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The exact bounds by Lebowitz and Penrose for the cluster distribution of the simple cubic 

lattice-gas model with attractive interactions lead here to exact upper and lower bounds for the 

limiting cluster free energy or free energy per particle of a cluster of macroscopic size and, 

consequently, for the renormalized fugacity relating cluster distribution and partition functions. We 

also give practical realizations of the bounds for the cluster distribution. Our upper and lower bound 

expressions are always close enough to each other for 4J/k,T > 1.5. The nature of the bounds at 

higher temperatures is also analysed. 

1. Introduction 

A given configuration of the lattice-gas version of the Ising model can be 
described in terms of clusters defined, for instance, as maximal sets of connected 
occupied sites. For equilibrium states, the probabilities for the occurrence of 
these clusters are governed by the corresponding Gibbs distribution. Such a 
simple picture of the system as a collection of non-overlapping clusters is very 
convenient in the theory of nucleation’), e.g. to describe the decay of a 
metastable state. This is done in practice via the concept of the cluster free 
energy, F,, which is defined as 

F, = -k,T In Q, . (1) 

Here k, is the Boltzmann constant, T represents the temperature, and Q, is the 
partition function for the l-particle clusters’). The equilibrium cluster distrib- 
ution, c,, that is the number of l-particle clusters per lattice site as a function of 
the “size” 1 in the equilibrium state, is in principle related to the partition 
function Q,. A semiphenomenological relation of this kind is’) 
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cl = o’Q1(l - &’ , (4 

where p is the system density (number of particles per lattice site), o = w( p, T) 
is a renormalized fugacity and the parameter k, has a weak dependence on 1 for 

very small I (e.g. k, =3.25, k, =4.5, k, =5, 1~3 “). 
Dickman and Schieve’) proved the existence of the limiting cluster free 

energy or free energy per particle for a cluster of macroscopic size, i.e. 
4 = lim,,,(ln Q,/l). The proof in ref. 5 uses ideas from the derivation by 
Penrose and Lebowitz6) of exact upper and lower bounds for the cluster free 
energy. These bounds, however, are often crude in practice and, consequently, 
this fact limits severely the utility of the resulting values for the limiting free 
energy q. In this paper we obtain upper and lower bounds for q which are useful 
for temperatures below 0.6T,, T, being the corresponding critical temperature. 
We also deduce some interesting bounds for the renormalized fugacity in eq. (2) 
and give practical realizations of existing exact bounds for the cluster distrib- 
ution . 

2. Limiting free energy and renormalized fugacity 

Our results apply to the familiar lattice-gas or Ising model in a simple cubic 
lattice with N sites. At each site i = 1,2, . . . , N of the lattice there is defined an 
occupation variable ni with two values, either 1 (particle) or 0 (unoccupied site), 
and there is an attractive interaction between particles; each configuration 
C = {n,} has a configurational energy defined as 

E{C}=-4JZ’n;ni, J>O, 
i.i 

where the sum runs over all the nearest-neighbor pairs of sites. One may 
introduce the grand partition function at temperature T and fugacity z, 

a(~, T) = g1 z PNexp[-E{C}lk,T], (4) 

where the sum runs now over all the 2N possible configurations. Here pN = Ci ni 
is the number of particles in configuration C. The probability for the occurrence 

at equilibrium of a given configuration C is then given by P(C) = 
8-l exp[-E(c) lk,T]. 

We shall need the following definitions concerning a given cluster K: 
-A is the set of lattice sites. 
- B(K) is the border of K, i.e. the set of sites which are nearest neighbors of any 

site in K and do not belong to K. 
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-K= KuB(K). 
- N(K), N(B(K)) and N(K) are, respectively, the number of particles in K, 

B(K) and K; N(K) = N(K) + N(B(K)). 

- b(Z) = K I$$,=, N(B(K)), i.e. the minimum value of the number of sites in the 

border of any l-particle cluster. 

-E(K) = -4J c’ nip, is the energy of the cluster. 
r.jtK 

_ e(K) = zN(IC) exp(- E(k)lk,T] 

-Q,= c exp[-E(K)/k,T] = zmNCK’ c B(k); Q, only depends on 
K:N(K)=/ K:N(K)mI 

the temperature and it can be written as a polynomial in y = 

e”( y = 4J/k, T) : Q, = c Q,(m)yxJtl. 
,,I 

- S(K) is the grand partition function for a lattice-gas confined to the sites of K. 

The bounds we shall obtain for q follow from the ones for c, by Lebowitz and 

Penrose [2]. These bounds for c1 will be analyzed later on; for the moment it 

suffices to consider their crudest form, i.e. 

Q,z’( 1 - P)“+~‘s c, s Q,z’( I + z) -‘- “‘) (5) 

This expression was the base for eq. (2) ‘); it can also be written as 

In 2 - 
C 1 

s + 5 ln(1 - p) 

(6) 

Let us consider a phase point at “zero field”, i.e. on the coexistence curve 

above or below T,, and denote by wo, po, z,,, CF. . the corresponding values of 

w, P, 23 c/3 . 3 respectively. We then introduce the limit I+ x in eq. (6) and use 

the following two lemmas: 

Lemma 1. lim,_, (In cy/I) = 0. This follows from a rigorous result by Kunz and 

Souillard’) stating that In c:’ - f”’ as l-+x. 

Lemma 2. lim ,_,[b(l)/l] = 0. The proof is as follows: Let K be a cluster, 

N(K) = I, and L = [l’i3] + 1 ([a] is largest integer contained in a). 

For some very compact cluster, K will be contained in a box of side L + 2, and 
N(K) d (L + 2)3. Then, N(B(K)) = N(K) - N(K) c (L + 2)” - 1 <9Z2’“. As 

b(f) is the minimum value of N(B(K)), one has b(l) s N(BK)) < 91*‘“, b(l)// < 

91~ “3, and the lemma follows. 
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By taking the limit 1 + 03 in eq. (6) and using the above two lemmas we finally 
have 

-5 ln(1 - pO) 2 q - 3y 3 ln(1 + e-“) , (7) 

where z0 = ep3’ for a simple cubic lattice. These limits are in fact useful at low 
temperatures, say T s 0.6T,; for example, they give 4.573 2 q 2 4.511 at y = 1.5 
and become even better for higher values of y. This agrees with the value 
q = 4.513 given by Perini et al.‘). See fig. 1. 

We now need the following lemma: 

Lemma 3. (“Soltz criterium” “)). If ( ql) is a succession in 1, then lim,_,( ql/ 
1) = lim,_,( q1 - qr_l). The proof is as follows: let (Y/ = q1 - q,_1 (q. = 0) and 

a =lim I_m CX[. This means that for any E > 0, there exists an N, such that if 1 > No 
then (Y/ = (Y + S, with ]S,l< E. Let N1 =max(N,, C118r + * * * + aNo]). Now, if 

1 > N, then q,ll=(a,+(y,+...+a,)ll=cr+(6,+...+6~~)/1+(6NO+,+ 
. . . + 8,)/l. The last two terms here are respectively less than IS, + . . . + 
6,11/N,<IS,+...+~~~l/s-‘lG,+... + aN,I = E and less than &(I - N,‘) /I < E, 
so that it finally follows that lq,/l - CYI <2~ and lim,,, (q+l) = a. Q.E.D. 

The renormalized fugacity at coexistence, o,,, can be obtained in practice3) as 
the radius of convergence of the series 

m 

p = 2 Iw'Q,( 1 - &‘. 
I=1 

(8) 

That is, w0 = lim,_+,( Q,/Q,+,) and the lemma 3 implies -In w0 = 
lim,,,(ln QJl)q. From eq. (7) we then get 

&(I - PO) 5 C o0 s z,/(l + 2”). 

This gives 0.0103 s o,, c 0.0110 at y 

(9) 

= 1.5, thus including the value w0 = 0.01056 
* 

obtained previously as an empirical fit to eqs. (8) and (2) ‘). 

3. Cluster distribution bounds 

Lebowitz and Penrose*) have established more accurate bounds than those in 
eq. (5) for the probability c(K) of occurrence of a given cluster K. These bounds 
are based on the inequalities by Fortuin, Kasteleyn and Ginibre’] which apply 
(among others) to systems with attractive two-body interactions. The bounds 
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read as follows: 

Lower bounds: 

Upper bounds: 

f8K) c(K) d - 
S(K) &QK) cl+ +’ ’ (114 

c(K)cB(K) n (l+z))‘, 

lEK 
(lib) 

c(K)sB(K){Z(K)[l+ c c (&)‘(ePPr/-l)lj 
1EK ,E,4-I? 

(114 

I$ is the interaction energy between sites i and j; it is equal to -4J when (i, j) 
are nearest neighbors and 0 otherwise. By realizing that cI = CK:,,cKj=Ic(K), a 
detailed study of all the clusters K up to a size N(K) = 5 gives the following 
realizations of eqs. (10) and (11): 

From eq. (10a) ( y = e’): 

c, 2= z(1 - p)’ ) 

c2 > 3zZy(l - p)lZ ) 

c3 2 3z’y2(1 - p)16(5 - p) ) 

c4 a z4y3(1 - p)“[83 - 105p + 33p2 - 3p” + 3y(l - p)] ) 

cs 2 3z5y4(1 - ~)~~[8(2 - 3p + p2)y + 162 - 346~ + 278~~ 

- 102p’ + 17p4 - $1. 

From eq. (lob): 

Cl 
2= & (1 - P)" > 

(12) 

c2 2 
3z2y( 1 - p)‘” 

1+22 + z2y ’ 



EXACT BOUNDS FOR THE CLUSTER FREE ENERGY 625 

c3 
> 3Z3Y2(l - d3(5 - P) 

1+ 32 + (1+ 2y)z2 + z3y2 ’ 

cq 2 z4y3(1 - p)15 I 3Y(l- P) 
1 + 42 + 2(1 + 2y)z2 + 4t3y2 + z”y” 

+ 
3(21- 31~ + llp2 - p’) 

1+ 42 + 3(1 + y)z2 + 2y(l+ y)z3 + z”y” 

+ 4(5 - 3P) 
1+ 42 + 3(1+ y)z2 + (1 + 3y2)z3 + z4y3 I ’ 

From eq. (lla) (p = (1 + z)-‘): 

c2 =T 
3z2yp’0 

1+ 22 + z’y ’ 

c3 s 
3z3y2p13( p + 4) 

1+ 32 + (1+ 2y)z2 + z’y’ ’ 

c4 =T z”y’ 
I 

3p’7p2 + sp + 12) 
1 + 42 + 3(1 + y)z2 + 2y(l + y)z3 + z”y’ 

+ 
4p 15(3p + 2) 

1 + 42 + 3(1 + y)z2 + (1 + 3y2)z3 + z”y” I 

+ 
3z4y4p16 

1+ 42 + (1+ 2y)2z2 + 4z3y2 + z”y” . 

From eq. (llb): 

Cl c zp’ ) 

c2 s 3z3yp12 ) 

c3 s 3z3y2p’7 p + 4) ) 

c4 < 3z4y4p2’ + z4y3p1’[3p3 + 24p2 + 48~ + 81 , 

c5 s 24z’~~p~~( p + 1) + 3z’~~p~~(8 + 33p + 64p2+ 44p3 + 12p4 + p’) . 

(13) 

(14) 

(15) 
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Fig. 1. Behavior with the inverse temperature y = 4J/k,T of the bounds in this paper: the upper 

bound for c, (-----) as given by eq. (16). the lower bound for c, (. ‘. ‘. .) as given by eq. 

(15), the upper bound for c., (------- ) as given by eq. (14) and the lower bound for c, ( - ~. -) 

as given by eq. (13). The curves for the upper bounds present rather broad peaks below T< which are 

not shown in the figure. T, corresponds to the minimum in the curves for the lower bounds. The inset 

shows the bounds in eq. (7) for the limiting cluster free energy q. 

And, from eq. (11~): 

cr c z[l + 18(y - 1)z2p2]-‘![l + 7z + (2y + 5)3z2 + (3y + 4)5z3 

+ (4y + 3)5z” + (5y + 2)3z’ + 7zh + z’] , (16) 

c2 s 3yz2[1 + 26( y - l)z$$‘(l + 122 + (15~ + 51)z2]-’ . 

The above expressions are in fact useful realizations of the bounds in eqs. (10) 

and (ll), i.e. they are close enough to each other at low temperatures, say 

y b 1.5. Fig. 1 depicts the typical behavior with temperature of the above 

bounds. 
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