mixture in the case of 
other physically plausible wall velocity distributions lacking, however, some of the 
good properties of (2.1). Therefore, we have also studied the choice 

(2.2) 
Here, U, is fixed (arbitrarily) at U; = k T / m f i ,  and (U') = U:+ 6' = kT/m as required 
by the classical equipartition of energy; thus we have 

(U) = 0.739( kT/  m)  "' 62=0.293(kT/m) .  (2.3) 
The choice f i l ( u )  lacks the reversibility or symmetry property discussed by Lebowitz 
and Frisch (1957) (cf their equation (7)).  The latter is known to be a necessary and 
sufficient condition for the system with equal masses and T ,  = T2 to reach a canonical 
distribution. Therefore one should perhaps expect f i l (  U )  to produce a pathological 
behaviour. It contains, in particular, a singularity at U = O  (cf equations (8) and (5) 
in Lebowitz and Frisch (1957)) which may imply a slower evolution of the system, 
thus allowing the detailed observation of transient quasistationary states. 

2 - I / 2  f i , ( u )  = (2776 ) {exp[-(v - ~ , ) ' / 26~]+exp[ - (u+  u0)'/2~*]} U 2 0. 
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Brief references to inelastic collisions and to SBC other than the ones just described 
will be made in 0 5 .  

In addition to different lengths L and numbers of particles N, implying different 
particle densities n = N / L  and/or system sizes, we also simulated different non- 
equilibrium stationary states by varying the wall temperatures, TI and  T2,  and the 
mass ratio CT = m l / m z .  The parameters defining some of our experiments are given in 
table 1. 

2.1. Some technical details 

We have no definite estimate of the influence of a given initial mass and velocity 
distribution, out of the set we have just defined, on the system behaviour. Nevertheless, 
that effect should be negligible for the system and stationary ensemble sizes involved 
here. Actually, no such effects were evident in a previous study with PBC (Marro and 
Masoliver 1985a, b);  we performed each run here with a different initial distribution 
(and they consistently followed a good set of data), and  it is known that, when it 
exists, the stationary distribution for equal masses in the presence of SBC will be 
approached in the course of time for almost all initial velocity distributions (Lebowitz 
and Frisch 1957). 

The microscopic time-reversal invariance of the system can be guaranteed within 
comfortable error limits in the case of PBC (Masoliver and Marro 1983). In the present 
case of SBC, we updated the estimation of the total system energy each time there was 
a net contribution from the walls, and we also independently made periodic direct 
calculations of the total system energy; the two estimations of the total energy agreed 
within a error throughout the simulations (most of the reported work was 
performed on an  IBM 370/3083R3 computer where it required some 100 hours of CPU 

time). 
In order to compute local quantities we divided the line into equal segments, usually 

of length L/20.  The local density and temperature, for instance, were then evaluated 
at selected values of the time by counting the number of particles in each cell and  
computing their kinetic energy, respectively. 

Concerning statistical errors, they are typically reasonably small in the case of 
properties which are independent of the labels of the particles, as they involve an 
average over particles which is equivalent in some sense to an  average over configur- 
ations. We also tried to minimise statistical errors by sometimes performing averages 
over short time intervals during the system evolution, and  by always performing 
averages over large time intervals during the stationary regime. The magnitude of 
finite-size effects may be estimated by comparing different system sizes, e.g. as reported 
in table 1. The analysis of table 1 and the rest of the data allows one to conclude that 
neither statistical nor finite-size errors should influence our main conclusions in this 
paper. 

3. Time relaxation 

The system relaxation from the initial state with velocities *1 was monitored by 
measuring the temporal evolution of the velocity distribution, local temperature and 
density, total system energy, mean particle velocity and mean free time. Most important 
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differences occur when comparing the cases a = m l / m Z  = 1 and 1.2, e.g. the systems 
numbered 3, 4, 15 and 16 in table 1. 

3.1. Velociry distribution 

The initial velocities *1 are always seen to relax towards a smooth distribution centred 
around zero (the latter fact just reflects that the walls allow no net movement). That 
is, in contrast to the case of PBC, where the (non-ergodic) system with a = 1 maintains 
the initial velocities il (Masoliver and Marro 1983), there is not such a simple evolution 
for SBC: the interaction between the particles and the (stochastic) walls causes an  
effective dissipation of information, even in the case of equal masses. This reveals 
itself to be as efficient in destroying the initial state as the dissipation caused by a 
non-uniform distribution of particle lengths which was shown (Aizenman et a1 1978) 
to be a sufficient condition for the production of a Markovian evolution of the system 
with a = 1 and PBC. 

That follows, for instance, from figure l ( a ) ,  which shows the relaxation of the 
peaks +1 when a =  1 for SBC of type 11, (equation (2.2)). There is indeed a definite 
tendency there towards a smooth distribution which may be adjusted by a Gaussian 
(with a noticeable kurtosis, however). The interpretation of the situation for a = 1 is 
still relatively simple: the particles move freely from one wall to the other, different 
values of the wall temperature implying different values for (U) and a;  cf equation 
(2.3). This simplicity allows us to evaluate the time it takes for the system interactions 
to destroy the information concerning the initial state. That is, the number of particles 
(with initial velocities i l )  which have already collided with the walls at time t may 
be written approximately as 

N ( t ) =  N-Nzl ( r )  (3.1) 

where N, , ( t )  represents the number of particles still having velocities *1 at time t ;  
that is exact for short enough times. One also has 

k(t)  = 2 r t  (3.2) 

where r is the frequency of collisions (for particles with initial velocities i l )  with any 
one of the walls. It follows that the initial state is practically destroyed when k( t ’ )  = N, 
i.e. at time t = N / 2 r .  We may estimate the parameter r from the data by combining 
equations (3.1) and (3.2) and interpreting N , , ( t )  as the sum of the heights of the 
observed peaks at t‘ = +1 in the velocity distribution at time t. That data nicely confirms 
the above expectation; it reveals a linear variation of N , , ( t )  with t and, in the case 
of system 3, for instance, one obtains r = 0.285 and  t ’= 1750t, where to represents the 
mean free time. This helps the visual interpretation of the graphs in figure l ( a )  and 
manifests a slow evolution of the system with a = 1. 

The case a= 1 with walls of type I (equation (2.1)) shows a relaxation of the 
velocity distribution which is indistinguishable from that just described. That is, both 
types of SBC seem to cause a similar dissipation of information. The system with a = 1 
finally reaches the stationary velocity distribution predicted by Lebowitz and Frisch 
(1957); cf figure 2. (Note  that the gap revealed by p ( u )  at U = O  in figure 2 goes to 
zero as T2 + T I ,  the case considered by Lebowitz and  Frisch.) 

The evolution of the velocity distribution for a >  1 is depicted by figure l (b ) .  This 
reveals a more decisive tendency towards a smooth distribution than before. Actually, 
the evolution of the mixture with SBC is a consequence of both the interactions between 
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Figure 1. The time evolution of the velocity distributions of two systems: (a)  System 3 
(a = 1) ;  ( b )  System 4 (a> 1 ) .  The walls are defined as in equation (2.2). The times appear 
on the graphs. 
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Figure 2. Stationary velocity distribution for system 15 (U = 1, and walls defined as in 
equation (2.1)) at f = 7126t,. The broken curve is the prediction of Lebositz and Frisch 
(1957). 

particles and  walls and the interactions between the particles themselves. This results 
in a relatively complex dissipation of information for which there is no  quantitative 
theory at hand, e.g. a theory similar to that for v = 1 discussed in the last two paragraphs. 
Some qualitative reasoning, however, is consistent with our observations. As the 
characteristic times for those two mechanisms of dissipation differ by an  order of 
magnitude or so, the (‘ergodic’) interactions between particles first tend to produce 
(in relatively short times) smooth distributions of velocities which are then modulated 
(more slowly) again and  again, as a consequence of the interactions with the walls, 
until the system reaches the final distribution. The time the system takes to destroy 
the initial state is now shorter than before, because it is controlled by the ergodic 
mechanism which has a shorter characteristic time; nevertheless, the system takes a 
time comparable to that in the case U = 1 before it reaches the final, stationary velocity 
distribution. Again, we found no sensible differences on the temporal evolution of the 
system with v >  1 which can be associated with the type of SBC. 

3.2. Density and temperature projiles 

The present SBC simulate two walls at different temperature, i.e. the action of an  
external agent on the particles. Initially these have velocities i.1, which corresponds 
to a uniform temperature T = 1 in units of ( m ,  + m 2 ) / 2 k ,  i.e. the particles are ‘cold’ as 
compared to the usual wall temperatures (cf table 1). Consequently, the external agent 
will heat up the particle system during the evolution. More unexpected is the fact that 
the external agent can induce a certain non-uniform distribution of particles and kinetic 
energy during the system relaxation. Such an  extraordinary effect was observed for 
v = 1 and walls of type 11; cf figure 3. 

Figure 3 ( a )  describes the time evolution of the temperature profile. This behaves 
in a very peculiar manner indeed: at intermediate times the temperature profile clearly 
tends to be bent upward around the centre of the line, thus revealing that the most 
energetic particles are near the centre. The corresponding density profiles in figure 
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3(b) denote a tendency to the accumulation of particles near the ends. Having in mind 
that a cold particle may take more than 103t, to travel from one part of the system to 
the other, this is to be interpreted as a transient effect characteristic of type I1 of SBC 

which, contrary to type I, reject (with a high probability) particles having arbitrarily 
small (even zero) velocities. It should be emphasised that this is indeed a transient 
effect. After large enough times, as suggested by the t = 1615t0 graphs in figures 3 ( a )  
and 3 ( b )  (see a more conclusive proof in § 4), the system tries to reach a uniform 
distribution of local temperatures and densities which seems to characterise the systems 
with IT= 1 independently of the type of SBC. 

System 4, i.e. IT> 1 and type I1 SBC, was observed to have a more ‘conventional’ 
behaviour. That is, in addition to the fact that fluctuations are now less dramatic, the 
system is observed to heat up monotonously at each point of the line, presenting a 
regular tendency towards the stationary state, and (excluding perhaps the very initial 
stage of the evolution) the local temperature (local density) at any given value of the 
time increases (decreases) approximately linearly as one moves from T,  to T2 > T, . 
We observed no noticeable (transient) effects here which can be associated with the 
‘pathologies’ of the SBC involved: they are absent in the presence of a rich, ergodic 
dissipation of information. Furthermore, comparison between different experiments 
reveals the irrelevance of the wall properties when (+ > 1, i.e. the macroscopic irrelevance 
of the (important) microscopic differences we consider here. 

3.3. Total system energy 

The typical time evolution of the total (kinetic) energy of the particles is depicted by 
figures 4 (type I1 SBC) and 5 (type I). The systems with unequal masses show, 
independently of the nature of the walls, the expected monotonous increase of the 
total energy which finally reaches the stationary value. Since the temperature gradient 
is then a constant (cf 0 4), and the heating of the system has finally ceased, s’o that the 
energy flow is then the minimum necessary to maintain the stationary non-equilibrium 
state, the behaviour shown by the systems U >  1 in figures 4 and 5 is compatible with 
the minimum entropy production which sometimes serves to characterise those states 
(de Groot and Mazur 1984, Glansdorff and Prigogine 1971). The systems with equal 

0 10 20 30 40 

t /  loot: 

Figure 4. The total particle kinetic energy as a func- 
tion of time for system 4 (curve 1 )  and system 3 
(curve 2) .  

0 20 40 60 80 100 

t / loot, 

Figure 5. The total particle kinetic energy as a func- 
tion of time for system 16 (curve I )  and system 15 
(curve 2) .  
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masses, on the contrary, again exhibit here differences during the evolution which may 
be associated with the SBC. That is, the case U =  1 in figure 4 is rather untypical: the 
total energy first increases, shows a maximum around t' as computed before (after 
equation (3.2)), and then decreases since, in the absence of the ergodic mechanism, 
the transmission of energy from the high-temperature wall to the low-temperature one 
is faster than in the opposite direction. The observed decrease seems to stabilise in 
the case of small systems, while we never observed such stabilisations during the 
evolutions of systems 1 and  3, for instance. The behaviour of the case U = 1 in figure 
5 (type I SBC) is not so surprising, but still one may detect some decreasing behaviour 
during the late evolution of the energy. We interpret this as related to the failure of 
the minimum entropy production principle when U =  1, a fact which can be demon- 
strated (Lebowitz and Frisch 1957) for small temperature gradients. 

3.4. Mean free time and particle velocity 

The behaviour of the mean free time between collisions, t o ,  which is the unit of time 
we used for the evolutions, also distinguishes the cases U = 1 and  U > 1 and, to some 
extent, the type of SBC; cf figures 6 and 7 .  When U > 1, to first shows a rapid decrease, 
and  tends asymptotically to a constant value in a way which is practically independent 
of the SBC. When U = 1, however, to( t )  seems to increase slowly after reaching a 
shallow minimum, in accordance with the behaviour of the total energy. There are 
some obvious differences in the behaviour shown by to( t )  in figures 6 and  7 which can 
be associated with the nature of the walls. Note also that t o ,  involving an average 
over all the particles in the system, shows no short-wavelength fluctuations. 

2.0 

1.6 

f o  

1.2 

0.8 

0.4 L- 
0 10 20 30 40 0 20 40 60 80 100 

t /  looto t/ loof, 
Figure 6. The mean free time between collisions as 
a function of time when the SBC are of type I 1  and 
U >  1 (curve 1) or U = 1 (curve 2) .  

Figure 7. The mean free time between collisions as 
a function of time for type I SBC and U >  1 (curve 
1 )  or U =  1 (curve 2 ) .  

Finally, we mention that the evolution of the mean particle velocity ( U )  allows us 
to clearly distinguish two different stages in most experiments. Typically, the centre 
of mass first moves from one wall to the other according to a well defined periodic 
oscillation implied by the temperafure difference between the walls. Then, after a few 
such oscillations, when the local temperatures are more evenly distributed and the 
evolution is independent of the initial state, the motion of the centre of mass is more 
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chaotic with no clear periodicity. The transition between those two stages occurs 
around 2000t0 in the case of system 2 ,  for instance. 

4. Stationary non-equilibrium states 

Every system we have investigated seems to reach a stationary state independently of 
the value of U and of the type of SBC. Table 1 lists the corresponding stationary values 
for some characteristic quantities as obtained by performing time averages during the 
final part of the evolutions (it also lists the initial time t i  we used to perform those 
averages). The reader should be warned that since the type I1 thermal walls tends to 
produce a slower evolution, this effect being more dramatic when (+ = 1, our stationary 
values in table 1 for systems 3, 7 and 9 (and to a lesser extent those for systems 5, 11 
and 13 as well) are less reliable than the rest. This seems to be the only clear influence 
of the nature of the SBC on the properties of the reported stationary states. The value 
of U, on the contrary, plays a fundamental role: while the stationary state for U >  1 
has the expected ‘canonical’ properties, that for U = 1 is rather anomalous. 

4.1. Mean free time 

The mean free time depends strongly on the density n = N / L  and, less dramatically, 
on TI and T 2 ;  table 1 also reveals weak finite-size effects. There is also some evidence 
indicating that t,(u= 1) > t,(u> 1) for given n, N,  T ,  and T 2 ,  in accordance with 
previous comments. Note that the standard deviations from the mean values of to in 
table 1 are rather small; in particular, they are compatible with a good estimation of 
the stationary properties. 

4.2. Total system energy 

The mean stationary values for the system energy are denoted as E in table 1 which 
also lists the values for the corresponding standard deviations A, skewness (i.e., 
s = p 3 / A 3 ) ,  and kurtosis ( k  = p4/A4 - 3) ( p3 and p4 represent respectively the third 
and fourth moments of the energy distribution). The values for s and k are usually 
small enough as to indicate that the distributions are approximately normal. On the 
other hand, the dependence of E (as given in table 1) on n, U, TI and T2 seems to 
confirm our qualitative discussion in 0 3. 

What seems noticeable now is the behaviour of the energy fluctuations A E .  On the 
one hand, we observe that A, is affected by strong finite-size effects when, say N << 1000 
as expected. On the other hand, A E  for large systems depends on both U and the type 
of thermal walls: fluctuations are larger for U = 1 than for U > 1 when the system is 
bounded by SBC of type 11, while that effect is less evident for systems with SBC of 
type I. That is, as the only exchange of energy with the exterior occurs ’through the 
SBC, their nature may affect the fluctuations, at least in the case of a non-canonical 
nature. This effect is also present in our estimations below for the ‘specific heat’ and 
‘isothermal compressibility’. 

4.3. Temperature projiles 

The investigation of the spatial distribution of local quantities involves the a priori 
assumption that equilibrium thermodynamics holds locally-actually at each cell (of 
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length L/20) .  The local temperature then follows by computing the mean kinetic 
energy of the particles at each cell and assuming an equipartition of the energy. 

The case U = 1 (figure 8 ( a ) )  is, in accordance with the study by Lebowitz and  Frisch 
(1957), anomalous in the sense that T ( x ) ,  x = 1 , 2 , .  . . ,20,  is practically constant. This 
reveals that Fourier's law does not hold for U = 1 (independently of the type of thermal 
walls). The case (+ r 1 is illustrated by figure 8( b )  where the temperature profile is not 
constant but, rather, one  has 

f = a , + a , x  U >  1 (4.1) 

where f =  ( T ( x )  - (  T ) ) / (  T )  and ( T )  represents the mean value of T ( x )  over the system. 
Higher-order corrections to equation (4.1 ), e.g. terms of order x2, are quite negligible 
in practice; i.e. the linear approximation, Fourier's law, is valid to high accuracy. 
Table 2 lists values for a, and a , ,  the latter intimately re lped  to the thermal conductivity 
coefficient (one has from equation (4.1) that a, = ( d T / d x ) (  T)-' and A = -Q /a , (  T )  
after using Fourier's law). Note also from the values in table 2 that a, > 0 and  a, = -loa, 
in every case and  that the result (4.1) is independent of the type of thermal walls. 

250 I l b i  1 * 

1 

100 

50 

n 

,....,...,....io 
0 5 10 15 20 

X X 

Figure 8. The stationary temperature (7) and density ( n )  profiles for ( a )  o =  1 and 
( b )  U >  1. 

4.4. Density projiles 

The local density profiles during the stationary regime are n ( x )  = constant for U = 1, 
while 

n'= bo+ b , x  cr> 1. (4.2) 

Here n' = ( n  (x) - ( n > ) / (  n )  where one has the sum rule ( n )  = 1. The values for bo and 
b , ,  which are listed in table 2, always satisfy b,<O and bo=  - lob l .  N o  significant 
differences which can be associated with the nature of the walls are observed. 

4.5. Local equilibrium 

The local product n ( x )  T ( x )  is always measured independent of x to a great accuracy. 
Having in mind that, in the case of the ideal-gas equation of state, nT is proportional 
to the pressure, this is consistent with the fact that the stationary regime requires a 
constant local pressure throughout the system. It also provides some a posteriori 
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Table 2. Values for the parameters in (4.1) and (4.2) describing the stationary temperature 
and density profiles, and mean value of n ( x )  T ( x )  in the system, for the cases defined in 
table 1. 

~~ ~ 

Equation (4.1) Equation (4.2) nT 
Expt 
no ( T )  a0 a ,  b0 b ,  ( n T )  A 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

78.01 

8.90 
10.15 
48.25 
78.25 
57.87 

54.92 
93.34 
61.24 

5.54 
10.73 

107.7 

104.3 

105.9 

153.3 
155.3 

0 
0.205 
0 
0.267 
0 
0.042 
0 
0.182 
0 
0.055 
0 
0.195 
0 
0.170 
0 
0.212 

0 

0 

0 

0 

0 

0 

0 

0 

-0.020 

-0.027 

-0.004 

-0.018 

-0.006 

-0.019 

-0.017 

-0.020 

0 

0 

0 

0 

0 

0 

0 

0 

-0.222 

-0.230 

-0.027 

-0.192 

-0.118 

-0.204 

-0.192 

-0.269 

0 
0.022 
0 
0.023 
0 
0.003 
0 
0.019 
0 
0.012 
0 
0.020 
0 
0.019 
0 
0.026 

75.5 
106 

8.71 
9.93 

48.1 
78.2 
51.7 

103 
2.73 
4.65 

610 
1044 

5.37 
10.6 

153 
151 

1.47 
1.61 
0.08 
0.21 
2.93 
3.37 
1.36 
1.85 
0.23 
0.37 

36.3 
43.1 

0.58 
0.44 
1.64 
1.72 

verification of the local equilibrium hypothesis, i.e. the local magnitudes are consistent 
with the global ones, a fact which is confirmed below. Also interesting is the fact that 
the mean values of nT in the system, which are reported in table 2, are practically 
independent of (J in the case of the ‘canonical’ (type I) SBC, while we measured larger 
( n T )  values for a> 1 than for (J = 1 in the case of the type I1 thermal walls; this is 
similar to the effect on the energy fluctuations we described above. 

Under the local equilibrium hypothesis, we may compute a local specific heat 
according to the Einstein formula, C ( x )  = A:/4T2, where T represents the local 
temperature and A T  is the corresponding standard deviation. The resulting values for 
C(x)  are independent of x; table 1 lists the stationary values C = (C) .  Those values 
just confirm some of our previous comments, e.g. finite-size effects and larger energy 
fluctuations for (J = 1 than for (T > 1 in the case of the type I1 SBC, as well as some 
other expected facts, e.g. their independence of the temperatures T, and T2 and a 
strong dependence on N I L .  

One may also estimate local isothermal compressibilities as K ( x )  = LcAi/20Tn2 
where Lc=  L/20 ,  A i  = ( n 2 ) -  n 2  and A:, T and n represent local quantities at each 
cell. Table 1 reports values for K,  the mean value of K ( x )  throughout the system, 
which turns out to be practically independent of x. That global ‘compressibility’ depicts 
a clear dependence on global temperature, density and system size following the 
expected trends. 

5. Inelastic collisions and further types of SBC 

We also performed a series of experiments involving inelastic collisions. When two 
particles, say i and j (with j = i + 1 or j = i - l) ,  with respective velocities ui and U, 



1368 P L Garrido and J Marro 

collide, the new velocities are, as implied by momentum conservation: 

U ; = ( 1 + ) - ’ [ U, ( 1 - & ) + (+,, U/ ( 1 + E ) 3 
U; = (1 + ( + , , ) - ‘ [ U t (  1 + E ) +  U/((+/, -&)I. ( 5 . 1 )  

Here U,, represents the relation between the masses involved, and E =  

-(U: - U;)/( U, - U,). That is, E = 1 for the experiments described above and E > 1 
corresponds to inelastic collisions. The main conclusion from this study is that the 
differences between the pure and mixed cases only seem dramatic, as described above, 
when the collisions are elastic. On the contrary, the increase of E tends to cancel out 
those differences and the system with (+ = 1 presents an apparently ‘good’ (ergodic) 
behaviour for E > 1 .  

We also considered further types of SBC. For instance, (elastic) walls which 
constantly emit particles such that they disappear when they first collide with one of 
the system particles, have the velocity distributions given by (2.1) and (2.2), and are 
emitted with a given frequency v ;  the product vT”’, where T represents the wall 
temperature, is then a measure of the pressure exerted by the walls. Therefore, the 
latter mechanism allows the evaluation of the influence of the pressure in the system 
evolution. Otherwise, the only conclusion is that those emitting walls produce a slower 
system evolution in the computer than the contact walls described above. It may be 
noted, however, that such emitting walls may be quite appropriate when trying to 
simulate an  infinite system, e.g. a few particles immersed in an  infinite bath. 

6. Conclusions 

One-dimensional mixtures of hard points with masses either m ,  or m z ,  enclosed by 
stochastic walls evolve as a consequence of two well defined mechanisms. There is 
always an  effective dissipation of information caused by the interactions between the 
particles and  the walls which, in the case U = m , / m , >  1, adds up  to the more familiar 
relaxation mechanism associated with the interactions between particles. The latter 
mechanism has a shorter characteristic time. As a consequence, there are some 
qualitative as well as quantitative differences in the system relaxation (e.g. from initial 
states hating particle velocities * l )  when one compares the cases U = 1 and a> 1 .  
Those differences tend to become less dramatic, or they disappear, when the collisions 
are inelastic ( E  > 1). 

The most outstanding differences between the systems (+ = 1 and (+ > 1 with elastic 
collisions are seen, however, in contrast to the case of periodic boundary conditions 
(Marro and  Masoliver 1985a, b), in the properties of the final stationary state. As 
expected, this is a non-equilibrium state consistent with a minimum entropy production 
and  with linear relations such as Fourier’s law when U >  1 .  The pure case (+ = 1,  
however, is rather untypical, for instance the total kinetic energy decreases during the 
final stage of the evolution, the local density and temperature are independent of 
position, and  the minimum entropy production principle fails. In either case, (+= 1 
or  a> 1 ,  the local equilibrium hypothesis is well verified in the sense that some local 
quantities such as the pressure, specific heat and  isothermal conductivity computed 
on that assumption are practically constant throughout the system. It is also noticeable 
that stochastic walls having pathologies in a sense defined by Lebowitz and Frisch 
(1957) d o  not seem to influence the stationary state. They may, however, affect the 
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fluctuations and induce the presence of certain unexpected transient states during the 
system relaxation. 

The peculiar, simple evolution of the system with (T = 1 and periodic boundary 
conditions explains that it can be solved exactly (e.g. Jepsen 1965, Lebowitz and Percus 
1967), while the task is more difficult otherwise, except in certain special cases (e.g. 
Aizenman et a1 1978). It thus remains a challenge to develop a complete theory for 
the (relatively simple) one-dimensional system considered here with either periodic or 
stochastic boundary conditions. 
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