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MODEL STUDIES OF THE THERMAL AND MAGNETIC PROPERTIES IN DISORDERED 

SYSTEMS 

A. LABARTA. J. MARRO and J. TEJADA 

Ismg models uaith quenched disorder have been studied. both by mean-field theory and Monte Carlo methods. The disorder 
IS produced either ky, a magnetic field capable of values + 7j. - 7; and 0. the value at each site given at random. or by 
non-magnetic impurltles randomly distributed through the lattice sites. 

1. The model 

The basic model considered in our studies is the 
familiar spin-l/2 Ising model with isotropic nearest 
neighbor pair interactions defined by the Hamiltonian: 

H = -J&,s,, (1) 
I./ 

where the sum runs over all nearest-neighbor pairs in a 
regular lattice with N sites and s, = f 1. The disorder is 
introduced in the system by giving a fixed value .s, 
independent of thermal fluctuations, to the spin varia- 
bles located at xN lattice sites. The particular locations 
of the impurities are chosen at random. We consider the 
case (A) J = I 1, where the sign is also given at random, 
and (B) .s = 0. This may be thought to correspond, 
respectively. to the action of a random strong magnetic 
field on a fraction of the magnetic ions and to the 
presence of quenched non-magnetic impurities. The 
model is, of course. an oversimplification of reality; it is 
expected however to shed some light on the study of the 
observed anomalies in some magnetic materials (l-81 

2. Mean-field treatment 

The mean-field BetheePeierls method can be gener- 
alized to deal with cases A and B along lines reminding 
Kikuchi’s cluster variation method [9.10]. To this end 
one considers all the different local spins configurations 
involving the first coordination shell on the assump- 
tions: i) the different selected local configurations are 
independent of each other, ii) each local configuration is 
weighted by the corresponding probability and iii) the 
effect of the rest of the system enters through an inter- 
nal mean field, the same one for every cluster. The 
resulting Hamiltonian may be written as: 

-II,‘k,T= 2 hs,,,+(h+h’)~.r,,+K~ s ,,,. y,, 

2 -1 / 1 ,=-I 

+ (h + h’) il; s,, + K i -s<,,s,, . 
I (2) 

i-1 ,=I 1 
where .T,,, is the central spin at each cluster, s,, are the 

spins in the cluster sorrounding s,,, h is proportional to 
the external field, n: is the number of sites affected by 
the disorder in the i th local cluster, and 4: = q - n: ( y 
the coordination number). The sumation extends over 
all the n selected local clusters with n = nz,, + + m4, 
where m, is the number of different possible arrange- 
ments of the i-th configuration weighted by the corre- 
sponding probability. From the Hamiltonian (2) it easily 
follows that all the relevant physical magnitudes can be 
calculated by using averages in the form: 

Q = 5 P,Q,. (3) 
, // 

where Q, is the corresponding quantity obtained from a 
standar Bethe-Peierls treatment [II] for each local clus- 

ter, and p, is the binomial probability. 
In this way we have obtained analytical expressions 

for the magnetization. configurational energy, suscept- 
ibility and specific heat; the resulting behaviour is shown 
in figs. l-4 where we compare cases A and B for 
selected values of the disorder concentration x 
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Mean spontaneous magnetization devided by (I 
r)m(O. 0). versus temperature lor case A (broken lines I and L: 
.u = 0.1 and 0.2 respectively) and case B (solid lines 3. 4 and 5: 
.Y = 0. 0.2. 0.4). in the case of simple cubic lattice. The symbol 
corresponda to Monte Carlo results for a 40~40x40 lattice. 
and Y = 0.2 In case B. 
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Fig. 2. The configurational energy of the system (SC lattice), 
divided by (1 - x)E(O, 0). versus temperature at selected values 
of x; same symbols as in fig. 1. 
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Fig. 4. Semilogarithmic plot of the magnetic susceptibility 
versus temperature. Same notation as in fig. 1. 
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Our mean field theory, also produces reasonable 

predictions for the variation of T, with x. For instance 
in the case B, for a SC lattice we obtain: 

C(x)K(O) =ln(3/2)/ln 2 ~,~x6) i (4) 

which agrees quite well with numerical and experimen- 
tal data. The percolation threshold given by (4) is x, = 
0.709, which is very close to the series result (x, = 0.689). 

3. Monte Carlo simulations 

Model B has also been studied by standard Monte 
Carlo methods [12] for small grade of disorder, 0 Q x < 
0.2, in the case of a simple cubic lattice with N sites 
(N = 27000 and 64000), periodic boundary conditions 
and ferromagnetic nearest-neighbor interactions. Very 
large equilibrium ensembles were generated by the usual 
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Fig. 3. Specific heat versus temperature for a SC lattice; N’= (1 
- x)N. Same notation as fig. 1. 

Metropolis dynamics. The configurational energy, e, 
and spontaneous magnetization, m, were computed from 
the equilibrium ensemble at each temperature T; the 
specific heat and magnetic susceptibility were then ob- 
tained from the dispersions of the m and e distribu- 
tions, respectively, by fluctuations-dissipation theorems. 
Representative results are shown in figs. l-4. A more 
complete account will be given elsewhere. 

4. Conclusions 

We sketch here a very brief discussion and expect to 
report soon on the main conclusions of our work. The 

Monte Carlo analysis invcjlves a more detailed treat- 
ment of interactions and cooperative effects, our mean 
field treatments, however, seem to give a very reasona- 
ble semi-quantitative description of the numerical and 
experimental data. For example, our approach of case B 
allows a semi-quantitative description of the experimen- 
tal data for any physical quantity over a broad range of 
temperatures and concentrations x, within a simple 
mathematic framework, and consequently, it should be 
useful in the analysis of experiments [lo]. Concerning 
the critical behaviour of disorder systems. which is 
nowadays perhaps the most interesting point in this 
area, our mean field expressions only produce classical 
exponents, as one should probably expect. Nevertheless, 
there is a strong evidence that one may expect critical 
exponents varying with x in more realistic treatments. 
Namely, we observe that the “corrections to scaling” 
increase as x is increased. This result seems to hold for 
both models, A and B. The Monte Carlo analysis, on 
the other hand, clearly reveals effective critical expo- 
nents varying contynously with x within the range 
0 <x 6 0.2. For example, the data reported in fig. 1 
corresponding to x = 0.2. show a critical behaviour with 
/3 = 0.385 + 0.015 and B = 1.76 k 0.1. which clearly dif- 



fer from the pure case values. The present work indi- 
cates a new basic interest to analyze these questions 
and, we hope, will stimulate further theoretical and 
experimental studies concerning disordered systems. 
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