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Abstract. We present different effective-field and cluster-variation treatments of the mag- 
netic spin-: Ising model for a fraction x of frozen-in or quenched non-magnetic impurities. 
The resulting picture for the critical curve. magnetisation, energy, specific heat and sus- 
ceptibility is simple and compares very well with Monte Carlo and experimental data. Our 
results can thus be useful in the analysis of 'anomalies' in non-stoichiometric compounds 
such as metal oxides, mixed alloys and other substances up to the percolation threshold x,.  

1. Introduction 

The physical properties in many substances show a rather strong dependence on small 
deviations from perfect stoichiometry. The analysis of this fact is of great practical 
interest because deviations from stoichiometry occur commonly in practice and fre- 
quently affect materials with a broad spectrum of technological applications. For 
instance, transition-metal oxides usually show up in Nature as AI  -,O and different 
electronic and magnetic properties are rather frequently observed for different samples, 
and these presumably correspond to different values of x (see, e.g., McGuire et a1 1972, 
de Jongh and Miedema 1974 (and references therein), Seehra and Silinsky 1979, Seehra 
and Groves 1983. Dominguez et (11 1984 (and references therein), Hauser and Waszczak 
1984). Also. many materials can be prepared in the laboratory as AI -,B,C compounds, 
by replacing magnetic A atoms in the pure magnet AC by non-magnetic B impurities, 
and their magnetic and thermal properties show similar variations with x (Lagendijk and 
Huiskamp 1972. Birgeneau et a1 1983, Westerholt and Sobotta 1983, Westerholt et a1 
1984). While the observed dependence onx  has sometimes been explained, for instance 
as a consequence of competing interactions causing spin glass behaviour in MnO (Hauser 
and Waszczak 1984), the effects are often termed anomalous, thus revealing that they 
still lack a proper theoretical interpretation (see, e.g., Seehra and Silinsky 1979). It is 
the purpose of this paper to develop effective-field and cluster-variation treatments, 
involving simplified models of the above physical situation, which may provide a well 
defined reference for analysing some of the data that are now available and future 
experiments on simple materials. 

The situation depicted above immediately suggests that the 'anomalous' magnetic 
and thermal properties whenx # 0 might in principle be analysed through consideration 
of simple lattice models with defects. say non-magnetic impurities. The basic starting 
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model we consider here is the magnetic spin-6 Ising model with nearest-neighbour (”N) 
pair interactions defined by the Hamiltonian 

J , ,  = J 

where the sum extends over all NN pairs in a given lattice of size Vand s, = 2 1. Impurities 
can then be included in several ways. A site-impure situation is simulated here by setting 
s, = 0 at XV fixed randomly distributed lattice sites. That is, frozen-in non-magnetic 
impurities are considered by replacing the spins at randomly chosen sites of the lattice 
by static (‘quenched’) impure sites which do not interact with the spins. We also study a 
bond-impure situation where a fraction x of the interactions in the basic model are 
broken. 

Real materials, of course, exhibit many extra complications that are not included in 
these models, such as extended interactions, competing ferro-antiferromagnetic bonds. 
larger numbers of spin components, isotropy and more complex lattice structures and 
defects. Nevertheless, our results may still give reasonable insight into the phenomena 
of interest and there are many materials that can in principle be approximated by our 
models. We shall present evidence to show that our theoretical results do indeed provide 
good qualitative and semi-qualitative descriptions of the experimental and the Monte 
Carlo data. This agreement is even more striking given the simplicity of the models we 
consider here, a simplicity that was dictated by our search for a description covering the 
behaviour of several quantities over a broad range of values of x and temperature. 

An important point is that the random distribution of quenched defects or impurities 
considered in this paper may represent a rather general situation in practice at low 
enough temperature, e.g. far below the melting point for the lattice, and that it destroys 
the regularity of the interactions in the system, so one may in principle expect to observe 
interesting changes from the ‘pure’ case (x = 0). In fact, similar mathematical models 
have been used before in order to study both particular physical situations and the overall 
physical properties in materials including disorder, such as in impure and amorphous 
systems, spin glasses, dilute magnets and surfaces (see, for instance, the reviews by Mills 
er a1 1971, McCoy and Wu 1973, Burkhardt and van Leeuwen 1982, Binder 1979,1984, 
Mouritsen 1984). However, neither the theoretical situation concerning impure or 
disordered systems (Behringer 1957, Grinstein and Luther 1976, Stoll and Schneider 
1976, Landau 1980, Newman and Rieder 1982, Dotsenko and Dotsenko 1983, Jug 1983) 
nor the corresponding experimental situation (Seehra and Silinsky 1979, Cowley and 
Carneiro 1980, Westerholt and Sobotta 1983, Westerholt et a1 1984, Birgeneau et a1 
1983, 1984 (and references therein) are clearly understood at present; we refer the 
reader to the excellent review by Stinchcombe (1983) for further details and references. 

2. The Bethe-Peierls method 

Effective-field approaches to magnetism (see, e.g., Smart 1966, Pathria 1977) usually 
give a poor quantitative description of the data: they fail to reproduce the correct 
exponents describing the asymptotic behaviour when T-  T,  and the spin wave behav- 
iour at low temperatures and yield only semi-quantitative agreement at best in other 
cases. This is a consequence of the defective treatment of the short-ranged correlations, 
symmetries and dimensionality of the systems. 

There are in practice many ways of taking account of these effects in the context of 
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impure Ising models. For instance, one may consider different microscopic arrangements 
of magnetic ions and impurities around a given lattice site or different relations between 
a given cluster of spins and its surroundings or one may consider impurity bonds instead 
of impurity sites. As a consequence, the resulting pictures are varied and their validity 
is uncertain a priori (see, for instance, Behringer 1957, Sat0 et a1 1959. McCoy and 
Wu 1973, Katsura and Matsubara 1974 (and references therein), Stinchcombe 1983, 
Dotsenko and Dotsenko 1983). We present in this and the following two sections 
different effective-field treatments yielding a very useful qualitative description of the 
phenomena of interest. As compared with more sophisticated approaches, the one in 
this paper is more general in the sense that it allows in principle an economic computation 
of any physical quantity over a broad range of temperatures and concentrations x .  
and it also produces semi-quantitative agreement with experimental data, while the 
mathematical framework is here simpler and transparent. 

We shall first consider a given 'central' spin so surrounded by q' < q spins at NN sites; 
q (=6 for a sc lattice) represents the coordination number of the lattice and q' = 
(1 - x)q. This situation can be handled by the first-order effective-field treatment intro- 
duced by Bethe (1935) and Peierls (1936) for the 'pure' case x = 0. More specifically. we 
consider the Hamiltonian H given by 

4 4' 

/ = 1  ] = I  
-H/kBT = hso + (h + h')  S ,  + k C SOS!  (2.1) 

where k = J / k B T ,  h is proportional to the external field and h' represents an internal 
'molecular' magnetic field arising from the spins in the system not included explicitly in 
(2.1). The system partition function follows immediately: 

z = z, + z- Z 2  = eZh[2 cosh(h + h' 2 k) ]q ' .  ( 2 . 2 )  

Now we assume self-consistency in the sense that (so) = (s,), where j # 0 is any spin in 
the lattice and (. . .) represents an ensemble average; this implies that the cluster of q' 
spins being considered is in thermodynamic equilibrium with the rest of the system. It 
then follows that 

[cosh(a+)/cosh(a-)]4'-1 = eZh' (2.3) 
where a, = h + h'  + k ,  a-  = h + h' - k ,  which can be used to obtain the mean mag- 
netisation per spin (or magnetic ion) in the system: 

tanh(a + ) + tanh(a - ) 
2 + tanh(a-) - tanh(a+) '  

m( T ,  h;  x )  = (so) = 

The above procedure is a straightforward generalisation of the Bethe-Peierls method 
for the case x # 0 and was previously considered by Sat0 et a1 (1959). We include it here, 
however, in order to fix the notation for the other two treatments in this paper; moreover, 
we shall show below how the simple model (2.1)-(2.3) does indeed give a reasonable 
description of data and so thus can be used with some confidence in the analysis of 
experiments. 

The use of (2.3) for h = 0 (zero magnetic field) in (2.4) produces the coexistence 
curves shown in figure 1 for different values of the impurity concentration x .  Also 
following from (2.3) when h = 0 is the critical curve 

T,(x)  = 2J /kB ln[q'/(q' - 2)) 
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Figure 1. The mean spontaneous magnetisation per magnetic ion. normalised to the maxi- 
mum value when T = 0 and x = 0,  versus temperature as follows from the models in § 2 (full 
curves), § 3 (broken curves) and § 4 (dotted curves), for different values of x as indicated, 
in the case of a sc lattice. The symbols correspond to Monte Carlo data from Landau (1980): 
A (10 x 10 x ~ O S C  lattice), 0 (20 X 20 X 20) and x (30 x 30 x 30). 

As noted previously by Sat0 et a1 (1959), this vanishes when q' = (1 - x ) q  = 2; that is, 
in order to obtain a finite value for T, one needs enough spins to make, on average, a 
linear chain throughout the system. Interestingly enough, for the sc lattice (q  = 6) this 
predicts that T,(x) vanishes as x +  3 and this is very close to the (site) percolative 
transition thresholdx, = 0.689 (Sur eta1 1976, Stauffer 1979). Note that the spins cannot 
correlate throughout the entire lattice when x > x ,  so one should indeed expect no phase 
transition for such large concentrations of impurities, in approximate agreement with 
the first-order mean-field results (2.5). The zeroth-order Bragg-Williams (Pathria 1977) 
approximation, in contrast, predicts T,(x)  = 4s(s + l )q( l  - x)J /kB,  where s is the spin 
number, vanishing as x + 1. The function (2.5) is shown in figure 2 together with T,(x) 
obtained under other hypotheses and with some experimental data. 

Near T,, equation (2.3) for h = 0 gives h' == [3(q' - 1) ( k ,  - k)]"2, k,  = J/k,T,,  and 
the following spontaneous magnetisation per spin: 

This implies that the critical amplitude characterising the coexistence curve near T,  
depends on x while the corresponding critical exponent /3 has the 'classical' value 1, 
independently of x ;  this is an intricate question to which we shall return later in this 
paper. 

The partition function (2.2) may also be written as 

z = z+, + z-- + z+- ( 2 . 7 ~ )  

where 

Z++ = exp(2h + h' + k )  [2 cosh(a+)]q'-' (2.7b) 

Z--  = exp(-2h - 3h' + k ) [ 2 ~ o s h ( a + ) ] q ' - ~  (2.7c) 

2,- = 2 exp(-h' - k ) [ 2  cosh(a+)]q'-' (2.7d) 
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Figure 2. ( a )  The critical curve T c ( x )  for a sc lattice as predicted by the three models studied 
in this paper (full curves, as indicated). The broken curve shows the zeroth-order Bragg- 
Williams result. The dotted curve is from a renormalisation group computation by Stinch- 
combe (1979). The triangles correspond to the Monte Carlo data from Landau (1980). The 
squares represent the experimental data from Lagendijk and Huiskamp (1972). ( b )  Tc(x ) /  
TJO) versus x for the same models as in ( a )  but for a FCC lattice. The broken curve is 
from the computation by Behringer (1957). The symbols correspond to experimental data 
reported by Behringer as follows: Fe-Si (U), Fe-AI ( A )  Fe-Zn ( X )  and Fe3O3-Cr2OX(+). 

after using the self-consistency condition (2.3). The short-ranged order parameter, U = 
N++N--/(N,-)2 where N++,  N--  and N+- represent respectively the total number of 
u p u p ,  down-down and updown NN pairs of spins averaged over the equilibrium state 
defined by 2, is then given by 

U = t exp(4k). (2.8) 

E = -+J(1 - x)q”(srjs,) (2.9) 

(sosl) = [cosh(2h’) - exp(-2k)]/[cosh(2h’) + exp(-2k)] (2.10) 

The system energy may be written as 

where the spin-spin correlation function is 
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0 1 2 3 4 5 6 
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Figure 3. The configurational energy of the system (SC lattice), normalised to its maximum 
value for x = 0, versus temperature at selected values of x .  as indicated; the symbols have 
the same meaning as in figure 1. 

at zero field and N' = (1 - x ) N  is the number of spins; see figure 3 for the explicit 
behaviour of the energy versus temperature at selected values of x .  The corresponding 
specific heat is shown in figure 4; we avoid giving here the explicit expression which is 
rather complex. It is interesting to note that the discontinuity of the specific heat at T, 
shown by figure 4 behaves in such a way that 

(2.11) 

T I  T,(x=O) 

Figure 4. The specific heat per magnetic ion versus temperature for a sc lattice using the 
same notation as in figure 1. N' = N(l - x )  represents the number of magnetic ions in the 
system. 
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Figure 5. The discontinuity of the specific heat (per  magnetic ion) at T J x )  as a function of .Y 

for the three models considered. as indicated: sc lattice. 

and the height in such a way that 

(2.12) 

These functions are represented, respectively, in figures 5 and 6 as functions of x in the 
case of a sc lattice. Finally. the magnetic susceptibility is given by 

eZk + cosh(2h‘) 
eZk + cosh(2h’) - q‘ sinh(2k) ‘ E ($1 h=O = - 

(2.13) 

This function is shown in figure 7 together with one obtained using other hypotheses. 
Section 5 contains a discussion of the behaviour shown by figures 1-7. 

I I I 

I / 
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Tk,IJ 

Figure 7. A semilogarithmic plot of the magnetic susceptibility (cf (2.13)), in units of J / k B T .  
versus temperature for the three models and different values of x .  The notation is the same 
as in figure 1 

3. Broken bonds 

Real impure magnets are normally site-impure, as with the model described above; it 
would be interesting, however, to extend the above method to the case of bond impurity. 
In fact, any reasonable theory is expected to distinguish between the two cases; for 
instance the percolation threshold x, is known to vary from one case to the other. 
We consider now the central spin with q NN spins and assume that qx of the bonds 
(interactions) are broken. That is, the Hamiltonian H i s  now 

0 0' 

where q' = (1 - x)q is the number of bonds remaining, and the partition function is Z = 
Z ,  + Z- with 

ZI = eZh[2 cosh(h + h' 2 k)]4'[2 cosh(a)]4" (3.2) 
where a = h + h'. Introducing self-consistency as before one has 

q' e-k  + qx cosh(a-)/cosh(a) 
q' e-k  + q x  cosh(a+)/cosh(a) (3 9 3 )  - - cosh(a,) q ' - l  

e -2h '  (cosh(a-)j  

and T,(x)  is the solution of 

qx sinh(k,) 
q' + qx cosh(k,) 

1 =  + (q' - 1) tanh(k,). (3.4) 

See figure 2 for the shape of the function T,(x); this is seen to vanish in the case of a sc 
lattice at x = 0.833 which can be compared with the series value for bond percolation, 
x,  = 0.751 (Stauffer 1979). 
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The  mean magnetisation per spin is 

2qx tanh(a) + q’[tanh(a-) + t anh(a+)]  
29 + q’[tanh(a-) - t anh(a+)]  m(T,  h ; x )  = ( 3 . 5 )  

The case where h = 0 is displayed in figure 1. Note that on setting qx = 0 and q = q ’ ,  
equation (3.5) formally reduces to (2.4) as one should expect. The  short-range order 
parameter, on the other hand, is now 

q’ e-k cosh(a) + qxcosh(a+)  
9’ e-k cosh(a) + qx cosh(a-) 

o = ~  4k 4e 

as compared with the value obtained from (2.8). We  also have for the energy at zero 
field the result (2.9) with 

{q‘[cosh(2h’) - e-2k]  + qx[sinh(2k) + tanh(h’) sinh(2h’)l) 
{q’[cosh(2h‘) + e -2k]  + qx[cosh(2h’) + cosh(2k)l) (3.7) ( S O S , )  = 

This is shown in figure 3. The  analytic expressions for other quantities are rather complex; 
we show in figures 4-7 the behaviour of the specific heat C( T, x),  the discontinuity A C ( x )  
at T,, the  height C ( T  = T i ,  x) of the specific heat and the magnetic susceptibility, 
respectively. 

4. Site impurities 

The analytical treatment of the model in 0 2 can be generalised along the lines of 
the cluster-variation method of Kikuchi (1951). Let us consider a given central spin 
surrounded either by 0, 1,  2 ,  . . . or  q vacant sites. each situation weighed by the 
corresponding binomial probability. The  partition function then follows assuming those 
groups of spins independent from each other but affected by the same mean internal 
magnetic field due  to the rest of the spins. That is, when one  considers q + 1 situations 
characterised by having 0,  1 , 2 ,  . . . or q non-magnetic ions, one  has mu = 1. m l  = 4.. . . , 
m q W l r  m4 as the  numbers of different possible realisations of each situation. n = Ximi, 
and 

n n 

[2 cosh(h + h’ + ksoI)lqi 
bo, = = 11 

so it follows that 

and 

(4.3) 
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where 

where m, is the number of different possibilities for each situation considered; that is, 
for each i one has 

Assuming self-consistency in the sense that (so) = (s,), where 
4 

it follows after some algebra when h = 0 and h‘ + 0 that 
4 4 

2 p,[l - (4;  - 1)h’ tanh(k)] /x  p,[l + (4,’ - 1)h’ tanh(k)] = e-” . (4.6) 
1 = 1  ,=1 

The critical temperature is 
- -  

Tc(x) = 2J/kB W4’/(4’  - 2P)l 
where 

4 - 
4’ = 2 p ,4 ;  = q(1 - x )  

,=O 

andp = 1 - xq. For a sc lattice this yields 

Tc(x)/T,(0) = ln($)/ln[(3 - 3x)/(2 - 3x + x‘)] (4.9) 
whose behaviour near x = 0 (up to x 2 )  is the same as that described by equation (2.5). 
At large values of x ( x  > 0.4), equation (4.9) differs from (2.5) as shown by figure 2; for 
instance, T,(x) vanishes at x = 0.709 for a sc lattice. This is even closer to the series 
result (x ,  = 0.689) than the value reported in 9 2. 

Other quantities are given as averages: 
0 

e = C P,Q, 
I = o  

(4.10) 

where, as in (4.3) and (4.8), Qjis the quantity obtained in 9 2from the partition function 
(2.2) before using any self-consistency condition. See figure 1 and figures 4-7 for the 
behaviour of the most relevant quantities. Further discussion of the above results is 
contained in the following section. 

5.  Discussion 

The agreement between the theory and experimental data is well depicted in figure 1 
where the model predictions for the magnetisation are compared with the Monte Carlo 
data given by Landau (1980) at representative values of x in the case of a sc lattice ( 4  = 
6). Note that most of Landau’s data refer to relatively small lattices so the observed 
discrepancies may partially reflect finite-size effects and anomalous fluctuations. In fact, 
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the agreement is excellent forx = 0.4 where the data refer to a 30 x 30 x 30 lattice; note 
also that due to finite-size effects one should disregard the data for smaller lattices when 
mo( T ;  x )  < 0.2, and that the dataforx 3 0.6, say, are admittedly crude. Also noticeable 
is the fact that the behaviour of the model (4.1) clearly separates from the behaviour of 
the other two models; e.g. it predicts a small saturation value for x 3 0.6 and a given 
curvature of the mo( T )  curve. Both facts are in qualitative agreement with the data. 
Figure 3, comparing the configurational energy for the three models and Monte Carlo 
data, confirms the situation depicted by figure 1. 

The favourable ratio shown by the models studied in this paper between physical 
relevance and mathematical simplicity can also be demonstrated by comparing their 
prediction for T,(x) with that following from more sophisticated computations. Behrin- 
ger (1957) analysed a magnetically dilute FCC lattice by performing a high-temperature 
series expansion in an effort to approximate the manner in which (1 - x )  paramagnetic 
ions and x diamagnetic ions distribute themselves. This computation was followed up to 
fourth order to obtain a crude description of data restricted to the range 0.2 > x 0 
(figure 2 ( b ) ) ,  but even this range of validity is problematical given the slow convergence 
shown by Behringer’s expansion: in fact, the simple examination of the high-temperature 
series for impure systems is not in principle a valid way of determining the transition 
temperature (Griffiths 1969, Rushbrooke et a1 1972). The result from an effective- 
Hamiltonian approximation (Oguchi and Obokata 1969) also seems less reliable than 
(2.5), (3.4) or (4.9); e.g. it overestimates experimentalvalues (Lagendijk and Huiskamp 
1972) for x, and T,(x)  by 10% or more. Turning to the behaviour near x = 0 where the 
test is more stringent, we note that (2.5) implies for a sc lattice that 

T,(x)/T,(O) = 1 - 1 . 2 3 3 ~  - 0 . 0 2 1 ~ ~  + . . .. (5.1) 

Harris (1974) performed a resummation of perturbation theory, whose validity seems 
open to question, to obtain a series similar to (5.1) with coefficients - 1.060 and -0.085, 
in that order, and a real-space renormalisation by Stinchcombe (1979), restricted to 
small cluster sizes however, yields - 1.06 for the first coefficient. The latter may also be 
affected by a relatively large error; e.g. it predicts (probably incorrectly) the same 
number for site impurities as for bond impurities. The prediction (2.5) seems also to 
be consistent with experimental data; for instance Lagendijk and Huiskamp (1972) 
conclude that x, > 0.65 and that the first coefficient in (5.1) is around - 1.1. 

More evidence in favour of (2.5) concerns its shape near percolation: 

exp(-2J/kBT) - (x - x,)g x - x, ( 5 4  
where q is the so-called crossover exponent. Wallace and Young (1978) and Stinch- 
combe (1979) concluded that cp is near unity; from (2.5) it does indeed follow pro- 
portionality for any value of x ,  as can easily be confirmed. Equation (3.4) cannot be 
solved analytically in the limit (5.2) but a numerical analysis shows that cp is near unity 
in this case; on the other hand. cp = 1 for the model 0 4, independently of q ,  as can be 
seen from (4.7) by computing the ratio (-2J/k,T,)/ln(x - x,)  asx-  x,.  

Also interesting is the fact mentioned before that the models make reasonable 
predictions concerning x,, the percolation threshold; namely 

x, = 1 - 2/q 

xc = (4 - l)/q 
q ( l  - x,) = 2(1 - x p )  

( 5 . 3 ~ )  

(5 .3b)  

(5 .3c)  
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for the models in §§ 2, 3 and 4, respectively. These behaviours are plotted in figure 8 
together with the results reported by Stauffer (1979). This figure shows how the site- 
impuremodels,particularly (5,3c),produce adescriptionthat isvalidoverallalthough, as 
expected, they do not predict a change of x ,  with symmetry; e.g. they predict reasonable 
values for square and sc lattices while they cannot distinguish between the square and 
diamond structures (q  = 4). 

0.8 

0.6 
xc 

0 .4  

0.2 

I' k 4 

4 

Figures. The critical concentration for percolation as predicted by the three models: (5 ,3a) ,  
broken curve; (5.36), dotted curve; ( 5 . 3 ~ ) .  full curve. The symbols correspond to the values 
reported by Stauffer (1979) for bond ( x )  and site ( A )  percolation. 

Figures 4-6 compare the behaviour of the specific heat shown by our models. The 
agreement with experimental data in this case is also good; cf figure 6. Note, however. 
that effective-field treatments cannot reproduce the divergences at T, that one should 
expect in the light of a more detailed analysis of the king model (figure 4) and that, for 
different reasons, the transition is usually rounded in the case of real materials and 
Monte Carlo computations for small lattices (figure 6). 

The critical behaviour of the magnetic susceptibility is again reasonably described 
by our models. This is shown in figure 7 where one can see that the predictions from the 
model in § 3 do indeed lie very close to the Monte Carlo data corresponding to the larger 
lattice; the apparent disagreement shown by figure 7 whenx = 0.2 is only due to different 
predictions for T,(x)  when x is small, i.e. when making comparisons between our 
equations and experimental data one should always normalise to the true T,. 

Summing up, the overall conclusion is that our models give a useful description of 
the magnetic and thermal properties of impure systems and that our formulae in § 4 
provide an economic and reliable way to analyse experimental data over a broad range 
of values of temperature and x ;  the resulting description is general and globally accurate 
as compared with more sophisticated approaches providing partial descriptions whose 
validity is sometimes open to question. 

Finally, we make a few comments about critical behaviour, one of the most interesting 
and difficult problems associated with impure systems. The effective-field models above 
show critical amplitudes changing with x and critical exponents independent of x ;  t b s  
can be seen directly in equations such as (2.6) and (4.10) or can be checked numerically. 
While the first result is in agreement with most observations, the second one is contrary 
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to some theoretical work (see, e.g., Harris 1974, Grinstein and Luther 1976, Newman 
and Rieder 1982, Jug 1983, Dotsenko and Dotsenko 1983) and recent experiments 
(Birgeneau et a1 1984, Westerholt and Sobotta 1983, Westerholt et a1 1984). Although 
our mean-field type of theory cannot be relied upon, of course, to determine critical 
behaviour it seems of interest to check its predictions more closely. By studying numeri- 
cally functions such as mo = mo(T - T,(x)) when T-. T J x )  we thus find that the ‘cor- 
rections to scaling’ change withx in such a way that one may define in practice an effective 
critical exponent near T,  (but not so near that the limit (2.6) holds) different from the 
classical value (e.g. p = 4) and varying continuously with x .  This is indeed interesting 
because it resembles the situation in a recent Monte Carlo analysis (Marro et a1 1986) 
where critical exponents are observed to change with dilution in a three-dimensional NN 
ferromagnetic Ising model. 
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