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We analyse Cook’s equation for spinodal decomposition and compare its predictions with computer-simulation data to
conclude its formal consistency with the observations at early times. We thus provide a simple reference for the analysis of
experiments at early, observable times and for the development of theory at late times.

A number of binary mixtures (including alloys
such as Al—Zn, glassy and liquid mixtures, protein
solutions, etc.) are known to undergo a process of
phase segregation or spinodal decomposition when
quenched to a thermodynamically unstable state
[1—4]. The simulation in a computer of the time evo-
lution of an Ising model with nearest-neighbor inter-
actions ¥1 produces a behavior qualitatively similar
to the one in real materials [2—4]. Some characteris-
tics of spinodal decomposition can thus be investigated
by monitoring the structure function S(k, t) (where k
is areciprocal wave vector and ¢ the time after quench-
ing) either experimentally by means of scattering from
real materials or by numerical computations in the
case of a model.

A simple linearized diffusion theory by Cahn and
Hilliard [1] predicts the increase of S(k, ¢) in spinodal
decomposition at an exponential rate for a fixed
value of |k|. Generally, however, one observes no sig-
nificant time regime during the evolution of any (real
or model) system which can be characterized by such
an exponential growth. This fact has been explained
by Langer and other [6] as a consequence of the im-

portance of non-linear effects during phase segregation.

There is then some hope [2] that exponential growth
might be a characteristic of the very early evolution,

*1 For an earlier review see ref. [5].
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namely during a stage shorter than the time interval
between quenching and the first observation in a typ-
ical experiment.

We compare here the predictions of the Cahn—
Hilliard equation for the evolution of S(k, £), as re-
formulated by Cook to include thermodynamic fluc-
tuations [7], with the data corresponding to the evo-
lution of a finite Ising model with Kawasaki dynamics
[3—5]. There is clear evidence that the Cahn—Hilliard-
Cook (CHC) equation is formally consistent with the
early evolution in spinodal decomposition, a fact
which has been overlooked in the recent literature.
We then argue that exponential growth of S(k, ¢)
should only be observed, as an exception, in systems
characterized by a large value for a given parameter
k; this could explain the reported, “untypical” be-
havior in a Lennard-Jones model [8]. The above fact
provides a simple framework for the analysis of ex-
perimental results at early times where our knowledge
is nowadays very scarce. At large enough values of ¢
the experiments have shown that S(k, ) scales with
time through some characteristic wave vector in the
system [3]. The CHC equation becomes invalid in
this late stage but the analysis in this letter may pro-
vide a hint for a modification of the CHC equation so
that it incorporates the observed dynamical scaling [9].

The basic ingredients in the CHC theory [1,6,7]
are a continuity equation ay/(r, £)/ot = —V-J(r, £),
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where Y(r, £) = n(r, t) — 77 measures local deviations of
the composition n (fraction of the component A less
the fraction of the component B in an A--B mixture)
from the uniform state of mean composition 7, and

a current density

S, )= -MV[j{y(, 1), VY@, O} ] +8C. 1) (1)

Here M > 0 is the mobility, § is a (gaussian) stochastic
force representing the direct influence of the thermal
(phonon) reservoir on the atoms, and j { Y, Vi } is the
drift which causes the interdiffusion of atomic species.
Moreover it is assumed that, while the system is un-
dergoing an irreversible process, it may be described
by a Ginzburg—Landau free energy

Fly}= [arzBOWY +1W)], B>0, " (2)

which incorporates inhomogeneity corrections (the
first term within the integral) in addition to the local
free-energy density f(i/) corresponding to the uniform
state. Thus it follows [6,7] after linearization around
i that

3S(k, 1)/dtr = —2MKk? [(A + BKH)S(k, 1) — 1], 3)

where 4 = (azf/a ll/z)n:ﬁ,

The pioneering Cahn—Hilliard approach [1] dis-
regards the fluctuations represented by § in eq. (1)
thus leading to an equation which differs from eq. (3)
in that the last term in the brackets is omitted. It then
predicts that S(k, r) will develop a maximum at &
= (—A4/2B)}/2 which will grow exponentially with time.
The CHC equation (3), on the contrary, has the solu-
tion

Stk, 1y= Q7 1k + [Sy — @ (%))
X exp [—2Mk252(k)t] , 4)

with S = S(k, 0), which we shall assume is indepen-
dent of k (as in the computer simulations where S(k,
0)=1—7?), and Qk)=A + Bk?. The latter changes
from positive to negative valuesat k = k= (VA/B)l/2
when 4 <0. Atk >k one has Q(k) > 0 and S(k, ¢)
given by eq. (4) tends to an Ornstein—Zernike com-
mon envelope §2~1(k) when ¢ > oo (M > 0). In con-
trast with this relatively “slow” behavior, one has
Q(k) <0 at k <k_ so that eq. (4) implies then an
unbounded, generally non-observed exponential
growth. Thus one may argue that (perhaps with some
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exceptions; see e.g. ref. [8]) &, is small enough in
practice so that the most rapid growth of S(k, t) is
restricted to the smallest, unobservable values of k.
In fact k. depends on the phase point (7, ) to which
the system is quenched and we shall confirm later on
that it is very close to zero for points in the neigh-
borhood of the coexistence curve for the mixture.
Moreover, unlike the simpler equation by Cahn
and Hilliard [1], eq. (4) predicts [9] that the maximum
ko (t) of S(k, t) decreases with time towards smaller
values of k as in the case of real and model systems
[4] : in fact k., (£) goes to k/21/2 when ¢ > . One
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Fig. 1. The quantity w = 2¢Sg defined in eq. (5) is plotted
versus k2 in some typical cases for M giving linear behavior
at early times. A linear regression gives then the values re-
ported for 4 and B in table 1. Note that Q€ starts to deviate
from A + Bk? when t = #;. a, b, ¢ and d correspond to T
=0.59T¢, p = 0.10, M = 0.06Sg at times (in Monte Carlo
units) £ = 30.4, 113.5, 454.5 and 716.2 respectively; t. = 870
in this case. e, f, g and h are for 7'= 0.787, p = 0.50, M
=0.098g at £ = 19.5, 77.1, 143.8 and 213.6 respectively; t;
= 200. The situation is similar in the case of other phase
points, but the linear regression Q€ = 4 + Bk? seems worse
when closer to the coexistence curve, e.g. at p = 0.05, T
=0.597¢ [9].
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Table 1
Values for the parameters 4, B and M obtained by fitting the CHC equation (4) to the data corresponding to the early (¢ < t¢)
evolution of the model system in ref. [3] quenched to different phase points. The resulting fit is shown in fig. 2.

T/T, P So M/S, ASg BS, ke te

0.59 0.05 0.2256 0.06 —0.025 0.2 0.35 5200

0.59 0.075 0.2775 0.06 -0.05 0.2 0.50 1270

0.59 0.10 0.36 0.06 —0.06 0.2 0.55 870

0.59 0.20 0.64 0.08 -0.09 0.2 0.67 280

0.59 0.50 1 0.09 —0.18 0.2 0.95 56

0.78 0.50 1 0.09 -0.10 0.2 0.71 200

0.89 0.50 1 0.09 -0.04 0.2 0.45 1330
can convince oneself from eq. (4) that ¢, = B(1 time and we shall see that it does. The CHC equation
+AS)/MA? is the time at which k() crosses k = k. (4) also implies the existence of a fixed point at k
Thus one has &k, () > k,, for t <t and S(k, £) shows =kp =[(1 —ASy)/BS,] 12>k in the S(k, ) versus k
then a “good”, slow growth. The question is whether curves, a fact which roughly [9] resembles the typical
or not ¢, corresponds to an observable value of the “cross-overs” observed experimentally in the tail of

the structure function [5].
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Fig. 2 (a) The structure function S(k, £) versus k as given by the CHC equation (4) with the parameters in table 1 (solid line) is
compared at different times (¢ = 5.5, 304, 113.5, 556.9, 851.5 and 2351.4 from the top to the bottom and from the right to the
left respectively) with the data from the computer simulations in ref. [3] when T = 0.59T, p = 0.10. In this case f; = 870 so that
the last graph corresponds to a situation at ¢ > t; when the CHC equation does not fit the data any more. (b) Same as (2) when T
=0.787c, p = 0.50 and ¢ = 9.2, 31.2, 94.6, 143.8, 213.6 and 509.9 respectively; ¢ = 200 in this case. Note that the fit of the CHC
equation to the data in this case is even better for ¢ < ¢ than the one reported in ref. [6].
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In order to conclude quantitatively about the
above facts we may define

Q¢ =Sk, D[] — (1/2Mk2)aS(k, 1)/dt] (5)

and check whether or not there is a unique value for
M such that: (i) Q€ is independent of time, and (ii)
QF becomes linear in k2. If both conditions hold
when € is computed from experimental data, it fol-
lows that the CHC equation (4) can describe the given
data using the parameters from the linear regression
Q€ =4 +Bk2.

We have checked this possibility by computing Q¢
from the data obtained in the computer simulations
reported in refs. [3—5] which refer to a model (segre-

gating) binary alloy with nearest-neighbor interactions.

Conditions (i) and (ii) are seen to hold at “early”

times only when M is around 0.15; one can then eval-

uate 4 and B, and the time limit 7 for the validity of
the CHC description. Fig. 1 shows plots of w = Q€S
versus k2 in some typical cases. We find that ¢ = 4
+ Bk2, independent of time, holds when ¢ < t, at any
phase point, although the CHC equation seems a bet-
ter description for points well inside the coexistence
curve (“deep quenches” [3]) than for points close to
it (““shallow quenches‘‘). Table 1 gives our best values
for A, B and M as a function of the temperature of
of quenching T"and p = (1 +77)/2 (the density of A-
atoms in the system).

The time 7, computed from the vatues for 4, B
and M in table 1 is not far from the time 7, evaluated
in ref. [3] for the onset of dynamical scaling in S(k, ¢);
as a consequence, the validity of the CHC equation
should also be observable in real materials. As a matter
of fact, the unit of time in the computer simulations
seems [3,10] to correspond to more than 100 s in the
case of Al-Zn alloys at low temperatures so that 7,
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may correspond to several (or many) hours. Interesting-
ly enough, our values for ¢, seem to correspond to

the same “amount of segregation” in the system [p(t.)
=~ (0.54] measured by the procedure proposed in fig. 4
of ref. [3].

Fig. 2 compares the behavior of the CHC equation
with that of the computer-simulation data for some
representative cases. One can also realize there how
the CHC equation implies a faster growth of S(k, )
when 7 > ¢, than the one in the model, as expected.
We have checked, however, that the data can still be
fitted with eq. (4) using a time-dependent parameter
A after t; the resulting analytic equation contains
explicitly the property of dynamical scaling for S(k,

t); this will be reported elsewhere [9].

We acknowledge discussions with J.M. Sancho.
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