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Abstract. We report on the numerical analysis of the relaxation towards equilibrium in one 
dimension of a ‘large’ system of hard cores particles having masses either m,  or m2 and 
velocities 21 given at random; a very broad range of values of m l / m 2  is investigated for 
the first time. Several quantities such as velocity autocorrelations, diffusion coefficients, 
relaxation and correlation times are monitored, some times until the system reaches equi- 
librium. We conclude about new interesting qualitative and quantitative changes in the 
system relaxation as one considers different values for m2/m1.  

1. Introduction 

The study of one-dimensional systems is nowadays an active area of research given that, 
in addition to having mathematical interest, they may capture essential physical features 
or model one-dimensional effects which are sometimes present in real systems (Thouless 
and Kirkpatrick 1981, Baker and Bragg 1983, Mokross and Buttner 1983, van Beijeren 
er a1 1983). Exact results are known in a few cases of interest (Jepsen 1965, Lebowitz 
and Percus 1967, Lebowitzeta11968, Aizenmanetal1978, vanBeijerenetall983) while, 
more often, one has to rely on approximations and computer simulations (Mokross and 
Buttner 1983, van Beijeren et a1 1983, Masoliver and Marro 1983) to extract the relevant 
information. These facts motivated the computer analysis of binary mixtures of impen- 
etrable particles with different masses, m, and m2 respectively, on a ring (Masoliver and 
Marro 1983); the main conclusion there is that, unlike the system with m2 = m l  which is 
non-ergodic in the velocity distribution function, the system with m2 # m, relaxes from 
any initial state towards a Maxwellian velocity distribution. The interesting qualitative 
features observed in that work suggested the details of the evolution of the system with 
time should be investigated more closely. 

We report in this paper on a series of numerical experiments related to those in our 
previous work, i.e. we study the relaxation towards equilibrium of a periodic one- 
dimensional binary mixture of hard-core particles with masses ml  and m2. We consider 
in this case, however, a broader range of m2/m1 values, namely m2/m1 = 1, 1.01,1.03, 
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1.05,3,4,5,8,10,30,40and50whichincludesmallerandlargermassratios. Inaddition, 
we have followed the evolution of the system to much longer times and, when it was 
necessary in order to obtain reasonable statistics, e.g. at m2/m1 = 1.01 and 50, we 
averaged over three independent histories. This allows us to conclude quantitatively here 
about specific kinetic properties and equilibrium states for one-dimensional mixtures. In 
particular, we analyse the nature of the reported ‘critical slowing down’ in the relaxation 
of the system when m2/m1+ 1 as well as the behaviour for large values of m2/ml.  
The gradual increase of the relaxation time for m2/m2 % 1, compared with the critical 
divergence in the low-mass-ratio limit, may reveal a sort of local equilibrium when light 
particles are surrounded by heavy ones; our data, however, seem to extrapolate to 
correct equilibrium values. We also investigate correlation times and other quantitative 
observations in the asymptotic relaxation of the Boltzmann H-function and velocity 
autocorrelation and present a detailed discussion of the nature and dependence with 
m2/m1 of long time tails which may shed some light into a recent related controversy. 
Our observations certainly encourage us to anticipate exact solutions or more general 
approximate descriptions of this finite system or its infinite counterpart. 

2. Description of model 

The system consists of N = 1000 hard core particles randomly distributed on a line with 
periodic boundary conditions. This size can be considered as ‘macroscopic’ (in one 
dimension) for many purposes (Alder and Wainwright 1959, 1970). The length of the 
line, on the contrary, is set L = 1000 rather arbitrarily because we do not investigate the 
dependence on density. Half the particles, selected at random, are assigned masses m, = 
1 while the rest are assumed to have masses m2. Each particle is also assigned at random 
either a velocity + 1 or - 1, independently of its mass. The evolution of the system then 
proceeds according to a slight modification of the method developed by (Alder and 
Wainwright 1959,1967,1970, Masoliver and Marro 1983). The algorithm computes the 
set of virtual collision times as 

where x,, = x ,  - x, and U,, = U ,  - U ,  represent respectively the relative position and 
velocity of particles i andj  (which can only be neighbours due to the hard-core potentials). 
The second value in (1) holds when the particle at one end of the line is expected to 
collide with the one at the other end. Particles are then moved to the positions x ,  + u, f ,  
where fm = min{fI,l+l; i = 1,2 ,  . . . , N }  and the velocities of the colliding particles are 
changed as implied by momentum and energy conservation. New virtual collision times 
are computed as - fm or again from (1) when that happens to be zero. This 
constitutes the basic step which is repeated Ttimes each run. At the end of each run, the 
mean free time fo is computed as the inverse of the collision frequency; see table 1 for 
the duration of the runs and for the dependence of to on m2/m1. 

The computations were carried in double precision in a CDC CYBER 173 where they 
took a total of several hundred hours of CPU time. Round-off errors never produced 
relative differences in the total momentum larger than after 4 x lo5 steps or larger 
than lo-’, after 2 x lo7 steps. We have also checked by making independent runs that 
the evolution of the system is independent in practice of the particular randomisation of 
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Table 1. Duration of the runs reported here, corresponding mean free time to, equilibrium 
values for the Boltzmann’s H-function, for the standard deviation a and for the kurtosis k 
of the velocity distribution function, relaxation times t* and t’* as defined in the text, and 
the parameter (Y and corresponding coefficient of linear regression r when fitting the data 
with equation (4) and B = 1.2. 

1 1.6 x 10’ 
1.01 18.4 x lo6 
1.03 5.6 X lo6  
1.05 2.4 x lo6 
1.20 1 x lo6 
2 1 x 105 
5 1 x 105 
8 1 x 105 

10 1 x 105 
30 1 x 10’ 
50 1 x 10’ 

2.00 
1.97 
1.86 
1.79 
1.77 
1.68 
1.36 
1.16 
1.07 
0.65 
0.50 

- 
1 .WO9 
1.0009 
1.0014 
1.006 
1.006 
1.33 
1.57 
1.70 
2.54 
2.96 

- 
-0.49 
-0.38 
-0.09 
-0.09 

0.28 
1.305 
1.70 
2.10 
2.61 
3.08 

X 

15000 t 500 
3000 t 200 
lo00 2 100 

60 t 4 
6 2 2  
4 t 2  

10 t 2 
15 t 10 
30 t 20 
50 +- 40 

- 
0.3669 
0.3675 
0.3677 
0.3681 
0.3734 
0.3919 
0.4052 
0.4100 
0.4376 
0.4387 

- 
14000 
2724 
807 
48.3 
5.5 
3.9 
5.1 
5.2 

12.7 
30.5 

- 
0.0011 
0.0017 
0.0064 
0.0064 
0.0021 
0.0129 
0.0189 
0.0140 
0.0116 
0.0040 

- 
0.962 
0.980 
0.981 
1.000 
0.964 
0.984 
0.993 
0.974 
0.976 
0.971 

the initial state and that the accuracy of individual particle trajectories is good enough 
in general, as we discuss later on. 

3. Relaxation time 

The system starts with velocities tl and evolves with time when m2 # m ,  towards a 
velocity distribution which can be approximated by a Maxwellian distribution centred 
at U = 0 (Masoliver and Marro 1983): 

The standard deviation U is seen to increase monotonically with increasing mass ratio 
m2/m1 so that the equilibrium distribution of velocities becomes more sharply peaked 
as m2+ m,. The kurtosis, k ,  related to the fourth moment p by k = p / a 4  - 3, also 
increases with increasing m2/m1. See table 1 for values of a and k.  T 

The time evolution of the velocity distribution,f(v, t ) ,  is qualitatively similar for all 
mass ratios considered here: the initial distribution * 1 degenerates, approximately, into 
two gaussians centred respectively at +1 which finally evolve into the curve (2). The 
time the system takes to reach the maxwellian velocity distribution (2), t* ,  increases 
gradually when m2 9 m,  and very dramatically when m2/m,-, 1. When m2 = ml  the 
initial distribution t 1 is conserved in time; as a matter of fact, the exact results by Jepsen 
(1965) show that only the distribution of a specified, test particle (starting at r = 0 from 
theoriginwith avelocity U) exhibitsnormalkineticbehaviour, i.e. diffusionandapproach 
to equilibrium. We can estimate visually the ‘relaxation time’ t* when m2 # ml to obtain 
the values reported in table 1. 

t Note that the values for aand kin table 1 might indicate that the initial times included in the time averaging 
process to compute them are still outside equilibrium. Should this be the case, however, it does not affect our 
conclusions here: it only introduces minor numerical inacuracies for m2/m,  9 30 while it notably helps to 
improve our statistics. 
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A better quantitative measure of the system relaxation can be obtained through the 
use of the Boltzmann's H-function: 

H(t)  = J duf(u,  t )  lnf(u, t ) .  

t 
0.374 

0.338 

0.302 c 

(3) 

0 2 6 6 ,  j 

0.230 1 F 3 5 7 

t i t ,  

Figure 1. Early time development of the negative of Boltzmann's H-function (time is in units 
of the mean free time to. i .e. it represents the number of collisions per particle) in the cases 
m2/m,  = 8 (circles) and 2 (crosses). The full and broken curves are fits to the data of the 
form (4). 

As shown in figure 1, the function H is observed to decrease monotonically with time 
for all values of m2/m1 towards the stationary value Heq; thus dH(t)/dt = 0 for t 5 t'* 
showing that the system has indeed reached an equilibrium velocity distribution such as 
(2) and that the evolution bears an undeniable irreversible character. The values for Heq 
in table 1 show an increase with increasing m2/m1; this behaviour can be understood as 
a consequence of the approximate validity of description (2) and of the definition (3) 
which implies a proportionality between Heq and In 0. This proportionality is indeed 
supported by the data, as figure 2 shows. The data, on the other hand, suggest that a 
simple relaxation formula should be sought, say 

H(t)  - He,  = CY[(t'"/t) - 118. (4) 
This equation fits the data very well (see figure 1) and it allows one to compute cy, t'" 
and p. We find that /3 = 1.1 & 0.1. We present in table 1 the values obtained for cy and 
t'* from the fit in the case /? = 1.2; note that the latter are very close to our estimations 
t" (we also obtain values for t'* which are compatible with those for t* when requiring, 
say p = 1.0 in equation (4)). 

The relaxation times depict a quite interesting feature of the system evolution. Any 
of them, t* or t ' * ,  clearly show that t* + when m2/m1 + 1. This critical behaviour can 
be fitted very accurately by 

t* - (m2/ml  - I)-€ ( 5 )  
where we find E = 1.9 k 0.1; see figure 3. There is also a clear increase of t*  with m2/m1 
when m2 * m,, but this is much slower and less dramatic than (5). The limiting case m2/ 
m l  + x would again resemble in some sense (Nossal 1965) the situation when m2 = m,. 
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r 

0 0 6  1 2  
log 0 

Figure 2. The negative of the equilibrium value He,  of Boltzmann's H-function, obtained as 
a time average over the stationary part of the evolution of H ( t ) .  versus the logarithm of the 
standard deviation U of the corresponding velocity distribution. 

0 
1.0 1 2  

m2 /mi  

Figure 3. The relaxation time t* as a function of the mass ratio when m2/m, -+ 1. The full 
curve corresponds to equation ( 5 ) .  

The values in table 1 show that the minimum value fort* is located in the neighbourhood 
of mzlml = 5 .  

The velocity autocorrelation function V ( t )  = constant x (u (O)u( t ) )  provides a fam- 
iliar method to analyse the relaxation of the system. It was computed here by means of 
the algorithm: 

, .V" 

where a = 1 , 2  refer to species with masses ml  and m2 respectively; i.e. we do not make 
the usual average over different time origins because the statistical behaviour of the 
quantity (6) is good enough ( m d  most interesting) for many purposes. The case m2 = 
ml is described (Jepsen 1965) by the exact result v(t) = exp(-2t) for t < 2 so that it 
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Table 2. Correlation times as defined in equation (7) and ‘diffusion coefficients’ as defined 
in equation (9) as a function of m2/m,. 

m2/m, r,lto %It0 D l  D2 

1 
1.01 
1.03 
1.05 
1.20 
2 
4 
5 
8 

10 
30 
50 

0.250 0.250 
0.335 0.280 
0.342 0.281 
0.334 0.311 
0.326 0.324 
0.293 0.394 
0.171 0.510 
0.159 0.526 
0.199 0.625 
0.189 0.741 
0.364 1.645 
0.489 2.151 

0.490 0.490 
0.484 0.486 
0.485 0.488 
0.482 0.493 
0.470 0.507 
0.392 0.603 
0.310 0.700 
0.248 0.742 
0.240 0.781 
0.228 0.824 
0.218 0.855 
0.216 0.884 

seems reasonable to make here the Langevin type, short-time assumption: 

V,(O - exp(-t/t,) (a  = 1,2)  ( 7 )  
where z, is a correlation time. The relation (7)  does indeed describe very well the data 
in the time range 0 G t / to  s b, where b is of order of unity, for any mass ratio m2/m1. 
The values for to obtained from a fit of equation (7) to the data also show an interesting 
behaviour; they are reported in table 2. Figure 4 displays t o / to  and t2 / t0  as a function of 
m2/m1.  Note that t l / to decreases with increasing m2/m1 in the range 1 < m2/m1 5 5 
while it increases with m2/m1 for m2 > 5ml; tl (i.e. the quantity reported in table 2 times 
to) shows a similar trend. This behaviour might just indicate that sl/to has a constant 
value, say zl/to = 0.3. The correlation time z2, on the contrary, clearly increases mon- 
otonically with m2/m 

The diffusion constant D can be related to the velocity autocorrelation function by 
the Green-Kubo formula 

D = jox d t  w(t) .  

i I I , I I I , l J o  

m,”, 
0 10 20 30 40 50 

Figure 4. The correlation times ra (in units of to) for a = 1 (asterisks) and 2 (circles) as a 
function of the mass ratio m2/m1.  The broken curves are a guide to the eye. 
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The accurate estimation of transport coefficients (Erpenbeck and Wood 1982, for 
instance) is difficult in practice, however, due to the very slow asymptotic behaviour 
we discuss next. Thus, in order to gain some qualitative idea we have computed the 
quantities: 

D a  = jO3'" d t  ya(t)  (a  = 1 ,2 )  (9) 

where r0 is the correlation time associated with wO(t ) .  The corresponding values are 
shown in table 2. These are described very well by linear relations: 

B1 = -0.61 ,U + 0.79 D 2  = 0.82 p + 0.07 (10) 
with p = mlm2/(ml + m2) the reduced mass, which intersect at p = 1 (ml = m,) when 
8, = D ,  = 0.49 as one should expect. The behaviour (10) is illustrated in figure 5 . t  

Figure 5.  The 'diffusion coefficients' d, as defined in equation (9) versus the reduced mass 
of the system, ,U = mlm2/(m, + mz).  The lines correspond to equations (10). 

4. Long-time tails 

The computer simulation of hard-spheres and hard-discs systems revealed years ago 
(Alder and Wainwright 1967,1970) that the 'classical' exponential decay (7) is replaced 
at large values of the time by a much slower relaxation or long-time tail 

y ( t )  - t - b  t + x  (11) 
where 6 = d / 2  and d = 2 ,  3 is the dimension of the system considered. This effect was 
subsequently explained in the context of linear kinetic and mode-coupling theories 
(Hauge and Martin-Lof 1973, Ernst et a1 1976, Pomeau and Resibois 1975, Dorfman 
and Cohen 1975) as well as observed in scattering experiments (Paul and Pusey 1981; 
Ohbayashi et a1 1983). On the other hand, exact results on the one-dimensional system 

t Note that the values for D, probably differ significantly from the corresponding diffusion constants D,, as 
defined in equation (8). due to long-time effects. 
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of hard rods (Jepsen 1965, Lebowitz and Percus 1967) also provide some partial confir- 
mation of the behaviour (11); namely, they show that the relaxation of a specified test 
particle in an infinite system with maxwellian or very long-range velocity distributions 
deviates for t  b 2 from the short-time form +(t) = exp( -2t), which then becomes nega- 
tive, very small and can be represented by a long-time limit expansion v(t) - t-3 - 
a > 0. Thus, one seems to have S = 3 when d = 1 which is in contradistinction to the 
6 = d / 2  behaviour found in two and three dimensions. Furthermore, the observed tail 
isnegative ford = 1 whereasitispositive ford = 2,3.  BishopandBerne(1974)compared 
computer experiment results with the exact analytical solution of the hard-rods system 
but a positive noisy tail prevented them from observing the expected negative t-3 tail. 
Haus and RavechC (1978) observed in the same system the negative part of the velocity 
autocorrelation function in both single and multiple trajectory time averages but their 
data were insufficient to conclude about its particular dependence on time; this was also 
the case in our earlier work (Masoliver and Marro 1983) on the mixture system. In 
addition, general interest in asymptotic behaviours such as (11) has increased after the 
recent work by Fox (1983) arguing that our understanding of long-time tails is not 
satisfactory from the theoretical point of view nor from the viewpoint of experiments, 
including computer experiments. In relation to the latter, Fox (1983) heuristically 
claims that the propagation of round-off errors takes the numerical trajectory off a true 
Newtonian trajectory so that the autocorrelations are changed into mutual or cross 
correlations; were this the case, the computed long-time tails would rather correspond 
to hydrodynamic-like numerical noise. We believe, however, that the accuracy shown 
by our individual particle trajectories and the reported continuous changeover from our 
observations to the exact results for m2 = m l  certainly imply that we are analysing a real 
effect. 

The above situation brings in any case an undeniable expectation about the long- 
time behaviour of the function ~ ( t )  in the one-dimensional mixture studied here. The 
direct inspection of our relatively long-time data does not reveal any interesting fact 
except fluctuations of v(t) apparently around a constant value which is hardly dis- 
tinguishable from zero; see figure 6. Nevertheless, performing the appropriate running 
average of V(t )  over the time it clearly shows up that, for any value of m2/m1, q(t) stays 
negative and it slowly goes to zero. The effect is small enough to prevent a clear direct 
evidence so that we have investigated the details by computing the time-dependent 
functions 

We observe that, apart from fluctuations, the functions D l ( t )  computed in all systems, 
i.e. for different values of m2/m1? are very close to each other when m2/m1 is not very 
far from unity. Thus, we have averaged D l ( t )  corresponding to different values of m2/ 
m,. The result is shown in figure 7 where we have also included Dz( t )  when m2/ml = 8 
for comparison. The functions D2(t)  when mz/ml # 8, which are not included in the 
graph for clarity, only seem to differ from the one shown there by a shift in the vertical 
direction; see figure 8. Summing up, it seems we should conclude as shown by figures 6- 
8 that the qualitative behaviour of Du(t) is practically the same in any case: it decreases 
with time, usually becoming negative for very small values of m 2 / m l ,  while presenting 
large-period oscillations. 

In order to conclude more precisely we note that assuming a short-time exponential 
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+ n o  5 

5 

Figure 6.  Early time evolution of the velocity autocorrelation function ya. Symbols from the 
bottom to the top of the graph are as follows: asterisks ( a  = 1, mz/ml = 1.03), circles (a  = 
2 ,  m2/mi = 2 ) ,  crosses (a  = 2. m2/m1 = lo ) ,  triangles (a  = 2, m2/m1 = 30) and pluses ( a  = 
2 ,  m2/ml = 50). 

decay (7) and a negative long-time tail (ll), both in agreement with the situation in 
figures 6-8, it follows that: rnt otherwise 

when S = 1 
D,(t> = ff, - P a  t ' - 6  (13) 

where the negativity of the tail requires Po > 0 and one should also expect a, > 0 given 

0 50 
f / fa  

100 

Figure 7. The function D,(r) as defined in equation (12) versus the time in units of r,,. The 
asterisks correspond to an average of D i ( t )  as computed in the cases mz/ml = 2,  5 and 8. 
The circles represent the data for D2(t )  when m2/ml = 8. 
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0 50 
t i t ,  

100 

Figure 8. The function D2(t) defined in equation (12) versus time when m2/ml  = 1.03 
(circles), 8 (asterisks) and 40 (triangles). The full curves correspond respectively to the fits 
D2  = 0.360 - 0.066t' * ( r  = 0.95), D2  = 0.885 - 0.089 t' * (r = 0.98) and D2  = 
1.841 - 0.101 t'" ( r  = 0.89). A semilogarithmic fit is slightly worse giving D 2  = 
0.486 -0 .1151nt ( r=0 .90) ,D2= 1.043 -0 .2051nt ( r=0 .91)andD2= 1.966-0.214Int 
( r  = 0.74) respectively. A fit D2 = iy2 - P2t-2 is not appropriate, e.g. gives coefficients of 
linear regression r much smaller: r = 0.80, 0.72, 0.70 respectively; see the text for an 
interpretation of this fact. 

that after the exponential decay q(t) becomes only slightly negative (compared with the 
area enclosed by v(t) versus t when q(t) is positive). As a consequence, we made log- 
log and semilogarithmic plots of D,(t) versus t to conclude that only 6 = 1 or 6 = 1 are 
consistent with most of the data; as a matter of fact, the fit of the data to a power law P 
with m < 0 is very bad and produces negative values for the constants ah and pu  (see 
caption for figure 8). We also find that a fit D2(t)  versus t-' (implying 6 = 3), which is 
not supported by the data when m2 B m,, seems to become slightly better when m2 
decreases, i.e. it seems that S + 3 when m2/ml + 1 but it is difficult to make a definite 
statement about because the data become very noisy when m2/mi + 1. Figure 8presents 
some examples of the general behaviour of Dz( t )  and fits to the data of the from D 2  = 
f f 2  - p 2 P .  

5. Conclusions 

Our results clearly confirm (Masoliver and Marro 1983) that the system evolves, except 
for m2 = m,, to a maxwellian velocity distribution. The relaxation time t* the system 
takes to reach this velocity distribution diverges as m2 + ml  according to equation ( 5 )  
with E = 1.9 (figure 3) and it increases slowly with m2/m1; t* presents a minimum around 
m2 = 5m1. 

The short-time behaviour of the velocity autocorrelation function shows the Lan- 
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gevin decay (7) with an interesting dependence of the correlation time on mz/ml  (figure 
4). Concerning the long-time behaviour, we find for the first time experimental evidence 
for the existence of slowly decaying ‘tails’ in one-dimensional mixtures. Our results seem 
to indicate that the conjecture by Fox (1983) is doubtful while they extend previous exact 
results for mz = m,  (Jepsen 1965, Lebowitz and Percus 1967, Lebowitz et a1 1968). The 
tail we observe here is negative (figures 6-8) in agreement with the exact results and in 
contradiction with previous computations in two and three dimensions (Adler and 
Wainwright 1959,1967,1970). Thedataform* # m l  seemconsistentwithacharacteristic 
exponent 6 = 1 in equation ( l l ) ,  which is in turn consistent with some results for one- 
dimensional lattice gases (van Beijeren et a1 1983), but they slightly favour 6 = 1 thus 
apparently following in this point the trend observed in higher dimensions, 6 = d /2 .  We 
also find some evidence that 6 + 3 as mz + m,,  say m 2 5  1.01 m l  (Marro and Masoliver 
1985), a result which was proved rigorously in one dimension when m2 = m i  and also 
seems to hold for one-dimensional one-component Lennard-Jones systems (Bishop 

Finally, we evaluate other interesting quantities, such as Boltzmann’s H-function 
1981). 

and correlation times, and report on their dependence on m2/m1. 
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