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We investigate the thermal and magnetic properties of three-dimensional, ferromagnetic Ising models with quenched and 

random non-magnetic (site) impurities in the case of simple cubic lattices. The reported thermodynamic phase diagrams 

reveal in particular a sharp phase transition (e.g. in the magnetic susceptibility) for the (relatively small) impurity 

concentrations x considered here. We evaluate the critical temperature T,(X) and observe effective critical exponents 

varying continuously with X, probably corresponding to a crossover from pure to impure values. The latter, obtained here 

for x = 0.2, and the curve T,(X) are in good agreement with recent speculations. Our findings are also compared to some 

experimental data. 

1. Introduction 

Impure Ising models are recognized to bear a 
great theoretical interest in the analysis of the 
influence of disorder in critical phenomena. They 
also show a practical interest as a model of some 
familiar systems such as transition-metal oxides 
(which are usually found in Nature as A I_xO), 
solid solutions with formula A,_,B,C (where 
magnetic A atoms in the pure magnet AC are 
replaced by non-magnetic B impurities), etc. [l- 

51. 
The substitutional disorder can in principle be 

annealed or quenched. In the case of annealed 
(site) disorder, the disorder variables on different 
sites are not independent but they have reached 
thermal equilibrium with the rest of the system, 
i.e. with the spin variables. This is not a very 
realistic situation given that the configurational 
disorder cannot be determined (or very rarely so) 
by magnetic interactions. This case is interesting 
mainly because of simplicity: the disorder vari- 
ables can then be treated just as thermal vari- 
ables and the system is reducible to the corres- 
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ponding pure system. Concerning critical be- 
havior, if the original (pure) specific-heat expo- 
nent (Y is positive (as for the three-dimensional 
Ising model of interest here), the annealed criti- 
cal exponents are obtained from the pure ones as 
simple renormalizations which, in particular, 
imply that the specific heat presents no di- 
vergence [l, 61. The case of quenched disorder, 
on the other hand, is characterized by a random 
distribution of disorder which remains frozen in 
time. That is, the disorder variables take a given 
equilibrium distribution at a temperature T’ 
which is much larger (actually that randomness 
corresponds to T’ + @J) than the temperature T 
for the equilibrium of the spin variables. Such a 
situation may be reached in practice after a 
quenched T’+ T of the system in the case the 
disorder is inhibited from difussing by high po- 
tential barriers. It then follows that no reducibili- 
ty to the pure system (like the one in the an- 
nealed case) applies now and that disorder and 
spin variables require very different treatments, 
e.g. the system free energy may be obtained in 
principle as an average over disorder configur- 
ations- [2]. 

The critical behavior of quenched disordered 
systems remains a challenge for theoretical 
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physicists which are still looking for definite an- 
swers to the most basic questions: Is the phase 
transition sharp or smeared? Is it first order or 
continuous? etc. In the case critical exponents 
exist, it may happen that they are the same as for 
the pure system, that a new set of critical expo- 
nents emerge, or even that one is faced with a 
much more complex situation. That is, the 
theory for quenched disordered systems is not 
quite clear-cut at present, mainly because there 
is a much richer (and more complex) structure in 
the neighborhood of the critical point than in the 
pure case, as we shall see later on. This is 
evidenced, for instance, by the fact that recent 
experiments give different (even qualitatively dif- 
ferent) answers; e.g. most experiments on disor- 
dered systems seem to reveal a pronounced 
rounding of the phase transition [7] while other 
[8,5], following some theoretical trends [9, lo], 
report rather sharp transitions and changing criti- 
cal exponents. There are also important experi- 
mental difficulties in this area; e.g. nonrandom 
distributions of disorder, which can seriously af- 
fect the system critical behavior, are unavoidable 
in practice [5]. 

The above situation immediately suggests that, 
as it was the case in some problems during the 
past, a Monte Carlo analysis might clarify some- 
what the involved scenario, e.g. by excluding 
some of the possible issues. This goal turned out 
to be difficult in practice, however. This stems, 
for instance, from the pioneering works by Ching 
and Huber [ll], Stoll and Schneider [12], Lan- 
dau [15,16] and others [13, 141. Refs. 11-13 
studied, almost simultaneously, quenched (and 
random) site-diluted two-dimensional Ising mod- 
els to conclude that the exponents in this case 
(cy = 0) seem to equal the corresponding ones for 
the pure system. Their results, however, do not 
exclude the occurrence of a logarithmic singulari- 
ty in the specific heat, and a relative smearing of 
the transition is reported; that work (dealing 
with up to 12 100 lattice sites) was prevented 
from more definite conclusions due to finite-size 
effects (which are “considerably stronger” than 
in pure systems). Refs. 14-16, on the other 
hand, deal with the three-dimensional case. 
Again the data, mostly corresponding to 20 X 

20 x 20 simple cubic lattices (with the exception 
of an experiment in a 30 x 30 x 30 system which 
is extremely diluted: 40%), is inconclusive for 
the same reason; e.g. the data show important 
variations for different impurity distributions. 

We report in this paper the Monte Carlo 
analysis of three-dimensional ferromagnetic Ising 
models with quenched (and random) non-magne- 
tic impurities. In order to avoid those problems, 
we investigated larger lattices (up to 64 000 lat- 
tice sites, which is practically the largest size we 
can handle in our computer) trying to minimize 
finite-size effects, we produced larger equilib- 
rium ensembles to diminish the effect of the 
impurity distribution, and considered only small 
fractions of impure sites. We also considered 
more temperatures in the asymptotic, critical 
regime and performed a very detailed analysis of 
the data values. The resulting data is indeed 
reasonably well behaved; e.g. it recently allowed 
[17] to identify a change of the critical exponent 
for the magnetization with the fraction of impure 
sites. Here we extend the analysis in ref. 17 to 
describe the critical behavior of other mag- 
nitudes of interest such as especific heat and 
magnetic susceptibility. We also report on the 
system behavior far from the critical temperature 
and present thermodynamic phase diagrams. 
Our results are interpreted in the light of existing 
theory; they are also compared with some ex- 
perimental data. 

2. Description of the model 

The model is defined through the Hamiltonian 

H = -J c ’ sisi , J>O, (1) 
(i.i) 

where the sum extends over all nearest-neighbor 
pairs (i, j) of sites in a simple cubic lattice of size 
N with periodic (toroidal) boundary conditions, 
and si = +l, -1 or 0. Initially, the “occupation 
variables” si at XN randomly chosen sites are set 
si = 0 and the rest, si = -+l (these values are also 
given at random). This simulates an infinite 
temperature state. The spin system (that is, the 
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set of spin variables capable of +l values) is then 
let to evolve towards equilibrium at a given finite 
temperature T, while the “impurities” si = 0 re- 
main frozen at their initial locations. The evol- 
ution is performed in practice by visiting sequen- 
tially the (1 - x)N spin variables on the lattice 
and flipping them, one after the other, according 
to the usual Metropolis algorithm. That is, one 
computes the change AH, in the energy (1) 
which would cause flipping the spin at site i, and 
makes the flip si+= -si when AH, s 0 or with 
probability exp(-AHlk,T) otherwise. 

The magnitudes of interest are the energy, 
defined as - 

e=(H)l(l-x)N, 

and the spontaneous magnetization, 

(2) 

1 /I-S m= (l-x)N\ll$S’ ’ I) 

where ( ) denotes an average of the corres- 
ponding quantities computed every time one 
completes several (up to six) visits to the whole 
lattice, thus practically avoiding correlations be- 
tween successive measurements. The initial re- 
laxation of the system was excluded from that 
average, until we were confident that the spin 
system was close to equilibrium; also, the aver- 
age always included enough measurements to 
obtain distributions for H and Ci si which suc- 
ceeded to pass several gaussianity tests (this 
typically required more than lo4 visits to the 
whole lattice). In addition to the quantities (2) 
and (3) we also computed the specific heat and 
magnetic susceptibilities from the respective 
mean squared fluctuations. Although these es- 
timations do not behave so smoothly as the ones 
for e and m themselves, as we shall see see later 
on, it is noticeable that they agree reasonably 
well with the corresponding estimations obtained 
as temperature derivatives after making approp- 
riate spline fits to the e(t) and m(T) data. 

Our computations refer to N = 303 lattices for 
x < 0.1 and to N = 403 lattices for x = 0.1,0.2. 
No significant finite size effects seem to affect 
our basic results, e.g. we checked that different 

impurity distributions produce in practice indist- 
inguishable data for our choices of N and x. We 
also considered evolutions starting from an or- 
dered state (T = 0). In order to minimize the 
computer time, however, we started sometimes 
the system evolution from arbitrary configur- 
ations, generally obtained in a previous run at 
slightly lower and/or higher temperature. In any 
case we found that the averages over indepen- 
dent histories, i.e. histories corresponding to dif- 
ferent impurity distributions, could be avoided 
by considering larger equilibrium ensembles for a 
given random distribution. 

3. Discussion of results 

3.1. Energy 

The behavior of the energy per magnetic ion, 
e, with T and x is illustrated by fig. 1. This 
reveals, both that the transition temperature de- 
creases (approximately linearly) with increasing 
x and that, for any given temperature, e(T, x) 
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Fig. 1. System energy as defined in eq. (2), normalized to 
the minimum value e( T = 0) = -3 for the pure (x = 0) case, 
versus temperature in units of k,lJ; see eq. (1). The symbols 
for the Monte Carlo data are as follows: squares 0 (x = 0), 
triangles A (x = 0.015), asterisks * (X = 0.05), empty circles 
0 (x = 0.1) and full circles 0 (x = 0.2). Typical error bars are 
considerably smaller than the size of the symbols used. The 
dashed lines are a guide to the eye except for x = 0 which 
corresponds to the series result for the infinite Ising model, 
ref. [HI. The solid line x = 0 is the Bethe-Peierls approxim- 
ation to the pure case. The solid lines x = 0.1 and x = 0.2 are 
the result from a “cluster variation” computation in ref. 19. 
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also decreases with increasing X, the latter re- 
flecting the fact that there is an “effective coor- 
dination” number q = 6(1 -x) (e.g. the zero 
field energy is -3(1 - x)J). 

0.8 
i 

The data in fig. 1 (which for the sake of 
clarity only includes a part of the available data) 
is compared with the series result for the infinite 
system in the case x = 0 [IS] and with a “cluster 
variation” computation, which reduces to the 
Bethe-Peierls approximation as x+ 0, in the 
case x 2 0 [19]. The former comparison shows up 
that, as expected, finite size effects are unobserv- 
able on this scale. The latter comparison con- 
firms how the effective field theory developed in 
ref. 19 may be useful in some cases to interpret 
experimental data far from T,. 

1 , 

0.2 0.4 0.6 
X 

A stringent comparison between the Monte 
Carlo data in fig. 1 and (real) experimental data 
can be obtained by considering the variation with 
x of the critical energy, or equivalently of the 
quantity (sisi) per magnetic ion, say u, meas- 
ured at T,. By interpolating our data to T, (as 
given below) we find approximately that 

Fig. 2. The critical energy e(T,, x) divided by e(0, X) versus 

X. The empty squares correspond to the present MC data, the 

full squares are the MC data in ref. 16, the circles represent 

the experimental data in ref. 20. The full line corresponds to 

e( T,, x) le(0, x) = e( T,, O)ie(O, 0) (1 - x) which implies that 

the minimum value of (s,s,) the system “needs” to build up 

the magnetic ordered phase is independent of x. The same 

qualitative result follows from the effective field treatment in 

ref. 19 which is represented here by a dashed line. 

u(T,, x) = e(T,, x)le(O, x)~O.328/(1 - X) (4) 

which is also consistent with previous Monte 
Carlo data [15, 161 for x > 0.2 (see fig. 2). Inter- 
esting enough, one has from series expansions 
[18] that e(T,, O)le(O, 0) = 0.328 for the simple 
cubic lattice so that it follows from our result, 
eq. (4), that the minimum of ( sisj) the system 
needs to build up the magnetic ordered phase is 
a constant, independent of x (but probably de- 
pending on dimensionality and coordination 
number). The fact that the corrections to eq. (4), 
which is obtained here from rather small values 
of x (X G 0.2), are probably very small (if any) 
for larger x values follows apparently by noticing 
that the percolation threshold may be associated 
with u(T,) = 1 which implies x = 0.672 in eq. (4): 
this is surprisingly close to the percolation value, 
x, 2: 0.681 for the present model. 

e( T,, x), which are obtained in this case from a 
numerical integration of the specific heat curves 
after making some necessary extrapolations for 
low and high temperatures, are shown in fig. 2. 
The agreement with the Monte Carlo data is 
reasonable having in mind that the experimental 
data is probably affected by larger error bars 
than suggested by fig. 2, e.g. due to the existence 
of microdomains and impurity gradients. In fact, 
it would be interesting to check the idealness of a 
given, real material sample against that property. 

3.2. Magnetization 

The behavior of the spontaneous magnetiz- 
ation with T and x is shown by fig. 3 where it is 
compared to the series result for x = 0 [18] and 
to an effective field theory [19] for x 2 0. As 
expected, finite size effects are here small and 
controllable. 

The only related experimental values we have It seems noticeable the fact that, as T+O, the 
at hand are those in ref. 20 for the curves tend to a saturation value which is equal 
Co,_,Zn,Cs,Cl, compound which is a good ex- (or very close) to unity. This, however, cannot 
ample of Ising system with frozen-in non-magne- hold for larger n values [16,19] because there is 
tic impurities (Zn). The corresponding values for then some measurable probability for a spin to 
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Fig. 3. Spontaneous magnetization normalized to its satur- 

ation value at zero temperature and x = 0. Same symbols as 
in fig. 1. 

be completely surrounded by non-magnetic im- 
purities. A straightforward estimation of this 
probability indicates that one should expect the 
bound m( T = 0, x) < 1 - x6. 

3.3. Short ranged order 

It turned out to be interesting to investigate 
the nature of the short ranged order as measured 
by the parameter 

(+ E N++N--/(N+-)2 ) (5) 

where N+’ represents the number of up-up 
pairs of spins in the system, etc. This actually 
measures the relation between ferromagnetic 
order and antiferromagnetic disorder in a given 
system state; it diverges as T+ 0 when N+- + 0, 
and a-0.25 as T+ 00. There easily follows a 
relation between (+, the energy and the magnetiz- 
ation in the case of randomly distributed im- 
purities: 

(T = (u + 1)2/4 - m* 

(1 -u)” ’ (6) 

where u represents ( sjsj) per magnetic ion, that 
is u = e(T, x)le(O, x), as before. 

For x = 0 the Bragg-Williams approximation 
leads to u = i, independent of T, while the 
Bethe-Peirls approximation predicts a monoton- 

ous decrease of (+ with increasing T, as shown by 
the solid line in fig. 4 [19]. The exact result by 
Onsager for the two-dimensional Ising model, on 

the other hand, implies a sharp singularity of (T 
at T,, namely an infinite discontinuity of the 
derivative and a(T,) = 8.49264. In order to con- 
clude about the corresponding behavior in three 
dimensions, we note that one has from eq. (6): 

g = (1 - u)_3[ (I+ 2.f - 2m2) 2 

dm 
-2m(I-u)E , 

1 (7) 

where one may convince by himself (trivially 
near T,) that 

(l+u-2m”)gsO, 2m(l-u)scO. 

(8) 
That is, the sign of du/dT depends on the term 
(8) which dominates in eq. (7) at a given temper- 
ature. At low temperatures one has dmldT G 
duldT and (+ increases with T; moreover, when 
m rapidly decreases as T-+ T, it may happen 
that du/dT changes sign. As a matter of fact, m 
and dmldT become zero above T, and u de- 
creases with increasing T. Therefore, one seems 
allowed to conclude on rather general grounds 

0.5 
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Fig. 4. The short ranged order parameter, as defined in eq. 

(5), as a function of T and x. Same symbols as in fig. 1. The 
solid line represents the Bethe-Peierls approximation for 

x = 0. The dashed lines are a guide to the eye. The inset 

shows D in the case of the Onsager’s exact solution for the 

pure two-dimensional model. 
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that in the case that o(T) presents any anomaly 
for the Ising model this will be located at T, and 
will be associated to a change of sign of dc/dT. 
One may reach the same conclusion by simply 
arguing qualitatively about the behavior of N++, 
N-- and N+- around T, [21]. 

The MC results for x = 0 confirm indeed those 
expectations, as shown by fig. 4; as a matter of 
fact the observed behavior is very similar to the 
exact one in two dimensions. One may account 
for the small differences observed between those 
two cases (namely, the peak m(T,) and the tem- 
perature region for which a(T) is an increasing 

function are smaller for d = 3 than for d = 2) by 
noticing that duldT is proportional to the 
specific heat C(E), F = 1 - Tl T,, and that one 
may write 

dcr 2B”P 20-I 

dT=T” 
- [l + u - ~(BE')']AC(E) , 

(9) 

where A and B are given parameters and p is the 
critical exponent for the spontaneous magnetiz- 
ation. The observed differences can thus be ex- 
plained by using eq. (9) as a consequence, essen- 
tially, of the change of p with dimensionality 
[21]. What seems even more interesting for our 
purposes here is that the detailed analysis of the 
MC data for u corresponding to different values 
of x (fig. 4) at the light of eqs. (6)-(9) allows the 
qualitative conclusion [21] that one should prob- 
ably expect some change of p when x is in- 
creased from the pure value x = 0. We shall not 
describe here those details, which one may build 
up oneself from the above comments, because 
we expect to present some more conclusive evi- 
dences in the following. In any case, we note 
that the data in fig. 4 allows an easy evaluation 
of T,(x); the estimations for T,(x) obtained in 
this way are consistent with the ones in section 
3.7 below. 

3.4. Specific heat 

The behavior of the specific heat with T and x 
is depicted by fig. 5. This is computed in practice 
as 

3 4 5 
TK,/J 

Fig. 5. Specific heat C( T, x), as defined in eq. (lo), per 

magnetic ion divided by (1 - x); see the text for a comment 

on this normalization. Same symbols as in fig. 1. 

C(T) = Njf2it) ((e’) - (e)‘). 
B 

(10) 

We plotted in fig. 5, C(T, x) per magnetic ion 
divided by (1 - x) in order to account for the fact 
that the energy itself (not only its fluctuations) 
decreases with increasing x. The data is relatively 
scattered, as compared to the data in figs. l-4, 
reflecting the fact that the relaxation time for 
fluctuations is much larger than the one for the 
means. Nevertheless, one may still recognize 
some general features of the data. 

For instance, fig. 5 seems to suggest that the 
height of the observed peak is constant for x > 0 
when one uses the proper normalization, i.e. a 
normalization consistent with the fact that there 
is an “effective coordination number” for the 

magnetic ions (section 3.1). That constancy of 
the peak is in contrast with the observation of 
decreasing height in the MC experiments repor- 
ted in ref. 16; this probably indicates that the 
latter are certainly affected by finite size effects. 
One may also argue from fig. 5 that the height of 
the function for x > 0 is indeed finite in contrast 
with the expected divergence for x = 0; would 
that be the case, it would be consistent with 
ff <O for x>O. 

In order to strengthen this conclusion we also 
computed the specific heat as the temperature 
derivative of the energy by first making a spline 
fit to the data in fig. 1. The results for x = 0 and 
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Fig. 6. The specific heat data in fig. 5 (full circles) is com- 
pared, in the case x = 0, to the result obtained after perform- 
ing the temperature derivative of a spline fit to the energy 
data in fig. 1. The inset shows the corresponding case for 
x=0.1. 

x = 0.1 are shown in fig. 6. This figure shows that 
both procedures to determine C(T) are consis- 
tent with each other, implying the good quality 
of the data; note that one obtains in this way the 
expected divergence (dashed lines at the top of 
the figure) for x = 0. Fig. 6 also illustrates the 
fact that one may obtain a good value for T, by 
this combination of the e(T) and C(T) data. The 
situation for x > 0 is very similar, except that the 
two branches of the temperature derivative seem 
then to intersect very early (fig. 6), in accordan- 
ce with our comment in the preceding parag- 
raph. We shall come later on to this fact which 
essentially agrees with recent theory [9, lo] and 
experimental observations [5]. This overall be- 
havior, however, is basically different from the 
pronounced rounding which has been discussed 
frequently in the literature [3,7,20,22,23]. 

3.5. Magnetic susceptibility 

Fig. 7 collects a part of the data corresponding 
to the magnetic susceptibility which is defined 
here, according to the fluctuation theorem, as 

X= Ny;)J (( m2) - ( m)2) . (11) 

Note that this expression has no dimensions. The 
data is consistent with the situation described in 

0 

-1 
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Fig. 7. Semilogarithmic plot of the magnetic susceptibility as 
defined in eq. (11). Same symbols as in fig. 1. 

previous setions; in particular, it follows strongly 
the suggestion that the phase transition remains 
sharp for the x values we consider here (as for 
the case x = 0) and, also, there is no evidence 
that this should not hold for larger x values. 

3.4. Critical temperature 

The data described before, namely figs. 1, 
3-5 and 7, allow several independent estimations 
of T,(x). For instance, one may obtain directly 
rather good values for T,(x) from figs. 4, 5 and 7 
which agree with each other. However, our aim 
in the next section (the computation of critical 
exponents) requires specially good values affect- 
ed by the smallest error bars, and this compels 
one to be as precise as possible by trying to 
smooth out any oscillation of the data. 

The energy data is very suitable for this 
purpose because it is specially well-behaved and 
corresponds to the mean value of the nearest- 
neighbor correlation which is practically unaf- 
fected by finite-size effects. Also, in order to 
enhance the discontinuity of the derivative of the 
energy at T,, it turned out convenient to con- 
sider the quantity 

e* = (1 - ~)~/(l + u)’ , (12) 

where u = e(T, x) le(0, x) as before. By fitting 
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cubic splines to those data points, identifying T, 
with a sudden break in the slope of de* ldT, and 
combining this information with the one which 
follows by similar methods from figs. 4 and 5 (see 
also fig. 6) we found the following tentative 
estimations (in units of k,lJ): T,(x = 0) = 4.510, 
T,(x = 0.015) = 4.435, T&x = 0.05) = 4.270, 

T,(x = 0.1) = 4.025 and T,(x = 0.2) = 3.510, 

where the errors are in the last digit. These 
values will be precised in the next section. 

3.7. Critical exponents 

The analysis of the critical behavior of impure 
systems has attracted much effort during the 
recent past. McCoy and Wu [3] succeeded in 
solving exactly the two-dimensional Ising model 
for a particular kind of disorder. However, more 
general situations require nowadays approximate 
methods, such as series expansions and renor- 
malization group theory, whose range of validity 
is still an open question; in fact, a very rich 
structure near the critical point makes those 
studies difficult. The most popular finding in this 
area is perhaps the so-called Harris’ criterion 
[24]; the general picture emerging from this and 
other efforts [l, 21 is as follows: The transition 
remains sharp for quenched disorder and a new 
fixed point becomes then stable, at least if the 
critical exponent characterizing the specific heat, 
cr, is positive for the pure system (as in the 
three-dimensional Ising model of interest here) 
[28]. This seems to imply a new set of critical 
exponents for the impure system. When (Y < 0, 
on the contrary, the exponents should remain 
the same as for the pure case according to these 
studies (and a similar situation, perhaps with 
some “corrections to scaling”, should probably 
hold for (Y = 0). Nevertheless, as indicated be- 
fore in section 1, the experimental situation is 
not so clear-cut; also, the arguments leading to 
the above conclusions are not rigorous in general. 

The data in the preceeding sections may in 
principle be of some help in this difficult area. 
To this end we note that the analysis of the data 
after the relation m(dmldT))’ = (T - T,)p-’ 
with T,(x) as given at the end of section 3.5 
shows an apparent increase of p with x. In order 

to precise this fact, we fitted splines to the m 
data and looked for a T interval close to T,(x) 
giving the best coefficient of linear regression 
and minimizing the squared differences C (m - 
BE’)* where B represents the corresponding 
thermodynamic amplitude; also, we had to make 
minor adjustments of T,(x) at this step. We 
found in this way [17]: 

T,(x = 0) = 4.510, 

T,(x = 0.015) = 4.433, 

p, = 0.30, 

p, = 0.31, 

(13a) 

(13b) 

T,(x = 0.05) = 4.268, @, = 0.32, (13c) 

T,(x = 0.1) = 4.025, p* = 0.355, (13d) 

T,(x = 0.2) = 3.510, p, = 0.385, (13e) 

where T, is in units of k,lJ, and B(x) increases 
with x from B(x) = 1.5 to B(x) = 1.76; some 
graphical evidence of this fact was reported 
before [17]. Interesting enough, our method 

proves its consistency in the case x = 0: we ob- 
tain precisely the values (13a) when the series 
results for the pure case [18] are subjected to the 
same analysis. 

One may attempt an interpretation of the 
continuous variation of the measured p with x, 
(13), by considering the behavior of T,(x) near 
x = 0. It is usually believed [25, 161 that having 
one value for the critical exponents when x = 0 
and a distinct constant value for all x # 0 (i.e. x 
being a relevant parameter in the terminology of 
the renormalization group theory) may be as- 
sociated to the behavior 

T,(x)IT,_(O)] = Ax”’ 
6 T, = [T,(O) - 

where 4 represents the 
crossover exponent describing the approach to 
the pure system behavior. The data for T, in (13) 
supports this scaling ansatz with A = 1.06 * 0.02 
and 4 = 1.01 * 0.01. This suggests we are 
measuring in (13) an effective critical exponent, 
e.g. describing the approach from pure to im- 
pure behavior, the latter being represented by 
p = 0.38 2 0.02, say. Would this be the case, one 
should expect an impure critical region, charact- 
erized by p-values between 0.30 and 0.38, whose 
width should increase with x, producing the ef- 
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fective behavior shown by (13). This impure 
region is not evident at all from the m data [17]; 
one may argue, however, that the data is not 
precise enough for this purpose. As a matter of 
fact, the width of such a region is expected to 
vary as x l/LX (-x9 in the present case) so that it 
would be unobservable here; even more, chances 
are that this region cannot be observed under 
any condition and that one should measure 
either impure values for /3 when x is large 
enough (say x P 0.2) or effective values varying 
continuously with x when x is smaller. This is in 
good agreement (cf. (13)) with the experimental 
observation /3 -0.35 in Mn,.,,Zn,.,,F, [26] and 
with some recent computations on random Ising 
models [9, lo]. 

We are in favor of that interpretation of the 
observation (13). As a matter of fact, one should 
exclude the case that the critical exponents are 
the same for all x # 0 as for x = 0 (X being an 
irrelevant parameter) given the evidence (13) 
and also because one should probably then have 
IST, = a,x + a2~2-a + * . . [27] which is not sup- 
ported by the data. However, it is interesting to 
mention the case of a line of fixed points, one for 
each X, so that in particular x is a marginal 
parameter, and the critical exponents varying 
continuously with x. This is certainly very unlike- 
ly for our model here, but, to our knowledge, it 
has not been rigorously excluded by theory so far 
and it is compatible with the observation (13). 

Some more evidence favoring x being a relev- 
ant parameter follows from the specific heat and 
magnetic susceptibility data as evidenced respec- 
tively by figs. 6 and 8. In fact, fig. 6 suggests, as 
discussed before, that cy changes from positive 
to negative as x as increased from x = 0, and 
we are led to the same conclusion by analys- 
ing numerically the specific heat data after the 
method we applied before to the magnetization 
data; in the present case, however, the noise of 
the data prevents us from giving reliable estim- 
ations for (Y. Concerning the magnetic suscepti- 
bility data, on the other hand, fig. 8 suggests that 
y also changes with X; again, we should only 
state this qualitatively. In any case, the observed 
variations on p, (Y and y seem always roughly 
consistent with the scaling law 2 - (Y = y + 2p. 

2’ n I I I 
3.5 4.5 5.5 6.5 

- In( I-T/Tc) 

Fig. 8. Logarithmic plot of (a part of) the data in fig. 7 

assuming the values (13) for T,(x). Same symbols as in fig. 1, 

4. Conclusion 

We described the relevant phase diagrams for 
the (quenched) impure, three-dimensional Ising 
model as a function of temperature and fraction 
of impure sites, x, in the case of relatively small 
values of x, x G 0.2. We also reported on other 
thermal and magnetic properties, including the 
behavior of specific heat, magnetic susceptibility 
and short ranged order parameter, and made 
comparisons with some available theory and ex- 
perimental data. Our analysis clearly shows that 
the phase transition remains sharp in the sense 
that the magnetic susceptibility for the infinite 
system should diverge at T,(x); the specific heat 
critical exponents, however, change to negative 
for x > 0. Thus, there are new, impure values for 
(Y, p and y which seem to satisfy the usual scaling 
law. The global evidence, on the other hand, is 
in favor of x being a relevant parameter, though 
it seems that effective critical exponents varying 
continuously with x will always be measured for 
x 6 0.2 corresponding to a crossover towards the 
impure, fixed values. It should also be men- 
tioned that our data cannot exclude definitely the 
(unlikely) case that the critical exponents actual- 
ly vary continuously with X. That aim will require 
to consider larger values of x, much larger lat- 
tices and, most likely, special purpose com- 
puters. 
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