
Volume 95A, number 8 PHYSICS LETTERS 23 May 1983 

RELEVANCE OF THE CAHN-HILLIARD-COOK THEORY AT EARLY TIMES 

IN SPINODAL DECOMPOSITION 

J. MARRO and J.L. VALLI~S 
Departamento de Fisica Te6rica, Universidad de Barcelona, 
Diagonal 647, Barcelona-28, Spain 

Received 29 June 1982 
Revised manuscript received 18 March 1983 

We analyse Cook's equation for spinodal decomposition and compare its predictions with computer-simulation data to 
conclude its formal consistency with the observations at early times. We thus provide a simple reference for the analysis of 
experiments at early, observable times and for the development of theory at late times. 

A number of binary mixtures (including alloys 
such as A1-Zn, glassy and liquid mixtures, protein 
solutions, etc.) are known to undergo a process of 
phase segregation or spinodal decomposition when 
quenched to a thermodynamically unstable state 
[1-4] .  The simulation in a computer of the time evo- 
lution of an Ising model with nearest-neighbor inter- 
actions * 1 produces a behavior qualitatively similar 
to the one in real materials [2-4] .  Some characteris- 
tics of spinodal decomposition can thus be investigated 
by monitoring the structure function S(k, t) (where k 
is a reciprocal wave vector and t the time after quench- 
ing) either experimentally by means of scattering from 
real materials or by numerical computations in the 
case of a model. 

A simple linearized diffusion theory by Cahn and 
Hilliard [1] predicts the increase of S(k, t) in spinodal 
decomposition at an exponential rate for a fixed 
value of Ik I. Generally, however, one observes no sig- 
nificant time regime during the evolution of any (real 
or model) system which can be characterized by such 
an exponential growth. This fact has been explained 
by Langer and other [6] as a consequence of the im- 
portance of non-linear effects during phase segregation. 
There is then some hope [2] that exponential growth 
might be a characteristic of the very early evolution, 

' I  For an earlier review see re(. [5]. 

namely during a stage shorter than the time interval 
between quenching and the first observation in a typ- 
ical elxperiment. 

We compare here the predictions of the Cahn-  
Hilliard equation for the evolution ofS(k, t), as re- 
formulated by Cook to include thermodynamic fluc- 
tuations [7], with the data corresponding to the evo- 
lution of a finite Ising model with Kawasaki dynamics 
[3-5] .  There is clear evidence that the Cahn-HiUiard- 
Cook (CHC) equation is formally consistent with the 
early evolution in spinodal decomposition, a fact 
which has been overlooked in the recent literature. 
We then argue that exponential growth of S(k, t) 
should only be observed, as an exception, in systems 
characterized by a large value for a given parameter 
k c ; this could explain the reported, "untypical" be- 
havior in a Lennard-Jones model [8]. The above fact 
provides a simple framework for the analysis of ex- 
perimental results at early times where our knowledge 
is nowadays very scarce. At large enough values of t 
the experiments have shown that S(k, t) scales with 
time through some characteristic wave vector in the 
system [3]. The CHC equation becomes invalid in 
this late stage but the analysis in this letter may pro- 
vide a hint for a modification of the CHC equation so 
that it incorporates the observed dynamical scaling [9] 

The basic ingredients in the CHC theory [ 1,6,7] 
are a continuity equation ~ ( r ,  t) /~t  = - V.J(r, t), 

0 031-9163/83/0000-0000/$ 03.00 © 1983 North-Holland 443 



Volume 95A, number 8 PHYSICS LETTERS 23 May 1983 

where ~(r, t)  = r/if, t)  - ~ measures local deviations of 
the composi t ion  r / ( f rac t ion  of  the c o mp o n e n t  A less 
the fraction of  the co mp o n e n t  B in an A--B mixture)  
from the uni form state of  mean  composi t ion  £/, and 
a current  density 

](r, t) = - M V l / (  ~(r, t ) ,  V~(r,  t)} ] +~(~, 0 .  (1) 

Here M > 0 is the mobi l i ty ,  ~ is a (gaussian) stochastic 
force representing the direct inf luence of  the thermal 

(phonon)  reservoir on the atoms, and j { if, V ff } is the 
drift  which causes the interdiffusion of  atomic species. 
Moreover it is assumed that ,  while the system is un- 
dergoing an irreversible process, it may be described 
by  a G i n z b u r g - L a n d a u  free energy 

F { C , } = f d r [ ½ B ( V $ )  2+. t (~ ) ]  , B > O ,  " (2)  

which incorporates inhomogene i ty  corrections (the 
first term within  the integral) in addi t ion to the local 
free-energy density f(t~) corresponding to the uni form 
state. Thus it follows [6,7] after l ineafizat ion around 
q that 

3S(k, t)/Ot = - 2 M k  2 [(A + B k 2 ) S ( k ,  t)  - 1], (3) 

where A = (O2f/3~2)r~= ft. 

The pioneering Cahn-Hi l l i a rd  approach [1] dis- 
regards the f luctuat ions represented by  ~ in eq. (1) 
thus leading to an equat ion  which differs from eq. (3) 
in that the last term in the brackets is omit ted.  It then 
predicts that  S(k ,  t)  will develop a m a x i m u m  at k 
= ( - A / 2 B )  1/2 which will grow exponent ia l ly  with time. 

The CHC equat ion (3), on the contrary,  has the solu- 
t ion 

S(k ,  t)  = g2- l (k )  + [S O ~ l (k ) l  

X exp[ -2Mk2~2(k) t ]  , (4) 

with S O = S (k ,  0), which we shall assume is indepen-  
dent  of  k (as in the computer  s imulat ions where S(k,  

,z + 2 0) = 1 rt ), and a(k)-  A B k  . The latter changes 
from positive to negative values at k = k c - ( - A / B )  1/2 
when A < 0. At  k > k c one has a ( k )  > 0 and S(k,  t) 
given by  eq. (4) tends to an O r n s t e i n - Z e r n i k e  com- 
m on  envelope ~2-1 (k) when t -+ oo (M > 0). In con- 

trast with this relatively "s low" behavior,  one has 
~2(k) < 0 at k < k c so that  eq. (4) implies then an 
unbounded ,  generally non-observed exponent ia l  
growth. Thus one may argue that  (perhaps with some 

exceptions;  see e.g. ref. [8]) k c is small enough in 
practice so that the most rapid growth orS(k ,  t) is 
restricted to the smallest, unobservable values of  k. 
In fact k c depends on the phase point  (7, £7) to which 
the system is quenched and we shall confirm later on 
that it is very close to zero for points  in the neigh- 
borhood of  tire coexistence curve for the mixture.  

Moreover, unlike the simpler equat ion  by Cahn 
and Hilliard [1 ], eq. (4) predicts [9] that the m ax im um  
k m (t) of  S(k,  t) decreases with time towards smaller 
values of k as in the case of  real and model  systems 
[4] : in fact k m (t) goes to kc/21/2  when t -+ oo. One 
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Fig. 1. The quantity w = Rcs0 defined in cq. (5) is plotted 
versus k z in some typical cases for M giving linear behavior 
at early times. A linear regression gives then the values re- 
ported for A and B in table 1. Note that £2 e starts to deviate 
from A + Bk 2 when t ~ t c. a, b, c and d correspond to T 
= 0.59T o p = 0.10, M = 0.06S 0 at times (in Monte Carlo 
units) t = 30.4, 113.5,454.5 and 716.2 respectively; t c = 870 
in this case. e, f, g and h are for T = 0.78T o p = 0.50, M 
= 0.09S o at t = 19.5, 77.1, 143.8 and 213.6 respectively; t c 
= 200. The situation is similar in the case of other phase 
points, but the linear regression ~2 c = A + Bk 2 seems worse 
when closer to the coexistence curve, e.g. at p = 0.05, T 
= 0.59Tc [91. 
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Table 1 
Values for the parameters  A, B and M obtained by fit t ing the CHC equat ion (4) to the data corresponding to the early (t < t c) 
evolution of  the  model  system in ref. [3] quenched to different phase points. The resulting fit is shown in fig. 2. 

T/Tc P So M/So ASo BSo kc tc 

0.59 0.05 0.2256 0.06 - 0 . 0 2 5  0.2 0.35 5200 
0.59 0.075 0.2775 0.06 - 0 . 0 5  0.2 0.50 1270 
0.59 0.10 0.36 0.06 - 0 . 0 6  0.2 0.55 870 
0.59 0.20 0.64 0.08 - 0 . 0 9  0.2 0.67 280 
0.59 0.50 1 0.09 - 0 . 1 8  0.2 0.95 56 
0.78 0.50 1 0.09 - 0 . 1 0  0.2 0.71 200 
0.89 0.50 1 0.09 - 0 . 0 4  0.2 0.45 1330 

can convince oneself from eq. (4) that t c = B(1 

+ ASo)/M A 2 is the time at which k m (t) crosses k = k c. 
Thus one has k m (t) > k c for t < t c and S(k, t) shows 
then a "good", slow growth. The question is whether 
or not t c corresponds to an observable value of the 

2 

time and we shall see that it does. The CHC equation 
(4) also implies the existence of a fixed point at k 

= k F = [(1 - ASo)/BSo] 1/2 > kc in the S(k, t) versus k 
curves, a fact which roughly [9] resembles the typical 
"cross-overs" observed experimentally in the tail of 
the structure function [5]. 
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Fig. 2 (a) The structure funct ion S(k, t) versus k as given by the CHC equat ion (4) with the parameters  in table 1 (solid line) is 
compared at different t imes (t = 5.5, 30.4, 113 .5 ,556 .9 ,  851.5 and 2351.4 from the top to the  bo t tom and from the right to the 
left respectively) with the  data from the computer  s imulat ions in ref. [3] when T = 0.59Tc, p = 0.10. In this case t c = 870 so that  
the  last graph corresponds to a si tuation at t ~, t c when the CHC equat ion does not  fit the  data any more. (b) Same as (2) when T 
= 0 .78T c, p = 0.50 and t = 9.2, 31.2, 94 .6 ,143 .8 ,  213.6 and 509.9 respectively; t c = 200 in this case. Note tha t  the  fit o f  the CHC 
equat ion to the data in this case is even bet ter  for t < t c than  the one reported in ref. [6]. 
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In order to conclude quantitatively about tile 
above facts we may define 

g2 c =S l(k, t ) [ l  (I/234ki)aS(k, t)/at] (5) 

and check whether or not there is a unique value for 
M such that: (i) ~2 c is independent of time, and (ii) 
~c becomes linear in k 2. I f  both conditions hold 
when ~c is computed from experimental data, it fob 
lows that the CHC equation (4) can describe the given 
data using the parameters from the linear regression 
~2 c =A  + Bk 2. 

We have checked this possibility by computing g2 c 
from the data obtained in the computer simulations 
reported in refs. [ 3 -5 ]  which refer to a model (segre- 
gating) binary alloy with nearest-neighbor interactions. 
Conditions (i) and (ii) are seen to hold at "early" 
times only when M is around 0. IS0; one can then eval- 
uate A and B, and the time limit t c for the validity of 
the CHC description. Fig. 1 shows plots of w = ~2cs 0 
versus k 2 in some typical cases. We find that ~c =A 
+ Bk 2, independent of  time, holds when t < t c at any 
phase point, although the CHC equation seems a bet- 
ter description for points well inside the coexistence 
curve ("deep quenches" [3]) than for points close to 
it ("shallow quenches"). Table 1 gives our best values 
for A, B and M as a function of the temperature of 
of quenching T and p = (1 + ~)/2 (the density of A- 

atoms in the system). 
The time t c computed from the values for A, B 

and M in table 1 is not far from the time t O evaluated 
in ref. [3] for the onset of dynamical scaling in S(k, t); 
as a consequence, the validity of the CHC equation 
should also be observable in real materials. As a matter 
of fact, the unit  of time in the computer simulations 
seems [3,10] to correspond to more than 100 s in the 
case of A1-Zn alloys at low temperatures so that t c 

may correspond to several (or many) hours. Interesting- 
ly enough, our values for t c seem to correspond to 

the same "amount  of segregation" in the system [P(tc) 
0.54] measured by tile procedure proposed in fig. 4 

of ref. [3]. 
Fig. 2 compares the behavior of tile CHC equation 

with that of the computer-simulation data for some 
representative cases. One can also realize there how 
the CHC equation implies a faster growth of S(k, t) 
when t > t c than the one in the model, as expected. 
We have checked, however, that the data can still be 
fitted with eq. (4) using a time-dependent parameter 
A after tc; the resulting analytic equation contains 
explicitly the property of dynamical scaling for S(k, 
t); this will be reported elsewhere [9]. 

We acknowledge discussions with J.M. Sancho. 
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