Integral equations for dense fluids: A priori controllable approximations®
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The functional methods developed by Yvon, Bogoliubov, Lebowitz, and Percus in the theory
of fluids are applied to the derivation of new integral equations for dense fluids with an a prior
knowledge of their range of validity in some sense. In particular, we find conditions in order
that the resulting radial distribution function contains, at least, all the diagrams in the density
(n) expansion up to order n?, n%,..., and present a method to obtain systematic cofrections to
familiar approximations such as the Percus—Yevick and the hypernetted-chains equations.

1. INTRODUCTION

The study of the static properties of dense fluids rests
nowadays upon the theory of nonlinear integral equations
for spatial correlation functions.' Even though this is still far
from a first-principles theory, e.g., it involves some hypothe-
sis remaining unjustified, in general, and usually lacks from
any a priori criterion for their range of validity, it providesin
practice a convenient tool to relate self-consistently interpar-
ticle potentials with the static structure or the radial pair
distribution finctions, for instance. The resulting informa-
tion may then be compared with the experimental one ob-
tained by producing elastic scattering of electromagnetic
waves by the fluid, it may be used to build up macroscopic
theory within the realm of thermodynamics and hydrodyna-
mics, both in the case of classical and quantum fluids, etc. '~
In fact, their usefulness and versatility has attracted a con-
tinuous activity to the field for many years and there is now
some revival of interest in nonlinear integral equations fo-
cusing on some difficult problems, both numerical and fun-
damental.*”’

The present theory of fluids, including those recent ef-
forts, is mainly centered around the Percus—Yevick (PY)
equation.® This is a consequence of three facts: The PY equa-
tion is simpler than others, it has an exact solution for one-
and three- dimensional systems of particles interacting via a
hard-core potential,>'! and it usually provides a relatively
accurate description in the casé of systems with more general
potentials, e.g., by performing perturbations around the
hard-core fluid system state.'>'? Besides the original deduc-
tion,® we find most suggestive the functional method'*~"”
followed by Lebowitz and Percus'® to obtain the PY equa-
tion which allows, as well, to obtain other, either old or new
ones, integral equations for the relevant correlation func-
tions?: While the functional method does not allow, in prin-
ciple, a better justification of the PY equation than the onein
preceding deductions, it certainly provides an interesting
framework which might finally lead to a systematic study of
some fundamental questions (justification and existence,
range of validity, generalizations and extensions, etc.) con-
cerning this and other nonlinear integral equations.

This is indeed the general purpose of the present article.
We describe here our efforts to find better integral equations
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for dense fluids by using functional methods. In particu!
we describe a (functional) method to find conditions on
“generating functional” producing integral equations wh
are exact up to any desired order in the system density
the sense that the radial pair distribution function whict
the solution of that equation retains, at least, all the the ¢
grams up to that order) and find explicitly those conditi
for orders 2 and 1 (Sec. I1). It may be mentioned that
PY equation and other familiar equations, such as the hyf
netted chains (HNC) equation, are only exa<t in genera:
that sense up to first order in n. The method in Sec. [T a
allows to compare a priori the expected accuracy of any
integral equations. Section III contains further applicatic
of the method and, in particular, it describes some sim
ways 10 obtain successively better integral equations. In £
IV, we devise a different method, intimately related to
one in Sec. I1, however, to find systematically correction:
the radial and direct correlation functions given by sir
integral equations such as the PY and HNC equations:
illustrate this case by correcting the latter two approxi:
tions up to order n”. Finally, Sec. V contains an expilicit «
luation of the corrections to the PY equation up to orde
in the case of a one-dimensional system of hard-core pz
cles: we thus show how these corrections are zero in !
particular case.

11. CONDITIONS ON THE GENERATING FUNCTIONA

This section describes the basics of the functional me
od and applies the formalism to reach explicit conditions
the involved generating functional producing systernatic:
better integral equations for dense fluids. This may
achieved here, in practice, by following different
proaches, e.g., by comparing with existing integral ec
tions, or from a knowledge of the first few exact virial co
cients.

Consider a classical system of N interacting point pc
cles enclosed in a volume ¥ and described, in the absenc
an external field, by the Hamiltonian ¥ = %%, + 7",

N N
W,,:ZP,’/Zm, = I @ ¢
iyl iej=1
where g, =@(r; — 1) represents the interaction potet
between two particles at positions r; and r; respectively.
system, however is acted on by an external potential ¥ m
fying the Hamiltonian; it will be assumed this is due t¢
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interaction between a “‘test particle” at position r, and the
rest of the particles, i.e., one has now ¥ = & + 5%, + ¥,

N ~
Y= zﬁz'.or yf,—{—‘P:'ZlEOlpu.

i=1

(2.2)

Let n,(r;¥) represent a functional of W(r), such that
n,(r;0)=n,(r) is the one-particle distribution function of
the unperturbed system, and denote by % (r;¥) another
functional of ¥ (r) which is arbitrary except for the require-
ment that*'®

(W) =% (r) + j dry[n,(r3¥) —n(ry)]

% (5 F(r;¥) ) )

on(r¥) /w0
This may be viewed as an expansion, where % plays the role
of a generating functional, which is truncated ad hoc in order

to get closed equations for the pair distribution function. We
shall choose here

(2.3)

(YY) =h[vi¥)], (2.4a)
where the function remains unspecified and
v(Y) =aw-n(n¥) exp [Bo(r —10) ], {2.4b)

where @ =w(n,r — r,) is also unknown, # is the mean sys-
tem density, and £ represents the inverse temperature.
The Ornstein-Zernike equation'® reads

G(r,—r,) =C(r, ~r,) +n fdr,G(r, —1;)C(r; —13),
(2.5

where G(r) = g(r) — 1,g(r) = n,(r)/n,is the radial distri-
bution function, C(r) represents the direct correlation func-
tion, and one has the functional relation'®

_p 0¥ b=t Clry —rz¥)
n (rp¥)  my(r¥) '

(2.6)

where §(r) represents the Dirac delta function; one also
has'®

n, (W) = ny(r,re)/n {ry). (2.7

By combining Egs. (2.3)-(2.7) it follows in the case of uni-

form fluids after some algebra that

h [v(nxi0)] — A [v(nx¥)]
na(nx)h {v(nx¥)]

Clx)=g(x) -1+

’

(2.8}

where x=|x|=|r —rol,v(nx;¥) = nwlnx)g(x)
Xexp[Be(x}] and v(n,x;0) = nw(nx) (this notation will
be simplified sometimes as v(x;¥) and v(x;0), respectively,
and the latter also as v(n,x) |, A=dh(v)/dv, and

hlvow)] = b [v(x;0)) + RPe{nx)x

Jh [v(x0)) fds[g(as —x) = 11C(s).
(2.9)

The last two equations, relating the relevant functions
C(r) and g(r) to our arbitrary functions k and w, allow us to
Tecover most familiar results. For instance, it follows by us-

ing #(v) = v and any function & that
Clx) =g(x)[1 — &)

and

(2.10a)

g(x)ePe= = | +nfds[g(|s_x|) ~ 1g(s)[1 — 0]

(2.10b)

which is the Percus-Yevick result® combined with the Om-
stein-Zernike equation (2.5), i.e, Eq. (2.10b) is the so-
called PY equation for uniform fluids. Similarly, the choice
#1(v) = In v leads immediately to the HNC equation in the
case of any function w. Both, the PY and the HNC approxi-
mations can also be obtained by summing up certain dia-
grams chosen among those that contribute to the density
expansion of g(r),

g(r)=e“‘¢‘”[1+ ia,(r)n‘]. (2.11)

r=1

One may show in this way” that the term of order # is the
same in all the three cases (implying that the second and
third virial coefficients in the expansion of the pressure based
on the PY and the HNC equations are exact}, while only a
part of the diagrams in the upper terms are retained in both
approximations. Our purpose here is to find conditions on
the functions 4 and o leading to integral equations which are
exact up to order n', i>2, in the sense that the corresponding
solution g(r) retains (at least) all the diagrams up to order
n'.

To that end we shall perform a formal density expansion
of Eq. (2.8).
C(x) =e 5™ _ 1 4 na(x) + nB(x) + n’y(x) + '+,

(2.12)

whez= the coefficients are definite functions of v, nw, #, and
x, and substitute this in Eq. (2.9). After identifying the
terms with the same power of n in the resulting expansion,
one obtains explicit expressions for the coefficients in Eq.
(2.11). In order to shorten the expressions below, we first
introduce the notation

H(O)=h(0)h~40) (2.13)

and

H,(0)=JA(0)h = (0)v(0), (2.14)

where v =nw(nx); v(0)=v(n =0x), and
h(0)=h(v(0)); one has, for instance,

(%) =fdrf,,(r)f,..(!r _—y (2.158)

a,(x) = J’drf,,. (e (N [fulr—xD) + £ (It +x))]

+ fdrf,, (ra,(Ir —x|) — H,(0)v(0)a; (x),
(2.15b)

etc., where /. (r) = exp [ — Bp(r)] — 1 is the Mayer func-
tion. Now, the PY case corresponds, as it was noEiced pre-
viously, to the choice h(v) = v. Thatis, h(v) = L,h(v) =0,
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and H,(0) = 0, so that one may write

a,(x) =0, 3(x)= — H,(0)v(0)a} (x), (2.16a)

F(x) = — Jdrf,ﬂ(r)ﬂ,(ow(O){fm(s)af )
— [ful®) +1]ai ()}
- jdrfmmﬂ.(ow(mai r

— Hy(0)[v'(0) + (D) ]

+ H,(0)[2H,(0)v(0)v'(0) — +'(0) — 2v(0) ],
(2.16b)
where v/ (0) = (dv/dn), _q, s=18| = |r — x|, and we have
also introduced the notation &, (x) = a,(x) —a; *(x), the
latter representing the value of 2,(x) in the PY approxima-
tion.

The preceding formalism may be used for different pur-
poses. For instance, one may know a priort, from Egs.
(2.16), the kind of approximation (e.g., the diagrams which
will be retained), as compared to the PY one, involved by an
integral equation obtained from Egs. (2.8) and (2.9) after
using some convenient choices for the functions 4 and ; of
course, the comparison can be made also in relation to the
HNC equation or to any other integral equation by making
minor changes in Eqa. (2.16). Even more interesting, one
may interpret the functions a,(x), >1, as the exact density
expansion coefficients; these may be assumed to be associat-
ed to a certain integral equation which would follow in our
formalism by using certain (unfortunately unknown) func-
tions 4 and . Then, we may obtain conditions on 4 and & so
that the corresponding integral equation is exact (contains
all the diagrams) up to order n for an arbitrary value of /.
For instance, the condition

H.(0)w(0x) = — @ (a7 H(x), (217

where @, = a*** — a,(h,w) with the latter given by Egs.
(2.15), is necessary and sufficient to have an exact integral
equation up to order n?, while one would need, in addition,
that

a0 = Idrf,,.(f){f,.. (9)3(r) + [fon (5) + 1]E2(9)}
+Jdrfm(s)52(r) — H,(0)a (x)

X [v'(0) + {v(Q)a,(x]]
+ H (0)a,(x)[2H,(0)v(0)v' (0)a,(x)

— v (0)a,(x) —2v{0)a,(x)] (2.18)

in order to be exact up to order n’, etc. Given that these
expressions, as well as the first few exact coefficients, can be
evaluated in practice with not much effort for the most inter-
esting interparticle potentials, the method is also valuable to
that purpose. Moreover, one may expect, in principle, that
an integral equation which is exact up 1o, say order n® (as
compared to the most familiar ones which are only exact up
to-order n; see Sec. III will also increase its accuracy for
higher orders.

p. L. Garrido and J. Marro: integral equations for dense fluds

lil. SOME PRACTICAL APPLICATIONS

This section is devoted to further discussing practica
applications of the method in Sec. I1; in particular, we devis
two simple ways to approximate the functions # and @ pro
ducing the exact integral equation.

As a simple illustration we first show that, as it wa
argued before, the PY equation and the HNC equation can
not be exact up to order n® nor even up to order n*. In faci
the PY case follows from the formalism for h(v) = v an
any function w, so that one has from Eqs. (2.17) and (2.18)
respectively, that @;(x) =0 and &, (x) = 0 which are obw:
ously false. On the other hand, the generating functione
A(v) = In v for the HNC equation reduces the conditio
(2.17), for instance, to the relation 23,(x) = a} (x} whic
cannot be true, in general.

In order to look for convenient explicit expressions fc
the functions # and w, one may proceed as follows. Le
k(x)= — 28,(x)/a;” *(x); the condition (2.17) and the dc

finition (2.13) then leads t
k(x) = h[v(0x)Th ~'[v(0x)]v(0.x). Assuming  th:
v(0x) can be inverted, ie., x=x(v), one h:

k(x) = k(v) = h(v)k ~'(v)v whose solution is
h(v) = const J dv exp[J k(v)v™! dv] + const, (3.1

where the integration constants turn irrelevant when this
used in Eq. (2.9) Equation (3.1} thus states a relatic
between the functions A and & which would produce an int
gral equation exact up to order n2. The procedure may !
followed systematically to higher orders; i.¢., one would u
now Eq. (3.1) in condition (2.18) toobtain further relatio’
between A and o, etc.

In order to follow that procedure in practice, it is mc
convenient to fix intuitively a function 4 and to adjust th
the function  {or v) satisfying the required conditions {1.
conditions such as the one in Eq. (Z.1), etc. 1. For instan:
the choice h(v) =v ++* and v(n,x) = vy(x) + nv(
may be seen to lead, after not much effort, to a nonline
integral equation for the radial distribution function g¢
which is exact up to order 7. The resulting equation in ti
case, which we avoid writing explicitly here because we o1
mention that case for illustrative purposes, is more comp:
than the PY equation, for instance. However, the effe
needed to treat numerically the new integral equation
comparable to the one in the case of the PY equation fo
realistic potential, so that the method may be useful in pr:
tice.

The above procedure to obtain “good” functions 4 an
may also be implemented, or complemented, in the follc
ing way, for instance. Let us denote 4 and v the (unknow
functions producing any desired accuracy, €.g., theones p
duced in Eq. (2.9), the exact integral equation. Let & an:
denote some trial functions (obtained, for instance,
means of the procedurein the previous paragraph) sucht
h =k + 8h, v =¥ + v, with small deviations 6k and
The condition #(v}a ~'(v)v= R()h ~'(v)¥ givesa I«
tion between v and 84 which, combined with Eq. (3.1),
instance, will lead to a condition to be used iteratively
order to approach / and v. Summing up, the formalisn
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Sec. IT has a great versatility allowing specific aproaches to
deal with different situations and different needs for accura-

cy.

IV. CORRECTIONS OF THE PY AND HNC EQUATIONS

Our method may also be applied to obtain corrections
for the expressions of the correlation functions g(r) and
C(r) following from familiar approximations such as the PY
and HNC equations. The basic idea now is that the desired
pair distribution function, ¢.g., the one which is exact up to
order n', i > 1, may be written as

g(r) =go(r) + Ag,(r), (4.1)
where g, is the solution of a given integral equation, g, con-
tains the missing diagrams, and 4 is a formal parameter

(A=1) used to identify the corrections. It will be assumed
that

h(v) = ho(v) + Ah,(v), 4.2)

where A, is the generating functional for the given integrai
equation and A, has to be adjusted to produce g, (#). In addi-
tion, the version of the method in the present section is char-
acterized by the definition of the direct correlation function
as the linear part foliowing from Eq. (2.8) when one substi-
tutes their Eqs. (4.1) and (4.2), ie,,

C(r) = Co(r) + AC,(r), (4.3)
where C, is given by Eq. (2.8) with A replaced by g, so that
it represents the direct correlation function in the starting
approximation. Our definition of C(r) should not be consid-
ered as an actual approximation, given that Eq. (2.3), and
Eg. (4.2) to some extent, are already arbitraries, but a rule
generating a new type of integral equations.

The comparison of Eq. (4.3) with the expansion follow-
ing from Eq. (2.8) with the substituticas {4.1) and (4.2)
produces after some straightforward algebra:

Ci(r) =g (M [1 — koA g ' (v)e ]
+ [Vho(¥}] A () —hy(3)]
= [Yh3) ] TR [he(v) k()] (44)

with #=vg, exp(Bp). Now, we require that C(r) and g(r)
satisfy the Ornstein-Zernike equation, i.e., we substitute
Eqs. (4.1) and (4.3) in Eq. (2.5); the resulting expression
tay be separated into two parts:

8o(#) = Co(r) + n f dsleolls — 1) — 11Co(s)  (4.5)

and

& =C(r)+n fds{go(is —r|} = 11C(s)
+ansg,(|r—s1)[C°(s)+AC,(s)]. (4.6)

Thatis, the starting approximations C, and g, also satisfy the
Ornstein-Zernike equation, while C, and g, do not. The
Present scheme also requires expansions,

By 678 = g0 | g%y 4 a%'n? 4 -, &B=],

4.7)

whose comparison with the one in Eq. (2.11) reveals

ay =0, a¥+Aal=a, i>l, (4.8a)

as a consequence of Eq. (4.1). Moreover, when g, represents
either the PY approximation or the HNC approximation,
one has

al =0 (4.8b)

because they are known to be exact up to order n (cf. Sec.
1.

The rest of this section will be devoted to the application
of the above method to obtain the correction required by the
PY and HNC results in order to produce correlation func-
tions exact up 1o order n’,

A. The Percus-Yevick case

Let ho(v) = v. [t follows from Eq. (4.4) after perform-
ing a density expansion that

Cy(ry = [ab(n{e-%" -1}

— 1, (0)v(0)a} (1) | + 6(n); (4.9)
the use of Egs. (4.9), (4.7), and (2.11) in Eq. (4.6) then
shows that g, ~ C, up to order #° and, as a consequence, that

al(r) = — ik, (00} (1. (4.10)
Now, as g, should include the diagrams lacking in g, up to
order n?, and @, = ab¥ + Aaj, so that @} = a@,4 ~', one has

R(0)v(0) = —23,/Ad (4.11)
as the condition on h,, and v to obtain an integral equation
which is exact up to order n”.

This has a similar structure to condition (2.17), and it
may in fact be exploited formally as before. For compiete-
ness, we shall, however, follow here a different approach: we
shall choose A, and v satisfying condition (4.11). For in-
stance,

hi(v)y =+ (4.12)
and, from Eq. (4.11), v(0) = —a,/Aa,.
v(n,r) = v{0,r): we have from Eq. (4.4) that

Ci(r) =g, () [1 = ] 4 (G/Aa2 ) (g, & — 117,

Let then

(4.13)
and it follows from Eq. (4.6) an integral equation for Ag,:
8 & = (8,/40} ) (go & — 1) +n

xfdsg,w —SHGos) 41

IdsC,(:)[go(lr-SI) —1+4Ag(lr—sD].
(4.14)

This method thus allows to use the already known results in
the PY approximation to correct them up to order n* or
higher.
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B. The HNC case

Let siy(v) = In v. Equations (4.9)-(4.11) read now, re-
spectively,

Ciry ={ai(e =% — 1) — {aiv(0)

X [, (0)¥(0) + A, (0) 1 }n® + 8(r®), (4.15)

@b = — 1@ v(0) [A(0)v(0) + A4,(0)], (4.16)
ane

w(0) [A,(0)¥(0) + h,(0)} = —23,/4a}. (4.17)
A simple illustrative choice is

B (V) =v (4.18)
implying v(0,7) = — 23,/4a, where 3, =ay"*"" — a}'™¢, and
one has

Ci(r) = —lngy(nN-Bpr) — 1 +g,(N[1 —go(r)™"]
— 23,071 — g, ¢ +1In(g,&%)]  (4.19)

and

g =C(r) +n J- ds[go(ir —s|) — 11C{s)

+n Idsgl(lr —sP)[Cols) + Cits)] (4.20)

for the corrections up to order n”.

V. A SIMPLE EXPLICIT EXAMPLE

Finally, as a further illustration of the method, we shall
compute explicitly the correction found in the preceding sec-
tion to the PY equation in the case of a one-dimensional
system of hard-core particles. Let us define

To(x) =go(x)exp[Bp(x) ]; (5.1
the PY equation reads
rolx) = nJ- dr[rg(r—x)e %o =% _ 1]
L
X7o(r) [e™ % — 1] + 1 -1
or
1
To(x) = nb(2 —x)f dr 1o(r — x)71o(r) + 1
x=1
1
+nJ drrg(r)[1 —7o(r—x)1, (5.3)
-1

where use was made of the expression
exp[ —Bp(x)] =8(x— 1) —8(x+ 1) + 1,
where 8(p) represents the step function. It also follows that

a; = (2~x)0(2 —x), (5.4)
g, =162 —x){(x — 2)2[1 — 8(x — 1)}
+(2x - 161 - x)} (5.5)
and, thus
0 when |x}>1
= -2 _ 2
o Y g 59

The correction up to order n* satisfies

T(x)y=4x)0(1 —x) +n[6(2 —x)J dx’ flx,x")
x—1
1
—J’ dx’f(x,x')]. (5.7)
-t
where
flxx') =71(x' — x)[7(x") —4(x)]
+ 1y (X —x) [rp(x) + T(x") — A ]
(5.8)
and
A(x) =41 — xDA2 — xR = 117 (5.9)

Our corrected direct correlation function and radial distri-
bution function are then given, respectively, by

0 when x> 1

C(x) = —ro—rl+ii——n—:(fo“’”2 when x < 1
(2 —x)"
(5.10)
and
h 1
g(x) = To=+ 7; WHEN X> (5.11)

0 when x<1

where 7, and 7, are the solutions of Egs. (5.3) and (5.7),
respectively. One may prove here rather simply, both from
the expression in the present section and from those in Sec.
1V, that go—1 and g,—0, g—~ 1 for any of the three limits
|%| = o, 8—0, and p--0. We also notice the following: Our
method guarantees that functions (5.10) and (5.11) can
only have corrections of order #° or higher. In the present
particular case, however, the solution of Eq. (5.7} is

A(x), |x| <]

T(x) = 0, IxI>1

(5.12)
and, when this is used in Egs. (5.10) and (5.11), it readily
follows that our corrected C and g are precisely equal to the
ones in the PY approximation. This is in agreement with the
theorem'® that the PY approximation gives exact results in
the case of a one-dimensional system of hard-core particles,
even more, each correction in a density expansion is zero in
this particular case. We are presently carrying a numerical
analysis of some of the integral equations in this paper.
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