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Abstract. We discuss the Becker-Doring type of kinetic equations describing the time 
evolution of the cluster distribution in the lattice gas model, and present the corresponding 
matrix solution. It is simple to perform analytical or numerical studies and to analyse 
experimental data using these equations and the results compare well with Monte Carlo 
results. We also discuss the concept of a time-dependent renormalised fugacity. 

1. Introduction 

The lattice gas model (see, for instance, Thompson 1972) is defined through the 
Hamiltonian 

H = -4JX’ninj J > O  (1.1) 
where the sum runs over all pairs (i,j) of nearest-neighbour sites in a simple cubic lattice 
(i = 1, 2 , .  . . , N), for instance, and nj  = 1 or 0, corresponding to the presence of a 
particle or hole at site i. The interaction between particles at nearest-neighbour sites is 
known to favour phase segregation into a liquid and a vapour phase below a given 
temperature, T,k,/J = 4.5115. . . , within some range of density ( p ) ,  where 

p = N-’ 2 n , .  

The evolution of a given configuration n = {ni; i = 1, . . . , N} at temperature T ,  or the 
relaxation towards equilibrium at temperature T o f  a given initial configuration at To # 
T ,  proceeds in the model by a Markov process whose basic step is to move one particle 
to a neighbouring hole according to a prescribed transition probability (Kawasaki 1966, 
1972). More specifically, one assumes that the probability P(n,  t )  is governed by the 
following Master equation: 

a 
- P(n,  t )  = (W(njn’)P(n’, t )  - W(n‘ln)P(n,  t ) )  (1.3) 
a t  n’ 

where W(n1n’) is the transition probability per unit time from state n’ to state n. States 
n and n‘ only differ by the interchange of some n, with a neighbouring n,, so p remains 
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constant during the evolution, and 

W(n’1n) W ,  = exp(-AH,, /2k~T) F(AH,).  

Here AHl, is the increase of energy H brought about by the proposed interchange, and 
Fis  an even function, e.g. 

F(hH,,) = [2cosh(AH,,/2kBT)]-’. 

The choice (1.4) satisfies detailed balancing. 
Any given configuration of the system can be described in terms of clusters defined, 

for instance, as maximal sets of particles connected by nearest-neighbour bonds; the size 
m of a given cluster may then be defined as the number of particles that belong to it. For 
equilibrium states, the probabilities for the occurrence of these clusters, C z ,  i.e. the 
number of m-particle clusters per lattice site as a function of m, are governed by the 
corresponding Gibbs distribution (see e.g., Marro and Toral 1983, Toral and Marro 
1986). Such a simple picture of the system as a collection of non-overlapping clusters is 
also convenient in the theory of nucleation for describing the decay of unstable and 
metastable states (see, for instance, Gunton and Droz 1983). In that case one is interested 
in Cm(t) which is expected to be related to the droplet or grain distribution at time t 
observed directly by microscopy or indirectly by other means, e.g. after a sudden quench 
of the system at t = 0 from a very high temperature To to the final temperature T. 

Thus the study of kinetic equations for C,(t) is of a great interest, particularly when 
the equations are amenable to simple solution. We analyse in this paper (see also 
Binder et a1 197.5) the assumptions needed to proceed from (1.3) for the configurational 
probability distribution to an equation for Cm(t) having essentially the structure of the 
Becker-Doring equations (Becker and Doring 1935). We find in this way a matrix 
formulation whose solution is rather simple and compares well with some Monte Carlo 
data on the temporal evolution of the lattice gas model. In particular, as compared with 
previous work (Penrose et a1 1978,1984), the present equations have a simpler structure 
which is suitable for processing by standard, fast software in many computers; this 
reduces the computer time needed by more than one order of magnitude and, as a 
consequence, the formulation is very suitable for analysing experimental data and 
combining with other analyses of phase separation (see, for instance, Marro and Toral 
1986). Moreover, we thus find some interesting formal properties for C,(t), including a 
simple dynamical scaling law. As an addendum, we also discuss the concept of a time- 
dependent renormalised fugacity which can be used to describe Cm(t) very accurately 
for small values of m. 

2. Kinetic equations 

The discussion in 0 1 suggests that the temporal evolution of the lattice gas model may 
be investigated, for instance by evaluating the function 

c m ( t )  = 2 ~ m ( n ) ~ ( n ,  t> 
n 

where P ( n ,  t )  is given by (1.3) and (1.4), and one may write 
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The sum here is over all translationally inequivalent m-particle clusters K ,  and B ( K )  
represents the border of K (the set of sites that are nearest neighbours of any site of K 
and do not belong to K ) .  The function C,(t) can thus be worked out in some simple 
cases, e.g. one-dimensional systems and/orsystems withsmallvaluesofm. Nevertheless, 
the evaluation of (2.1) in more general situations is rather difficult because it involves 
the enumeration of many different clusters and the explicit computation of Win (1.4) as 
a function of n and n'. 

Alternatively, one may notice that m-particle clusters corresponding to different 
terms in the sum contained in (2.2) can be characterised by a set of coordinates, r ,  
representing 'internal' degrees of freedom (surface area etc) such that C,(t) is the 
average over r of Cl,([), the latter representing a given cluster K ,  i.e. Cm(t) =(Ch( t ) ) r .  
Now, assuming that clusters can only evolve due to evaporation, condensation, coagu- 
lation and splitting processes, one may write, using (1.3) (see also Binder et a1 1975). 
that 

7_ m - 1  

a t  " = I  m ' = l  
(2.3) -- a', - IC ( C m + m , S m + m ' . m  - c n i ~ m , m ~  + E ( ~ m , ~ m , . n i - m '  - c m ~ n i , n i P )  

where Tm,m, and S,,,,. characterise respectively the corresponding growth and shrinking 
processes, as explained below. This equation contains no processes involving more than 
two clusters, which should be relatively unimportant in practice, and neglects the actual 
diffusion of clusters caused by the motion of their centres of mass, which may be included 
aposteriori by an appropriate rescaling (Penrose et a1 1978). Equation (2.3) also contains 
a more fundamental hypothesis. Namely, it is assumed here that 

(cl,s;:,.) = (c;l)r(s:my)r, = cms,f,,,,, 

(CAC;, T;l!L,)r,r, = (Ch),(CLz, T$'$"),, = C,, Tm," 

(2.4) 

(2.5) 

where S;!;. is the probability that a cluster splits into clusters ( m ,  r )  and ( m r .  r ' ) ,  and 

where T;,:,,. represents the probability that the clusters (m, r )  and (m', r r )  coalesce to 
form a single cluster. The assumptions (2.4) and (2.5) require essentially that each 
distribution Ch( t )  has a very pronounced peak for fixed m around the mean F(m), a 
condition that probably holds for large enough values of m (Binder et a1 1975). Note 
also that our assumptions in (2.4) and (2.5) imply a lack of symmetry concerning the 
coefficients Tm,mJ and S,,,,, which describe inverse processes in some sense; we shall 
comment below on the consequences of this. 

To proceed further we note that it is customary to assume (Becker and Doring 1935, 
Binder et a1 1975, Penrose et a1 1978, 1984, Penrose and Buhagiar 1983) that the most 
relevant processes occurring during the phase segregation of interest here are single- 
particle processes-that is, that the evaporation and condensation of clusters occur via 
the exchange of monomers (e.g. m + m + 1 and m + m - l) ,  and that coagulation 
(m. m! + m + m') and splitting (m + m' + m,") processes are negligible in practice. 
This assumption, which seems to be well confirmed during the Monte Carlo simulation 
of the temporal evolution of the lattice gas model in 0 1, other than for some very early 
times during the evolution (Penrose et a1 1978, 1984, Penrose and Buhagiar 1983), can 
be stated explicitly by requiring that 

Tm" = a m h m , , ,  s m , m ,  = P m S m ' . ,  (2.6) 
where dx,y = 0 , l  whenx f y andx = y respectively. The substitution of conditions (2.6) 
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into (2.3) then leads to 

aCm/at = J m - ,  - J, ( 2 . 7 ~ )  

where 

J m  = m m c m  - P m + l C m + l  (2.7b) 

represents the net rate (per site) of conversion of m-particle to (m + 1)-particle clusters. 
Equation (2.7) has the same structure as the Becker-Doring equations (Becker and 
Doring 1935, Penrose et a1 1978,1984, Penrose and Buhagiar 1983), i.e. C,(t) changes 
with time due to processes m -  l + m ,  m - m -  1, m + m +  1, m +  l + m  which 
correspond respectively to the four terms on the RHS of (2 .7~) .  The evolution with time 
of C,(t), which is observed to reach a quasi-stationary value in practice after some initial 
period, is not described by (2.7), but follows the separate equation 

ac, 
-= -Jl - J ,  

at  m a I 
(2.7c) 

which takes into consideration the processes 2- 1 + 1, 1 + 1 + 2, m +  m - 1 and 
m +  m + 1. On the other hand, the finite size of the model we are considering here 
imposes an upper bound for m,  say M ,  and 

dC,M/at = J M - ,  . (2.7d) 

It is then a simple exercise to show that the system density, given by (1.2) or 
.M 

(2.8) 
m =  1 

remains constant during the evolution described by (2.7) 

3. The coefficients a, and p, 

The utility of (2.7) rests in principle upon the knowledge of the kinetic coefficients CY, 

and Pm describing respectively the rates at which m-particle clusters absorb and emit 
monomers. These coefficients may depend on the system density p ,  while they are 
assumed to be independent of time. The assumption that cum is independent of time, 
which is made here for simplicity, is in accordance with the original treatment (Becker 
and Doring 1935. Frenkel 1955, Zettlemoyer 1969, Abraham 1974) while it is slightly 
different to what was assumed in some previous work (Penrose et a1 1978,1984, Penrose 
and Buhagiar 1983) where CY, = amC,(t). However, this should only produce small 
differences given that the system evolution is governed in practice by the behaviour of 
large clusters. That is, an independent study focusing on the evolution of the correlation 
functions (Marro and Torall986) clearly reveals that C,(t), m > 1, accounts in practice 
for the whole time evolution of the system, the influence becoming larger as m is 
increased and as the time progresses. Actually, C,(t)  becomes quasi-stationary after 
some initial time (Penrose et a1 1978, 1984, Penrose and Buhagiar 1983). What really 
seems to matter here are the assumptions about the dependence on m of the kinetic 
coefficients and the particular treatment one follows to reach an explicit solution of 
(2.7). 
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The coefficients cy, and pm can be related to each other by considering (2.7) at 
equilibrium-that is, by requiring aCm/dt = 0 in (2.7a), ( 2 . 7 ~ )  and (2.7d) one is led to 
the so-called detailed-balancing condition. I,,, = 0, for any value of m, which follows 
here from the consideration of a finite system with constant p .  The fact that the system 
is finite also implies that the Becker-Doring equations (2.7a), have no stationary solution 
such as the one that is familiar in classical nucleation theory (Frenkel19.55, Zettlemoyer 
1969, Abraham 1974); e.g. C1 is kept constant there by an artificial mechanism, which 
moves particles from large to small clusters. 

The detailed-balancing condition and (2.7b) imply in the present case that 

where Ct? is the cluster distribution corresponding to the (true) equilibrium state. Thus. 
one only needs an independent estimation of cy,, and C 2 .  The distribution C2 is 
dependent on which model is used; it was studied in the case of the lattice gas model by, 
for instance, Penrose eta1 (1978) and Marro and Toral(l983). These studies allow us to 
relate Pmil to cy,, by using (3.1). The coefficient cy,,, on the other hand, may be affected 
by the model dynamics; it was first evaluated for the 3D simple cubic Ising model in the 
low-density limit by Penrose and Buhagiar (1983) (we have used in this work the values 
given by Buhagiar (1980); see also Penrose et a1 (1984)). Moreover, it also follows from 
Q 2 that 

The available data for Cm(t) are not accurate enough to provide significant time deriva- 
tives; it would be well worth generating more Monte Carlo data to check different 
hypotheses for cy, via the use of (3.2). 

4. Solution of the Becker-Doring equations 

We shall present here a matrix treatment of the kinetic equations in 9 2 that produces 
simple expressions for Cm(t) in accordance with computer simulation results. The 
numerical aspects in this treatment are simpler-and thus less computational effort is 
required than in previous work (see, e.g. ,  Penrose et a1 1984)-and they are well adapted 
to the most efficient software in many computers. 

Let us define the column vectors 

It follows that (2.7) may be written as 

a c l d t  = AC ( 4 4  
where A is a M x M matrix such that the first row has elements A,, = -2a1, A12 = 
2p2 - cyZ,AIM = PMandA,, = p, - a,(j = 3, .  . . , M - l),theprincipaldiagonalisgiven 
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byAMM=-P,vandA,, = -a, - - P l ( i = 2 , .  . . , M - l),thenearestdiagonaltotheleft 
of the principal one is given by A,, = a, (i = 1, . . . , M - l) ,  the nearest diagonal to 
the right of the principal one is given by A , , , ,  = PI+ (i = 2, . . . , M - l), and the rest 
of the elements are zeros; that is, it has the structure 

where the oblique and horizontal lines represent the only non-zero elements. One also 
has from (2.8) 

p = m . C .  (4.3) 

dp/at = m (AC) = (mtA)+ * C (4.4) 

It then follows from (4.3) and (4.2) that 

where the plus sign denotes the transpose: m+ = ( 1 , 2 , .  . . . M ) ;  the fact that m+A = 0 
then implies p = constant, as required by the model in 0 1. 

The lack of symmetry shown by the matrix A prevents one from using the standard 
theory for Hermitian operators, yet one may extract some important information from 
the corresponding eigenvalue problem. Let P,w( ) denote the characteristic polynomial. 
i.e. 

P,(A) = det(A - A Q )  M 2 3  (4.5) 

where M refers to the dimension? of A. It follows after some algebra that 

P ,  = - (A + C Y ] )  
P* = A[A + (2a, + /&)I 

(4.6a) 

(4.66) 

P ,  = - A [ P  + (2a, + p2 + p3 + a2)A + 2p,a, + p,p, + 3a,a2] ( 4 . 6 ~ )  

P.w = -(PM + a'w-1 + A Y , - ,  - a,- ,P, - ,Pw-2 + (-W n a, (4.6d) 

which are similar to the recurrence relations appearing in the theory of orthogonal 
polynomials (see, for instance, Nikiforov and Ouvarov 1976); they can be used to prove 
that the polynomial P,(A) has simple real zeros. Moreover, one may write 

M-  I 

I =  I 

M 

P,w(A) = ( - 1 ) M  P L A k  (4.7) 
k = 0 

where the P$ satisfy recurrence relations following from (4.6). The latter allow us to 
prove that P L  = 0 for all M and that P L ,  k = 1, .  . . , M ,  are positive (given that am, 
Pm > 0 for all m)-that is, the set of M eigenvalues of A, which are solutions of Phr(A) = 
0, are such that one is zero and the rest, different to each other, are all negative, say 
0 = A ,  < A, < . . . < A M  where A, represents the absolute value of the corresponding 

f The upper bound M is introduced here for convenience although it is consistent with the fact that the Monte 
Carlo data refer to a finite system. The choice should not influence the solution as long as M is larger than the 
largest cluster size observed in the system. 
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eigenvalue. The case A ,  = 0 should then be associated with the stationary solution of 
(4.2), and one has 

M 

C,(t) = C;: + dF exp(-Akt) 
k = 2  

(4.8) 

as a general solution where the constants d7 are related to the initial conditions C,(O). 
Thus, after some transient, initial time during the system evolution, which probably 
depends on m ,  one may expect the dominant behaviour 

C,(t) - C2 = d y  exp(-k2t). (4.9) 

If this were the case it would imply that 

(C,(t) - C 2 ) / ( C m & )  - C2,) = dT/d2' (4.9b) 

is independent of time except for exponentially small corrections in t. Thus interesting 
fact, it should be stressed, is a consequence of our assumption that LY,, is independent of 
time. The simplest way to check the scaling prediction (4.96) is to plot ln(C,(r) - C',p) 
versus r ;  after a transient, relatively small time this should produce straight lines that can 
be scaled into a single one via simple translations along the vertical axis. This is shown 
in figure 1, demonstrating both the exponential decay (4.9) towards the equilibrium 
cluster distribution in the case of some Monte Carlo data and the involved scaling with 
m. As expected, the time for the onset of scaling. t * ,  strongly depends on m; for instance, 
one has in this case tT = 2, t f  i 250, tj* < 1000 and r-; < 1600 where the sub-index refers 

t 

- 3  

0 1000 

I I I I 

2000 4000 6000 
t 

Figure 1. A semilogarithmic plot of C,(t) - Cg versus time in the case of Monte Carlo data 
for the lattice gas model for TITc = 0.59 and p = 0.1. produced in order to demonstrate the 
predominant behaviour (equation (4.9)) at comparatively large values oft; different symbols 
correspond to different values of m as indicated. The inset shows the behaviour at early 
times where small eigenvalues still play an important role. The scaling parameter for the 
vertical axis is c = 0 (m = 1). 1.89 (m = 2 ) ,  3.71. (m = 3),  7.04 ( m  = 4) and 13.04 (m = 5 ) .  
r is in Monte Carlo steps (per lattice site). 
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to the value of m. The data for large values of m suffer from important statistical errors, 
preventing inclusion in figure 1 ; nevertheless, they do seem to be roughly consistent with 
(4.9). 

When the matrix A is independent of time one simply has 

C( t )  = exp(tA)C(O) (4.10) 

which may be diagonalised to 

C(t )  = qEq-'C(O) (4.11) 

where E and qb- 'Aq  have only non-zero diagonal elements exp(A,t) and A,, respectively. 
Standard fast software can then be used to compute E and q ,  thus producing the time 
evolution of the cluster distribution via (4.11). The resulting behaviour for Cm(t) is 
practically indistinguishable from that obtained by Penrose er a1 (1984), making slightly 
different assumptions as mentioned above, by using a Newton-Raphson algorithm, 
while the corresponding computer time may be reduced in the method here by an order 
of magnitude or more. This stresses the utility of Becker-doring equations in the analysis 
of nucleation phenomena, a fact that is not always recognised in the recent literature 
(see, however, for instance, Penrose et a1 1978, 1984, Penrose and Buhagiar 1983). In 
particular, these equations and their numerical treatment given above may be combined 
with simple relations between Cm(t), the system energy and the structure function to 
investigate the behaviour of the latter quantities (Marro and Toral 1986). 

5. A time-dependent renormalised fugacity 

As an addendum to the paper. we analyse here the extension to non-equilibrium pheno- 
mena of the concept of a renormalised fugacity, w ,  which has proved very useful 
previously (Lebowitz and Penrose 1977, Kalos et a1 1978, Marro and Toral 1983). This 
is defined via the expression: 

C2 = w m Q m ( l  - p)km 

Q m  C. exp[ -E(K)/'k,T] 

(5.1) 

where 

k 

is a 'cluster partition function' (Lebowitz and Penrose 1977) where the sum runs over all 
the translationally different clusters K of size m, E ( K )  represents the energy of cluster 
K ,  and k l  = 3.25, k2  = 4.5, k ,  = 5 ,  m 2 3 (Marro and Toral 1983). This may be gen- 
eralised in principle to 

cm(t) = w(t)"Qm(t)(l - p I k m  ( 5 4  
where we shall assume that k,, remains the same as before. It thus follows that 

om(t) = ( cm( t ) c , ( t ) / cm+, ( t ) ) ( l  - p)kmal-kl-kml 

(5.3) 

As shown by figure 2, the Monte Carlo data for Cm(t) reveal that wm(t) almost stabilises 
very early to a constant value, at least form not too large. Let us then assume that Q,(t) 
soon becomes almost independent of t ,  and equal to the equilibrium value Q, when the 
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initial state is unstable (for metastable states the stationary value may differ from Q,), 
On this assumption, the time-dependent renormalised fugacity defined in (5.2) may be 
found in practice from the equation 

P(C m,) = C mC,(r) = C ma(t)"'Q,(1 - p ) k m  (5.4) 
m s m ,  m < m ,  

I 1 1 I 
2000 4000 6000 

t 

Figure 2. The parameter U,(() as defined in (5.3) as a function of time for the same data as 
in figure 1. The symbols are as follows: circles. m = 1: stars. m = 2; crosses, m = 3; and 
triangles. m = 4. 

where m, is the cut-off defining for the vapour phase, e.g. m, = 10 at T = O.6Tc (see 
Marro and Toral (1986) for other cases), p(t;  m,) represents the corresponding vapour 
density (see Toral and Marro (1985) for the behaviour of this quantity), and Q, is known 
exactly for m G 10 and rather accurately for m G 20 (Sykes (1975), Perini er a1 (1984); 
see also Marro and Toral (1983)). The fact that (5.2), with Q,(r) independent of 
time and equal to the equilibrium value, and (5.4) may be very useful in practice is 
demonstrated by table 1. Notice. however, that one cannot extrapolate the validity of 
(5.4) to include the liquid phase where m > m,, i.e. the series resulting from (5.4) as 
m, + %, p(t ;  m,) - p can be seen to diverge; as a consequence, one may not combine 
(5.2) for all m with a Becker-Doring description such as that in earlier sections. 
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Table 1. The temporal evolution of the renormalised fugacity, ~ ( t ) ,  is obtained from (5.4) 
by combining the exact values for the cluster partition functions Q, and experimental data 
for p ( t ) .  the evolution with time of the vapour-phase density. The time variation of the 
cluster distribution is then predicted from 

Cm(t) = w(t)"Qm(l - 
The first row for each time gives the Monte Carlo data for T/Tc = 0.6 and p = 0.1; the 
second row gives our prediction. The agreement is good, except at early times as expected. 

t C,(O Cdt) C 4 t )  Cdt) C,(O Cdt) CdO Cdr) c4t) C d t )  4 0  

11.6 2168 608 296 205 171 128 97 91 60 47 
2050 558 274 182 137 112 98 89 84 81 

25.5 1939 562 282 175 104 98 61 64 38 38 
1959 510 239 152 109 86 71 62 56 52 

55.1 1766 488 228 145 84 45 53 46 38 31 
1868 464 207 126 86 64 51 42 36 32 

108.1 1814 408 199 91 79 43 40 28 30 23 
1795 428 184 107 71 51 39 31 25 21 

440.9 1662 388 145 76 39 32 22 15 13 9 
1656 364 144 78 47 31 22 16 12 10 

1238.3 1550 325 128 59 31 18 12 10 6 5 
1547 318 118 59 34 21 14 9 7 5 

2595.3 1455 280 96 43 20 11 7 4 3 2 
1432 272 93 43 23 13 8 5 3 2 

3373.9 1433 267 85 36 18 10 5 3 1 1 
1389 256 85 39 20 11 6 4 3 2 

5468.4 1421 266 78 34 17 9 4 2 2 1 
1374 251 83 37 19 10 6 4 2 1 

6969 7 1391 250 75 30 15 7 3 2 2 1 
1343 240 77 34 17 9 5 3 2 1 

0.023904 

0.022073 

0.021052 

0.020223 

0.018660 

0.017433 

0.0 16140 

0.015654 

0.015487 

0.015131 

References 

Abraham F F 1974 Homogeneous Nucleation Theory (New York: Academic) 
Becker R and Doring W 1935 Ann. Phys., Lpz. 24 719 
Binder K. Stauffer D and Muller-Krumbhaar H 1975 Phys. Reu. B 12 5261 
Buhagiar A 1980 Doctoral Dissertation The Open University, Milton Keynes 
Frenkel J 1955 Kinetic Theory of Liquids (New York: Dover) 
Gunton J D and Droz M 1983 Introduction to the Theory of Metastable and Unstable States (Berlin: Springer) 
Kalos M H, Lebowitz J L, Penrose 0 and Sur A 1978 J .  Stat. Phys. 18 39 
Kawasaki K 1966 Phys. Reu. 145 224 
- 1972 Phase Tramitiom and Critical Phenomena vol 2, ed. C Domb and M S Green (New York: 

Lebowitz J L and Penrose 0 1977 J .  Stat. Phys. 16 321 
Marro J and Toral R 1983 Physica A 122 563 
- 
Nikiforov A and Ouvarov V 1976 ElCments de la ThCorie Des Fonctions Spkciales (Moscow: Editions Mir) 
Penrose 0 and Buhagiar A 1983 J .  Stat. Phys. 30 219 
Penrose 0, Lebowitz J L, Marrow J ,  Kalos M and Sur A 1978 J .  Stat. Phys. 19 243 
Penrose 0. Lebowitz J L, Marro J,  Kalos M and Tobochnik J 1984 J .  Stat. Phys. 34 399 
Perini A ,  Jacucci G and Martin G 1984 Phys. Reu. B 29 2689 
Sykes M 1975 unpublished 
Thompson C J 1972 Mathematical Statistical Mechanics (Princeton, NJ: Princeton University Press) 
Toral R and Marro J 1985 Phys. Reu. Lett. 54 1424 
- 
Zettlemoyer A C 1969 Nucleation (New York: Dekker) 

Academic) pp 443-501 

1986 Physica B 142 253 

1986 Physica A 135 620 


