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Critical behavior of Ising models with static site dilution
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A Monte Carlo analysis of the ferromagnetic spin-% Ising model with nearest-neighbor interac-

tions and static (quenched) site dilution, where a fraction x, 0<x <0.2, of the spins in a simple-
cubic lattice are randomly replaced by vacant sites, reveals effective critical exponents varying con-

tinuously with x.

Dilute Ising models bear nowadays an undeniable in-
terest both as a model of some physical situations one en-
counters in practice and as a well-defined arena to the
analysis of the influence of disorder in critical phenome-
na,"? i.e., any disorder (vacancies, incomplete strength of
the interactions, etc.) randomly distributed throughout the
Ising lattice may produce a new symmetry and, conse-
quently, change the critical behavior originally shown by
the pure system. It seems now that the behavior in the
case of annealed vacancies or defects, which are charac-
terized by having reached thermal equilibrium with the
rest of the system, can be described by introducing a set of
renormalized critical exponents.> The resulting critical
behavior in the case of quenched (static) defects is, howev-
er, less understood at present. The exact results by
McCoy and Wu,! allowing the strength of the (say) verti-
cal interaction in the two-dimensional Ising model to vary
randomly from row to row, have been the most important
guide for experimentalists in that area. This particular
kind of disorder produces the rounding of the original
Onsager critical divergences, e.g., the resulting specific
heat is differentiable at T, but it seems doubtful this is a
general answer; for instance, the interactions proposed by
McCoy and Wu reproduce a quasi-one-dimensional situa-
tion.* Approximate studies based on series expansions
and renormalization-group methods can in principle be
applied to more general situations, but it is difficult, so
far, to evaluate their validity mainly because a richer
structure of the critical point neighborhood makes those
studies rather involved.”~® Nevertheless, plausible heuris-
tic arguments by Harris’ and some subsequent work® seem
to suggest that the addition of vacancies to a system
which undergoes a continuous transition would not affect
the transition sharpness nor the corresponding critical ex-
ponents if the specific-heat exponent a of the pure system
is negative; on the contrary, when a > 0 (as for the three-
dimensional Ising model) the critical behavior is expected
to change. Most experiments on random systems seemed
to reveal a pronounced rounding of the phase transition’
though, more recently, sharp transitions and changing
critical exponents have been reported'®!! in agreement
with the latest theoretical analysis of different disordered
systems.» 1213

Consequently, it seems that an accurate Monte Carlo
analysis might be most helpful at the present time. In this
paper we give some clear evidence of a second-order phase
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transition with effective critical exponents varying con-
tinuously for relatively small fractions of vacancies in a
ferromagnetic Ising model studied by Monte Carlo
methods. We expect to present soon a more complete
description of the thermal and magnetic properties. in our
model;'* see also Ref. 2 for a related effective-field treat-
ment.

Our model and method are rather standard so that we
refer elsewhere'* for most details. The system Hamiltoni-
an is defined as

H=—J2’Si5j ’ (1)
ij

J/kpT,=0.221654, where the sum extends over all
nearest-neighbor pairs of sites in a simple-cubic lattice of
size N with periodic boundary conditions; the disorder is
introduced here by assuming s; =11 except at xN ran-
domly chosen sites where s;=0 (0<x <0.2). Computa-
tions were actually performed on N =30 and N =403
lattices: no significant finite-size effects seem to affect
our basic results. As a matter of fact, we know from our
previous experience on Monte Carlo (MC) work that those
sizes should produce asymptotic, N — «, values for many
purposes, and, for the x values considered here, different
vacancy distributions produce, in practice, indistinguish-
able results. As compared to previous work basically
referring to N =6, 10°, and 20° and x>0.2,"° our
analysis here leads to definite conclusions concerning crit-
ical exponents because we consider larger N values and
small fractions of vacancies, x <0.2, together with large
samples of the equilibrium ensemble, more temperatures
in the asymptotic regime T— T, and perform a very de-
tailed analysis of the data values. One should, in fact, be
careful when considering disordered systems given the
smallness of the expected effects and other inherent diffi-
culties.!% 1617

Each equilibrium ensemble was generated by a Metrop-
olis procedure: The (1— x)N spins on the lattice are visit-
ed sequentially and flipped when AH <0 or with probabil-
ity exp(—AH /kgT) otherwise [AH is the change in the
energy (1) which would produce the attempted flip]. An
arbitrary starting configuration, generally obtained in a
previous run at slightly lower and/or higher temperature,
is allowed to evolve to reach equilibrium. The energy,
e=(H)/(1—x)N, and the spontaneous magnetization,
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are then measured every time one completes from two to
four visits to the whole lattice (depending on the value of
T —T,), thus practically avoiding correlations between
successive measurements, and averaged typically over
5000—11000 MC steps; larger “time” intervals were need-
ed when extremely close to T,. { ) denotes our averaging
procedure. Each series of values for e and m was contin-
ued until the corresponding distributions passed several
Gaussianity tests; it became clear in this way that the con-
sideration of an extra average over independent histories is
rather irrelevant for this purpose. Note, however, that our
data still suffers from typical errors, e.g., m presents
finite-size effects very near T, (so that the corresponding
values are discarded for the present analysis), the system
makes transitions between positive and negative magneti-
zation states when extremely close to T, (so that one has
to analyze the m distributions with most care in those
cases), and our values for the susceptibility and specific
heat, obtained, respectively, from approximately Gaussian
distributions for m and e by using the fluctuation
theorem,'* are always less reliable than the means m and
e themselves.

The main overall conclusion is that the phase transition
remains sharp for x <0.2; for instance, the susceptibility-
versus-temperature curves'* present, at temperatures
T.(x), a very pronounced peak, and we found no qualita-
tive differences when comparing the cases x=0 and 0.2.
Even more, the visual extrapolation of our data does not
seem to support any rounding for larger x values, so that
the smearing effects around T,(x) suggested by previous
MC data'® might be absent in much larger lattices.

The shifted critical temperature 7T,.(x) decreases with
increasing x; see Table I. Our values for T,.(x) were ob-
tained by looking for the best agreement between the
specific-heat data and the numerical derivative of the en-
ergy, the latter obtained from a spline fit to the energy
data. That is, we adjusted a family of cubic polynomials
to the energy data, allowing for the known statistical er-
rors, each polynomial connected to the following one at a
knot where the function and its two first derivatives are
required to be continuous. A few simple knots are located

o
"’=<1_x)N<

TABLE I. Change with x, the fraction of vacancies, of the
critical temperature, magnetization exponent, and thermo-
dynamic amplitude as obtained in the present Monte Carlo
analysis. For comparison we also include the values (%) we ob-
tain when the series results for x=0 and 0.967 < T /T, <0.989,
the critical region considered for the Monte Carlo data, are sub-
jected to the same analysis.

X T. B B
0 4.510+0.004 0.30 +0.02 1.5 £0.2
0.015 4.4331+0.004 0.31 +£0.02 1.55+0.2
0.05 4.268+0.004 0.32 +0.03 1.5 +0.3
0.1 4.025+0.003 0.355+0.010 1.65+0.1
0.2 3.510+£0.003 0.385+0.015 1.76£0.1
o* 4.510+0.002* 0.300+0.015* 1.5 +0.1*

along the T interval, in such a way that one obtains the
best monotonous behavior of the second derivative at the
knots, and a triple knot is located near the expected T, (x)
in order to reproduce the specific-heat singularity. The
location of the latter is then slightly moved until the
differences between the resulting derivative and the raw
data for the specific heat are minimized. Given that this
procedure is very sensitive to the location of the triple
knot, that it may just involve in practice the specific-heat
raw data for T > T,(x), which is the one suffering from
lesser errors, and that the energy data behaves quite well
(e.g., our data for x=0 is practically indistinguishable
from series results), our method should indeed produce
reasonably accurate values for T,.(x). These happen to be
compatible with the values obtained by other procedures,
namely we obtain practically the same values from the
susceptibility divergence and from the short-range order
parameter o=(N, )N__)N,_)"? (where N_,
represents the number of up-up pairs of spins in the sys-
tem, etc.), which is observed to present a very well-defined
cusp at T,,'* while our spline method allows us to reduce
the error bars for T,(x).

A precise determination of 7.(x) has indeed a great
relevance when trying to compute critical exponents. For
instance, [ follows then from the relation
m(dm /dT)"'=(T —T,)B~! which is very sensitive to
the actual value of T,. It becomes clear by analyzing the
data after this equation that 8 increases with increasing x.
In order to find a precise B,, we fitted splines to the m
data and looked for a T interval close to T,.(x) giving the
best coefficient of linear regression and minimizing the
differences E (m — BeP)%; moreover, we still made minor
adjustments of T,(x) at this step. Table I reports our
values for 8, and B (x); Fig. 1 depicts some graphical evi-
dence. The same analysis can, in principle, be applied to
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FIG. 1. Log-log plot of the spontaneous magnetization versus
1—T/T.(x) for x=0.1 (circles) and 0.2 (triangles). The dashed
line is for B=0.3125; the solid lines are for =0.355 and 0.385,
respectively. The inset shows m (T, —T)~# with 8=0.3125 vs
T.—T; note that only our data for x=0 (asterisks) has a con-
stant behavior.
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our susceptibility values; while these data are much more
noisy, so that we are unable to report reliable values for y,
it seems that y increases with x in a way that, together
with the scaling law 2—a=y+2p8, implies a going to
zero or even becoming slightly negative in agreement with
some recent experiments on random systems.! This,
however, cannot be concluded directly from our specific-
heat data.

Let us consider the simplest possible behaviors one may
expect. If x is an irrelevant parameter, the critical ex-
ponents would be the same for all x40 as for x=0, and
one should probably have'’

BTCE[TC”‘TC(X)]/Tc:alx +a2x2‘_a+ e,
T,=T,(x =0) .

This is not supported by our magnetization data nor by
the values for T,(x) in Table I. If x is a relevant parame-
ter, the critical exponents would take one value for x=0
and a distinct constant value for all x40, and probably'®
8T.=Ax'/%, where ¢ is the crossover exponent describing
the approach to the pure lattice behavior; the T, data in
Table I seem to support this scaling ansatz with 4 =1.06
and ¢=1.01 (these values differ from the ones given by
Landau'® where they are computed from an x range
which is probably beyond the scaling regime). However,
as evidenced for instance by Fig. 1, we are unable to
detect any “impure” critical region very close to T, lead-
ing to a B constant value for x40 different from our “ef-

fective” values in Table I. It thus seems one should not
exclude a third possibility in which there exists a line of
fixed points, one for each x (so that, in particular, x is a
marginal parameter), and the critical exponents vary con-
tinuously with x. Note thus that, although our data can-
not exclude the existence of a tiny impure critical region
which is practically unobservable for 0 < x <0.2, it was
argued before’ that the width of such a region should vary
as x /2 so that chances are that, even in the case it exists,
it would be unobservable (before reaching the percolation
threshold where the spontaneous magnetization vanishes),
either experimentally or by Monte Carlo methods, and ef-
fective critical exponents varying continuously with x
would always show up.

Finally, it seems interesting to note that it also follows
from the above analysis that standard lattice sizes
(N<10°) and statistics (~10* Monte Carlo steps) can
produce reasonable Gaussian distributions for the equili-
brium values of the relevant magnitudes in disordered sys-
tems when the disorder only affects a fraction of the lat-
tice sites within the limits considered here (i.e., x <0.2).
This fact should encourage new studies using Monte Car-
lo methods of disordered situations other than the vacan-
cy dilution analyzed here. (We used in the present study
around 150 hours of CPU time in an IBM 3083/XEO01.)

We acknowledge valuable comments by Alan Sokal on
the manuscript.
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