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Abstract- We study the segregation process in quenched binary alloys by analyzing and comparing the time 
evolution of the structure function and of the grain distribution obtained from computer simulations on a 
model system. We tind good agreement between cluster sizes and densities determined directly on the 
computer sample and ones obtained by the Guinier method from the structure function. We then describe a 
graphical method for determining the scaling behaviour of the structure function S(k, t) which gives good 
statistics because the whole curve S(k, t) vs k is used. This yields very good agreement between the scaling 
function (scaled with the Guinier radius) obtained from the computer simulations and from a variety of real 
experiments. This function shows a universal behaviour independent of the alloy composition, the 
temperature and even the substance investigated. Our results are also not consistent with the more recent 
theoretical work (Binder et al., Furukawa et al.) which give alternate derivations and extensions of the Guinier 
formulas. 

RCsum&Nous avons ktudii la dhmposition d’alliages binaires aprb trempe par une analyse cornpark de 
I’tvblution en tcmps de la fonction de structure et de la distribution des grains de pr&pitC, obtenues par 
simulationsurordinateurBl’aided’un mod2led’Ising. II yabon accordentrela tailleet IadensitCdes pr&ipitis 
dCtermin&s d’une part directement sur lhhantillon Ising et d’autre part suivant la mithode de Guinier g 
partir de la fonetiondestructure. Ensuite nous d&zrivons une mCthode graphique permettant de dtterminer la 
loid’Cchellectlafonction deatructure S(k,t)avecunebonne statistiquepuisque toutelacourbe S(k, r) 
vers k est utilia&. La fonction obtenue en rCduisant les ichelles avec le rayon de Guinier, autant pour les 
simulations que pour dif%rents syst&mes rCels, s’av&e universelle indkpendammcnt de la composition de 
l’alliage, de la tcmp&aturc et m&e de la nature de l%chantillon. Nous rCsultats ne sont pas en accord mZme 
avec les travaux th&oriques plus r&cents (Binder et af., Furukawa et aI.) qui redkmontrent et generalisent les 
formules de Guinier. 

Anfamung-Der isotherme Enttnischungproxess in bin&en Legierungen wird mit Computer- 
simulationen an einem Modellsystem untersucht, indem die xeitliche Veriinderung der Strukturfunktion 
sowie die Verteilung der Ausscheidungsteilchen analysiert und verglichen werden. TeilchengrBE-e- und 
An&l, bestimmt einerscits durch dinktes Abziihlen an der Probe und andererseits durch Anwenden der 
Guiniennethode an die Strukturfunktion, stimmen gut &rein. Weiters wird eine graph&he Methode zur 
Bestixmnung des Skalientngsverhaltens beschrieben, die tine grol3e Genauigkeit erlaubt, weil die gesamt 
Kurve S(k, t) gegen kvenvendet wird. Man erreicht dadurch eine sehr gute f%ereinstimmung zwischei allen 
Skalierungsfunktionm [S(k. t) skaliert mit dem Guinierradiusj, die Wr die Computersimulationen sowte eine 
Reihe van-realen Systemen bestimmt wurden. Es wird daherauf eine universeile Funktion geschlossen, die 
unabhiingig ist von dem Mischungsverhiiltnis in der Legierung, der Temperatur und sogar der untersuchten 
Substanz Unsere Ergebnisse sind such mit neueren theoretischen Arbeiten (Binder et al., Furukawa et al.) 
nicht konsistent, die neue Ableitungen und Erweiterungen der Guinier’ schen Formeln angeben. 

1. INTRODUCIION 

Many alloys such as AlZn, which are homogeneous at 
high temperature, segregate when quenched into the 
miscibility gap. That is they form localized regions 
having compositions corresponding to macroscopi- 
tally different phases. Physical properties of the alloy, 
such as hardness and resistivity, arestrongly influenced 
by the character ofthe inhomogeneity, which, in turn, is 
determined by the kinetics of the segregation process. 
For this reason, the formation of structure after 

quenching has been extensively studied in many alloys. 
Quantities of particular interest include the size and 
composition of the grains, i.e. regions rich in one of the 
components precipitating out of the uniform 
background. 

The grains can be observed in some cases directly by 
using electron [l] or field ion microscopy [Z] or by 
indirect methods like resistivity [3], calorimetry [4] 
and EXAFS [S]. There are various limitations and 
drawbacks to the above techniques and a frequently 
used method for studying the time evolution of the 
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structure of quenched alloys is the small angle 
scattering ofX-rays [6,7], light [S] or neutrons [9-l I]. 
This measures directly the structure function S(k, t), the 
Fourier transform of the composition correlation 
function of the ahoy, at any given time t after the 
quench. The function S(k, t) contains much useful 
information about the density of different size grains 
and their spatial distribution at the time t. How to get 
this information deciphered is, however, by no means 
obvious and is the subject of our work, as it has been of 
many earlier studies [12-213. 

It is clear from the beginning that one can define a 
variety of characteristic wave vectors such as k,,(t), 
k,(t), corresponding to the location ofthe maximum of 
S(k, t) or to the value ofits first moment at time t. These 
will, by necessity, be related in some way to 
characteristic lengths of the system at time r, e.g. the 
“radius” of the average grain size, the ~m~sition 
wavelength, etc. [12-21 J. What is not clear however is 
how to go beyond these very qualitative statements. 
Doing this requires some quantitative understanding of 
therelation between theshapeofS(k,t)asafunction ofk 
and the morphology of the system at time t. 

It should be noted however, that, even in principle, 
S(k, t) cannot give full info~ation about the 
geometrical structure of the system ; it simply doesn’t 
contain it. What is being considered here is rather how 
to extract maximum information from S(k, f) about the 
evolution of the segregation process in the system. In 
this connection it is important to realize that 
ex~~mentally S(k, r) is often known only over a limited 
range of k values and sometimes with rather large errors 
due to the high background in scatteringexperimentsat 
very low k. A theoretical understanding of the structure 
function is therefore very important for its optimal 
practical utilization. 

A frequently used method for analyzing experimen- 
tally obtained structure functions is due to Guinier [la. 
A plot is made of In [S(k,t)] vs k* and the “slope” of a 
straight portion of this plot is used to define a mean 
“radiusofgyration”oftheclusters.Themethodis based 
on various assumptions, i.e. independent clusters, small 
k expansion, but is often used outside the domain of 
validity of such approximations; the characteristic 
straight lines appear in such plots even in cases, where 
the basic hypotheses of the model are not satisfied. It 
therefore seems of interest to clarify the meaning of the 
“radius” obtained by this method, regardless of the 
validity ofthe Guinier model, by comparing it to cluster 
sizes used in statistical theories. This comparison may 
be carried out using computer simulations, where both 
structure function and cluster distribution are known. 
These kind of simulations have been shown to give 
results similar to those of real experiments [lSJ. It was 
in fact these computer simulations which first showed 
clearly the scaling ofS(k, r) during the later stages of the 
decomposition, i.e. for late times S(k, t) depends to a 
good approximation only on one variable k/kl(t), SO it 
defines only one independent length scale. This was 
subsequently found to hold also in many experimental 

situations [7-9,151. This behaviouris also predicted or 
incorporated in different theoretical models [18-213 of 
the time evolution following quenching. 

In this note the simulations of Ref. [ 153 plus some 
new ones in order to compare directly the structure 
function and the cluster analysis data are reanalysed. 
We find that there is a good agreement between the 
Guinier radius RG and themean cluster sizedetermined 
directly. R. is identified as a good scaling length of the 
system and therefore RG has some physical meaning 
even in cases where the Guinier hypotheses are not 
satisfied. We also describe a direct method for deciding 
if experimental or computer data show a scaling 
behaviour and how to determine the scaling function 
FG graphically. FG is defined via the relation 

S(k, 4 = Jo(r) l FoP l W)l (1.1) 

where R&r) and f&f are the sealing lengths (of the k 
and the Saxes) determined by the Guinier method. By 
doing this we found in our simulation data as well as in 
recent experimental results on real systems, that for 
largex,Fe(x)(x = k* Re)isindependentol’temperature 
?: density p, and even the substance investigated. In fact 
F@(x) may be written in ali cases as 

where Q) and Y are universal functions. Cp may be 
interpreted as describing the intensity diffracted by a 
single cluster and Y is a “cluster interference function” 
which differs from 1 only at small values of k, 6 is a time 
independent constant which character&s the point in 
the phase diagram where the experiment is performed 
It would certainly be interesting to test this 
“universality” in more experimental eases. It would also 
be very useful to find simple theoretical expressions for 
@andI. 

Note here that the work of Binder et al. [18], 
Furukawa [ 19 J, Rikvold and Gunton [20] and Ohta et 
al. [Zl] provides a more general framework for 
discussing the scaling of the structure function and ipso 
facto the scaling length R which enters there, than does 
the original work of Guinier [f6]. We have couched 
most of our discussion in the language of Guinier. 
Because (a) it is the seminal work on the subject and in 
fact leads to essentially the same final formulae as do the 
more recent works, compare for example equations (59) 
and(66)in[16]withequations(l)and(2)in[2O]and(b) 
it provides a simple picture of the~~ation process and 
gives concrete prescriptions for finding R&t) which are 
universally used by metallurgists. Even when the 
Guinier picture is not literally applicable it provides 
useful qualitative insights into a very complex process. 
Our analysis here is intended to extend the Guinier 
picture without losing its simplicity. This will hopefully 
provide the metalIurgist with practically useful 
methods for analyzing experiments. It also provides 
new quantitative data on which future more complete 
theories, which combine the Guinier picture with the 
more general scaling analyses, can be based. 
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2 MODELS AND APPROXIMATIONS 

2.1. Simulations 

The model system is described in detail elsewhere 
[IS]. It is a simple cubic lattice with N = L? (L = 30 or 
50 in the present simulations) lattice sites each occupied 
by either an A or B atom. We use periodic boundary 
conditions. The number of A-atoms is given by pN, p 
beingtheirdensity.Startingwitharandomdistribution 
of the A and B atoms on the lattice (corresponding to 
equilibrium at very high temperatures), the system is 
quenched into the miscibility gap at a given 
temperature. The evolution of the system is governed 
by Kawasaki dynamics [22] with nearest neighbor 
exchanges. The exchange probability of neighboring A 
and B atoms is given by 

P = exp (-/3 * AU) * [l +exp (-B * Au)]-’ (2.1) 

where J = l/k,T (k, is the Boltzmann constant) and 
AU is the change in the energy 

U= -JCq(ri).q(r,);J>O 
"It 

(2.2) 

due to the exchange. The sum in (2.2) is over nearest 
neighbor pairs ; q(ri) is l( - 1) if there is an A(B) atom at 
site r,. Each nearest neighbor pair is chosen at a rate a/3 
and an exchange is accepted with probability P-a -’ 

is then the average time between two attempts to change 
the occupation of a given lattice site and we take it 
as our time unit. The miscibility gap for this model 
is represented in Fig. 1: the critical temperature is 
T, = 4 J/O.88686 k,, [23]. The points where simulations 
were performed are indicated in Fig. 1 and described in 
Table 1. 

2.2. Cluster analysis 

Clusters are defined in the computer simulations as 

0 0.5 

Density (p) 

Fig. 1. Phase diagram of the binary Ising model. The crosses 
indicate points where computer experiments have been 
performed. Points A, B and C are on the coexistence line; 
points 9 and 10 are inside the miscibility gap but appeared to 
be metastable states ; at points l-8 the decomposition process 
has been observed. A more precise description of these points 

is given in Table 1. 

groups of A-atoms connected by nearest neighbor 
bonds. A cluster containing j A-atoms is called a 
j-cluster. We call the number of j-clusters in the 
sample n(J, so that 

c j * n(j) = pN. 
j 

This definition is useful only for p 5 0.2 when the 
clusters of A-atoms may be identified with the grains of 
the minority phase. The development of large clusters 
following quenching then corresponds to coarsening of 
the alloy. For p > 0.20 the system soon develops 
clusters of infinite size, even on the coexistence line [ 151. 
It was found in the computer simulations at low 

Table 1. LIescription of all points in the Mng model phase diagram (Fig. 1) where computer experiments were performed 

No. of 
averaged 

Point in Temperature Density independent Lattice size Max. duration Min. time 
Fig. 1 (TIT,) (PI runs (U of run of scaling 

I 

2 
3 
4 
5 
6 

;I 
9 

10 
A 

0.591 0.050 
0.591 0.075 
0.591 0.100 
0.591 0.200 
0.591 0.500 
0.180 0.500 
0.887 0.500 
0.887 0.200 
0.591 0.035 
0.780 0.075 
0.59 I 0.01456 

I 
1 

ti 
8 
8 
8 
8 
1 
1 
1 

a 0.780 0.06 I 30 1 

C 0.887 0. I2463 1 

50 

zi 
30 
30 

:8 
30 
Xl 
SO 
50 

50 

50 

14,OQO 
10,200 

7300 

:z 
1700 
6600 
1700 

16.000 
800 

Equilibrium at 
coexistence line 
Equilibrium at 
coexistence line 
Equilibrium at 
coexistence line 

8000 

z 
900 
300 
700 
500 
400 

Metastable state 
Metastable state 

Points A, B and C are equilibrium states at the coexistence line and the equilibrium structure functions were used for 
background determination (see Section 2.3). Points 9 and 10 were metastable stB(es inside the miscibility gap, whereas at 
Points 1-8decompositionoccurred.Themaximumdurationofcach runand thetimenecded toreachscalingbehaviourare 
indicated in units of a-l (see Section 2.1). The size ofthe lattice was SO x 50 x SO or 30 x 30 x K). In the latter case 8 
independent runs have been averaged lo gel better statistics. 
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densities [I SJ that, after some initial time, n(j) varies 
slowly with time for j s: 10. For comparison with 
experimental data we defme an average cluster size by 

j, = jse j f ~~~~/j~~c dl) (2.4) 

where j, is an arbitrary cutoff. For the present analysis 
we have taken cutoffs of IO, 20 and 50. We also define 

n1 = j;j n(j) (2.5) 

the number of clusters greatir than j,. Thus 

N1 = j, * n, (2.6) 

is the number of A-atoms in clusters bigger than j,. 

2.3, Structurefunction 

The intensity scattered in a neutron or X-ray small- 
angle scattering experiment I(k, t) may be related to the 
model structure function J(k, t) calculated in the 
computer simulation on a lattice of size N = C by 

m, $1 -=J(k,t)=N-’ Cexp(ik*r,)+a(rj,r) 
I0.N (I / 

(2.7) 

where o indicates the site occupation [24], it is 1 if there 
is an A-atom at the lattice site ri and 0 otherwise, I, is a 
constant (for X-rays lo is slightly k-dependent [163) 
depending essentially on the scattering lengths of the A 
and B atoms. 

We define the function 

S(k, r1 = J(k, t)-J,,(k) (2.8) 

where J,, is the equilibrium intensity (computed like .J) 
at the coexistence line at the same temperature as J. 
This background subtraction has been discussed in 
detail in Ref. [15’J. In most experiments on real systems 
this background is not available and therefore a 
constant background (Laue level) or no background at 
all is subtracted. In the simulations too, after some 
initial time, and at temperatures not too close to T, (so 
that the fluctuations and therefore J,, are small ) J,, is 
small compared to J(k, 1) and may be neglected. At the 
very early times of the decomposition however J and 
J,, may be of the same size and one has to be very 
careful in the interpretation of the structure function. 

To simulate an experiment on a polycrystal we have 
performed a spherical average of S(k, t) and the 
structure function so obtained is finally written S(k, t). 
The present definition is slightly different from that in 
Ref. [IS] but is more consistent with the notations used 
in classical small-angle scattering theories [163. It is 
related to the function S, defined in Ref. (151 by a 
simple fOr!llulil 

.s(k, I) = ; r&--q’, S,(k. I) (2.9) 

where ?j = 1 - 2~ and m. is the value of fl at the 
co-existence density. For details see Ref. [IS]. 

3. GUINIER ANALYSIS OF THE STRUCTURE 
FUNCflON 

At low densities of A-atoms the A-rich and A-poor 
regions are expected to be separated by sharp 
interfaces. When one assumes widely separated 
identical clusters (so that there is no interference 
between them) the Guinier approximations should be 
valid and the scattered intensity will take a Gaussian 
shape for small values of k, i.e. 

S(k,t)aJdr)-exp(-ok’) (3.1) 

R& is then identified as ,/@ times the radius of 
gyration ofthe cluster, (for a spherical cluster RG would 
be its radius) while J~(t)/R~~t) should be proportional 
to the number ofclusters in thesample. Comparing this 
with the definitions (2.4-2.6) one would expect, when 
(3.1) is valid, that 

N1 a JO/VW (3.3) 

Generally R. and JG in (3.1) are determined by fitting a 
straight line to the curve In [S(k, r)] against kz. It is 
found however that for very low k (which corresponds 
to long distance correlations) there is a deviation from 
the Gaussian shape. This is taken into account Cl63 by 
writing 

S(k,t)= J&)*exp(-yk’)*H(k,r) (3.4) 

where H(k, t) is equal to 1 for large k. The straight line 
used for finding R, and JG thus appears only in a 
portion of the curveS(k, t) against k2 : a portion which is 
often outside the domain of validity of the hypotheses 
which Gtinier made to derive his model. This is the 
case, in fact, for our computer simulations, Such a plot 
with its straight portion may be seen in Fig. 7 (although 
the scales are reduced there, as explained iater on in the 
paper). Since the Guinier method is nevertheless used 
quite successfully in practice it is particularly 
interesting. It should also be mentioned here that the 
Gaussian shape is not expected to hold for very large k. 
An estimation first carried out by Pored [16-J predicts 
an asymptotic behaviour like k-• of the structure 
function. 

3.1. Test of the Guinier method for low densities 

In thecaseoflowdensitiesp,clustersizesobtained by 
the Guinier method from the structure function can be 
compared to those obtained by direct observation of 
thesample.Theinformation oneexpects toget from the 
Guinier plot is the mean volume of the clusters V, 
= 4/3nRi (3.2), and the total number of A-atoms in 
large clusters, which is proportional to JG/V, (3.3). 



I 1 I 

0 c 100 200 300 400 

j, (cut off .& = 20) 

Fig 2 The volume of the mean cluster determined by the 
Guinier method V, is plotted vs the mean cluster size 1, 
determined directly with 1, = 20 (see Section 2.2) for three 
different densities at T = 0.591 T,. I, is growing with time, so 
that the minimum size l,, corresponding to the minimum time 
where the structure function scales, may be determined. The 

values of 1, are indicated in the figure. 

In Figs 2 and 3, V, and JG/VG obtained from fits of In S 
vs kZ have been plotted against ji and N,, which were 
computed with various cutoffs j, (see Section 2.2). for 
the densities 5,7.5 and 10%. 

There is a good linear relation between V, and ji for 
j, = 20 (Fig 2). ji computed for j, = 10 or 50 gave a 
similar behaviour but more scattering of the data 
points. The relation 

holds for times much earlier than the beginning of the 
scaling regime. jt is growing with time and one may 
determine its value at the time when the structure 
function begins to scale. This value is denoted by j, and 
is indicated in Fig 2 where one may see that relation 
(3.5) holds for jr much smaller than j, Only at very 
early times is there a small deviation from this relation, 
because ji is sensitive to the cutoff (jr is always larger 
than j,). 

&““’ off for Nf 

IO so P 

0.05 - 0 . 5% 

A . 7.3 x 

0 l 

I* 
\ 
J) 

Y 

0 0.05 

N, /N 

Fig 3. The total volume of A-atoms in the large clusters 
determined by the Guinier method J&c is plotted against the 
number N, of A-atoms in clusters greater than IO (open 
symbols) and clusters greater than SO (solid symbols) 
determined directly (see Section 2.2). Three ditferent densities 
at T = 0.591 T, are included and there is a fairly good linear . . -. .~ 

In Fig. 3 it can be seen that, when a cutoff of 50 is used 
for N,, the relation 

holds for all three densities ($7.5 and IO”/,) and all times 
except for very late times of the run at p = 107;. 
Nevertheless this direct proportionality between N, 
and JG/VG is very sensitive to the choice of the cutoff 
used for the computation of N r. For j, = IO and 20 the 
dependence (3.6) does not hold any more (see Fig. 3 for 
thecase j, = 10). The fact that JG/VC is more consistent 
with N, computed with a cutoff at 50 than at 10, seems 
reasonable because the Guinier approximation which 
uses a radius of gyration, gives more weight to the 
bigger clusters. It appears therefore from Figs 2 and 3 
that if the right cutoff for j, and N, is chosen, a good 
agreement between VG and j, on one hand and JG/VG 
and N, on theother maybeobtained.Theagreement in 
both cases then holds for times much earlier than the 
beginning of the scaling regime. Hence one can expect 
good results from the Guinier method even before the 
scaling regime. 

The cluster sizes and densities so obtained seem to be 
more satisfactory representations of the complicated 
microscopic structure of the involving system than the 
ones obtained with k, in Ref. [15]. The slope of k, vs jl 
depends on the density whereas the slope of VG vs j, is 
the same for p = 5,7.5 and 10%. 

Another classical method to evaluate N,, the total 
number of atoms in large clusters is via the so called 
“integrated intensity” S(t), the integral of S(k, t), where 
lkl varies between 0 and a given cutoff Z defined in 
practice by the experimental conditions 

3.2. Integrated intensity 

s(t) = N-’ 1 S(k, t) 

P 
0.05 

t 

cut off Ifor N,l 

.5x Jc= IO 

A 7.3% Ii920 
r=0.591 G 

r-X 

‘* 

(for the simulations we took ;Y = 0.5571. At low 
densities a linear dependence between sand N, may be 
expected 116). In Fig. 4, s has been plotted vs N I for p 

(3.7) 

0 0.05 

N, IN 

Fig. 4. The integrated intensity s is plotted against the total 
number N, of A-atoms in clusters greater than I,. Three 
densities at T = 0.591 T, are included and different cutoffs /, 
had to be taken for each density to get a good linear . . aepenaence. 

FRATZL et al.: STRUCTURE FUNCTIONS IN QUENCHED BINARY ALLOYS 1853 

dependence for 1, = 50. 
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= 5.7.5 and 10%. One fmds a good linear dependence if 
onetakesadifferentcutoffj,ofN, foreachdensityp(see 
Fig. 4). 

The relation between N, and s (Fig. 4) 

N,IN % ; S(t) (3.8) 

5(b) against t - *j3, where I is time in units of a-‘. 
Straight lines have been fitted to the curves, but the 
values for E extrapolated at infinite time do not 
correspond to the equilibrium value E,, as one would 

expect. 

4. SCALING BEHAWOUR 

is very close to the one between N, and Jc/VG (3.6). 
However, as already mentioned, to get the linear 
dependence (3.8) N, had to be computed with a cutotT 
dependent on the mean density p throughout the 
crystal, whereas (3.6) was obtained with the same cutoff 
j, = 50 for each p. This may he due to the fact that the 
integrated intensity is strongly influenced by the atoms 
in small clusters, whereas in the Guinier method the 
bigger clusters predominate. (We have however, no 
convincing evidence for this.) 

It was shown in Ref. [I 53 that the structure function 
scales dynamically for late times. In the scaling regime 

5 

d” 

3.3. Higher densities 

An essential bpothesis for the exponential 
approximation ofGuinier is that the clusters are widely 
separated. This may be true in the case of low densities 
but it is certainly not so at p = 50% where only one 
cluster contains most of the A-particles. Even in this 
case, however, a “Guinier radius” may be determined 
by the usual method. Since jI is now approximately 
equal to N,,it is no longer proportional to V,. One must 
therefore find some other way to relate RG to a 
characteristic length of the system. One such way is to 
use the energy per lattice site defined as, see equation 

(2.2) 

0 

(E-K, I-’ in units of E;’ 

(a) 

U/N-3=E=E,N-‘v,, (3.9) 

where v,, is the total number of nearest neighbor A-B 
bonds in the system and E, 5: 2J. Letting 

E, = 6E, * ~(1 -A) (3.10) 

be the energy corresponding to either of two uniform 
phases p. = p at the: coexistence line (p, = 1.5% at 
T = 0.59 T,), E-E, may be interpreted as a measure of 
the total surface of the interface boundaries. In the 
case of low densities, ifone assumes spherical clusters of 
radius r and a cluster density n, then E-E, is pro- 
portional nr’. If the total volume of the clusters 
remain nearly constant, nr3 = const. - p--pm then 
one may expect (E-E,)- 1 to be proportional to r. In 
Fig. 5(a) the Guinier radius R, has been plotted vs 
(E-E,)- 1 for T = 0.591 T, and the densities 5,7.5, 10 
and 50%. For each density the product V = R,(E - E,) 
is in fact nearly constant. The ratio V/@-p=) is not 
exactly constant and gives some indication of the 

shape of the interfacial region, greatly decreasing for 

50% when there are no isolated large clusters (see 
Table 2). The interpretation of the Guinier radius in 
terms of the total surface of the interface boundaries 

provides a certain physical significance for Ro at 
higher densities which might be possible to check in 
real systems. 

0 0.05 0.10 0.15 

1 timd” 

W 

Fig. 5.(a)TheGuinierradiusR,isplottedagainst theinverseof 
thetotalenergy(E-E,)-’ forseveraldensitiesat T =0.591 T,. 
There seems to be a linear dependence in each case and the 
slope Y = R&-E,) in indicated. (b) The total energy has 
been plotted against t - ‘13, where I is time in units of a- ‘, for 
several densities at T = 0.591 T, Straight lines could be. fitted 
to the curves, which might be related with a 1’1’ behaviour of 
RG. Nevertheless the energy extrapolated at infinite lime is 
different from E,. It has been tried to use this extrapolated 
value instead of E, as the bulk energy, but then the plot 
analogous to Fig. 5(a) did not show anymore a good linear 

In addition the total energy E has been plotted in Fig. dependence between R; ’ and the energy. 
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Table 2. Several CO~SIQ~IS of the scaling regime 

TCltlpeKiltln: k,-k, t. = I;, 

Sample Densily (TIT,) 6 a” /I, 1. I). V/(1, _I’,) 
~_________ -_- 

0.05 0.591 0.78 I .94 1.30 12.4 
0.075 0.591 0.66 2.0’ 1.50 9.6 
0.10 0.591 0.40 2.35 3.00 2.30 2.Y3 9.4 
0.20 0.591 0.37 2.6 I 4.x0 2.42 5.33 

(sing model 0.50 0.59 I 0.34 2.72 6.36 2.57 7.80 4.4 
0.50 0.780 0.37 2.66 5.00 1.42 5.x5 
0.50 0.887 0.43 2.32 2.64 I .99 2.36 
0.20 0.887 0.54 I.85 2.08 I .6X 2.22 

Au-60 al.%Pt 0.40 0.6 0.37 
SOB,O,-ISPbO-5AI,O, (WC%) 0.77 0.38 
64B20,-2.7PbO-9A110J (WI%) 0.80 0.34 

.z. = R,(r) * k#)andjf” = J&)/J,(~)areconstant when thestructurefunctionisscaling(s~Seclion4.I)andareindicatbd here 
in the case k, = k, (first moment) and k, = k. (position of the maximum). V = (E-E,) * R, defines the relation between 
Guinier radius and total energy of the system (see Section 3.3). 6 is the constant introduced in Section 5.3. Notice that d is 
smaller as the cxoerimenl is oerformed deeoer inside the miscibility gap. The data concerning the real systems (see Figs 9 
and IO) are take; from Refs: [7] and [IO].’ 

S(k, t) is described by only one characteristic length and 
therefore k; I, k; ‘, R, are proportional and any of 
them may be used as thescaling lengths. In Ref. [15] the 
length used was k; ’ defined as 

k,(t) = C kS(k, r) 
I 

c S(k, r) (4.1) 
kiX ksl 

4.1. Scaling&function 

In order to demonstrate scaling and obtain the 
scaling function we proceeded as follows in Ref. [ 151: 
we set x = k/k,(r) and defined 

F,(x, r) = SCxk,(r), W&) 

Jl(t) = $ kF3 (t) c k’S(k, t). 
ksl 

(4.2) 

(4.3) 

It was then observed that for each point in the 
miscibility gap there was some initial time period, given 
inTable 1,after whichF,(x, t) x F,(x)independent oft. 
The function F,(x) depended on the region in the 
miscibility gap to which the quench was made, without 
any appearent relation between the different scaling 
functions. 

To clarify this point we shall here choose the Guinier 
radius as the basic scaling length and define F, so that 

Cx = k&WI 

FG(x, t) = WI&(~). ~/JO(~) (4.4) 

where J,(t) is defined by relation (3.1) in the k-region 
where the Guinier method may be applied (see Section 
3). As can be seen from (3.1) the function FG reduces in a 
suitable interval of x simply to exp ( -x2/5). The scaling 
regime is defined by F&x, t) x FG(x) independent of 
time. 

To clarify the relation between F, and FG we note 
that if k;‘(t) is any scaling length and FAX) the 
corresponding scaling function so that [x = k/k,(t)] 

f-(:,(x ) = S b * k& )v t J/J& 1 (4.5) 

then k; ’ and J&)are proportional respectively to RG(t) 

and J&t), and the scaling function FXx) is related simply 
to Fe(x) by 

F,(x) = D, * F&s - 4 

k; l(r) = &W/e, 

J,(r) = JGWBI 

(4.6) 

(4.7) 

(4.8) 

i.e. the scaling function F, is determined uniquely by the 
constants a, = R,(r) - kJt) and /?, = J&)/J,(t). These 
have been computed for the case k, = k,, J, = J, given 
in (4.2) (4.3) and for the position and height of the 
maximum of S(k, I), that is k&) = km,,(t) ; Js(t) = .J,,&) 
= S[k,.(t), t]. k, and /I, appear indeed to be 
independent of time in the scaling regime and their 
values are listed in Table 2. 

4.2. A natural scaling length 

The scaling lengths introduced until now (k; ‘, k; I, 
RG) are computed from the structure function without 
using all the information contained in it. Thus k; ’ uses 
integrals of S, k, ’ the maximum position and RG the fit 
ofS to a gaussian in a given k-interval. A natural way of 
deciding whether there is scaling and determining 
immediately a scaling length using the full function 
S(k, t) is provided by the following method: 

(i) In S(k, t) is plotted vs In k for various values of 
t(t,, i = 1, m), 

(ii) the curves for two different times t, and t, may be 
shifted with respect toeach otherso that thexandyaxis 
of both plots remain parallel, 

(iii) if the curves can be superposed so that they 
overlap exactly, the structure function scales. If not, 
threre is no scaling behaviour, 

(i) if the structure function scales after some time t,, 
one has to choose one of the curves as reference. One 
might use thecurve S(k, t,) at the last time investigated. 
Then all curves for t, I ti I t,should be superposed on 
the curve at t, so that they overlap. The difference 
between the k-axis at time ti and t, is then exactly In 
[JXtJ] and the distance between the In S-axes is In 
Ck; ‘(tJ1. 
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I r=o.591 r, p =?.5 x 

. Time 

Fig. 6. The “natural scaling” method is illustrated in the case of 
P2 (T = 0.591 T, and p = 7.5%). First the structure functions 
S(k, r) are plotted as In S vs In k. Then the curves at the time t, 
= 9948 (triangles) and I, = 5034 (circles) are superposed by 
shiftingtheaxesso that theyremainpara11el.Ifthecurveatt,is 
taken as reference we have in this case In [k;‘(tJJ and In 
[J; ‘(t,)] negative and given respectively by the differences of 
the two y-axes and the two x-axes. One may see also that at 
time 872 (crosses) the structure function does not yet scale. 

This is illustrated by Fig. 6 where some points 
corresponding to the simulation at point P2 (see Table 

1) are plotted according to this method. k; ‘(t)and Js(t) 

are then called the natural scaling lengths. It is 
important to notice that no normalization of the 

scattered intensity or of the wave vector is necessary. 
Since differences in logarithmic scales are taken, all the 
multiplicative constants specific for each experiment 
drop out. Thus the wavelength of the incident beam, the 
lattice spacing of the sample, the detector efficiencies, 
the sample volume, or the diffusion lengths ofthe atoms 
in the sample have no effect on the analysis. The scaling 
functions, F,, obtained by this method dilTer only when 
different times t, are chosen for the reference scale. To 
get a final normalization of F,, a Guinier plot of Fs may 
be performed(see Fig. 7 for the case of P2). Ifin a certain 
x-range immediately after the maximum of Fs(x) a 
straight line appears in the plot In F,(x) vs x2, the slope 
of the curve may be interpreted as -z(:/S and the 
intercept as In &. Therefore the Guinier radius will be 
R,(t) = a,kk; ‘(1) and Jc(t) = /&J,(f) and the normalized 
scaling function FG may be written as given by relation 

(4.6) FG(x) = P.; ‘F,(zl~,). 

5. GENERAL EXPRESSION FOR THE SCALING 
FUNCTION F, 

5.1. Computer simulatio~rs 

The scaling function F, has been determined for all 
pointsin thephasediagramindicatedinTable l.ln Fig. 
8 all these functions are plotted on a log-log scale. It 
appears that for large values of .x all data points fall on 
the same smooth curve. represented by a thick line in 
Fig. 8. Hence for large values of x, the scaling function 
F, is independent of the density p and the temperature 
7: This is not surprising in the x-region where the 

Guinier approximation. F&Y) = exp ( - s2/S), is valid, 

-t 

0 
a2 ‘O 

Fig. 7. Guinier plot of the scaling function F‘determined using 
any scaling length k;’ (see Section 4). In the case of P2 (T 
= 0.59 1 T, and p = 7.5%). - ai/5 is the slope of In F, VI x2 and 
In j?, the intercept of the straight line. The normalised scaling 

function FG is then given by F&x) = /I; ’ * F&/a,). 

but it is even true for much larger x. This corresponds to 
the idea explained in Section 3, that for large k the 
scattered intensity S(k, t) is determined by the “single 
cluster function”. We define this “single cluster 
function” CD(x) as being equal to exp ( -x*/5) for small x 
(thin line in Fig. 8) and to F&x) for large x (thick line in 

0 

-I 

-2 

gj -5 

: 

-4 

-5 

-6 

. 7.5 0.591 1 
, 

Y 10.0 0.591 I 
I 

. 20.0 0.591 

. 50.0 0.59I 

+ 50.0 0.780 

0 50.0 0.887 \ 

v 20.0 0.887 

0 I 2 

Ln III 

Fig. R. Plot of In [F&v)] against In x for the points 1-8 in the 
lsing model phase diagram (see Table 1). The thick line 
symbolises a high density of data points due to the 
superposition of all the curves. The thin line (fuB at one end, 
broken at the other) corresponds lo the Guinier approxim- 
ation F&K) = exp (-x2/S). The “single cluster function” Cp is 
then defined as the thick full line extrapolated by the thin full 

line. 
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AI-2.4Zn-yHq f-O.?CUl 
y=1.3.3.0 at.Y.1 25-c fill 

0 f 

Ln ill 

Fig. 9. Plot of In [FAX)] against in x for several real systems. 
Broken line is the function 4, as taken from Fig. 8 (computer 
simulations), full line are data from Ref. [ 11) and the other 

symbols are data from Refs [A and [lo]. 

Fig. 8). Therefore using equations (3.4) and (4.4) we 
write 

F&x) = cp(x) l HWW, Ci. V.1) 

It follows that H[x/&&), t] = H,(x) is independent 
of time and equal to 1 for large x [i.e. when CD(x) 
= F&)], H, is density and temperature dependent, 
whereas Qyx) is a universal function independent of p 
and T (see Fig. 8), at least for these computer 
simulations. 

5.2. Real systems 

(a) Au-60 at.% Pt : ~om~sition in this sytem at T 
= 55O’C (T/T, = 0.6f has been studied by neutron 
scattering [lo]. The scaling function of Ref. flS] has 
been normalized to give FG as indicated in Section 4.2. 
and is shown in Fig. 9. 

(b) B,Os-PbO-AI,OJ glass: recently the scaling 
hypothesis has been tested in this sytem using k, as 
scaling length [7]. Scaling behaviour was confirmed 
but discrepancies for some of the curves were observed. 
Nevertheless these discrepancies are probably due, as 
pointed out by the authors, to the intrinsic inaccuracy 
in determining the position k, of the intensity maxima. 
Figure 9 shows that the curves fit together perfectly 
when the”naturals~ling~meth~d~~~~inS~tion 
4.2 is used. 

(c) Al-Zn-Mg-(Cu): neutron scattering data for 
these ternary (quaternary) alloys were reanalyzed and 
Fig. 9 shows that the structure functions scale very well 

Cl 13. 

For a11 these systems the normalised scaling 
functions .Fo were plotted on a log-log scale in Fig. 9, 

together with the”singlecluster function”@taken from 
the computer simulations (Fig. 8). It appears that the 
experimental data agree perfectly with each other for 

large values of x. Therefore the true scaling function 

F&) is, for large s, independent of density, tem- 

perature and even the substance investigated, which 
can be binary, ternary of even amorphous. This seems 
to conform the existence of a universaf function @(fxf 
(the single cluster function), describing the structure 
function at large values of k. 

There is a small discrepancy between the computer 
data and real systems at very large x (Fig. 9). If we take 
as thecorrectshapefor4 theonedetermined by the real 
experiments, thus 4(x) * 7/s4 for large X. This Y4 
dependence is known as Porod law [ 16). 

The existence of the universal function (b enables US 

todefinebothforrealandforcomputerexperimentsthe 
function 

H,(x) = F~~X)/~~) (5.2) 

which should describe the effect of cluster interference. 
Here we can find an analogy to the language of 
molecular liquids, where the so called liquid structure 
factor uk) is obtained by dividing the total scattered 
intensity by the intensity scattered by a single molecule 
[25].SinceF, is thescaled totalintensity, weconsider 4 
the scaled intensity of a single cluster, then H, is 
analogous to L(k). In molecular liquids L(k), small near 
k = 0, rises to a maximum at k, and then has damped 
oscillations of period +., k, [25]. In the case of solid 
solutions, which we are treating here, H,(x) also first 
grows with x but then quickly reaches the constant 
value 1. 

H1 has been plotted on a log-log scale in Fig. 10, 
including both real and computer experiments. By 
shifting thesedataalong thex-axis byacertainamount, 
In (6) (a function of the substance, its composition, and 
the anneating tem~rature) a fairly good su~rposition 
of the data may be obtained for ranges of. This suggests 
that one writes 

H,(x) = IL@). (5.3) 

ThevaIuesof6 used toget thesuperpositionare~istedin 
Table 2. It appears that 6 is smailer for ex~r~ents 
deep inside the miscibility gap. However the idea that S 
is related to some mean distance between clusters was 
not confirmed accurately in the computer simulation : 
the expected proportionality d I_ p-lj3 was not 
confirmed. 

For the samples where 6 c 0.38 the “cluster 
interference function” J/ may be represented fairiy well 

by $l(x) = x3 for x c 1; and 1(, = 1 otherwise. When 
6 > 0.38 a better approximation is I&X) = x2 for x < 1; 
and I/@) = 1 otherwise (see Fig. 10). This difference in $ 
between ‘deep”and ‘*shallow’“quenches is not very well 
understood. Perhaps there is some relationship with 
theoidspinodal dichotomy between the nucleation and 
growth regions inside the miscibility gap [12-141. 
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Fig. 10. The scaling functions F. of Figs 8 and 9 have been divided by the “single cluster function”@(x) and put 
together in this log-log plot. The thick line, as in Fig. 8, is a superposition ofmaay data points. The thin lines 
(with slopes 2 or 3) seem to fit the data for a given experiment (the symbols used are defined in Figs 8 and 9). 
Thereofre by shifting the data along the x-axis a superposition resulting in the function $ drawn in the inset 

seems possible. 

Nevertheless one should be careful interpreting the 
structure function for very small k in the case of 
computer experiments. There the smallest possible 
value of k is 2n/L and finite size effects are expected in 
this k-region. For instance, a single very long run at 
T = 0.59T, and p = 50% was undertaken, and after a 
very long time the maximum of the structure function 
could no longer shift to smaller k because of finite size 
effects distorting the scaling function. For the earlier 
times however there was no indication that size effects 
were important at these relativeIy shorter times. 

Using the universal function C$ and $, the final 
expression for the scaling function F,(x) is then given by 
(1 .l). The corresponding form for the scattered intensity 
is 

This empirical relation recalls the expressions for the 
scattered intensity in the classical two phase models 
[16,23] even if the “single cluster function” r$ and the 
“cluster interference function” $ are now somewhat 
diKerent. 

6. DISCUSSION 

Structure functions of quenched binary alloys 
obtained from computer simulations performed at 
different quenching points in the coexistence regions 
were analysed to see how one may best get reliable data 
on the cluster size and density from the structure 
function. In all cases the first moment k,, the position of 
the maximum k,,, and the Guinier radius RG were 
determined and, where it was possible(no percolation), 

cluster sizes and densities were also determined 
directly. During the scaling regime of the structure 
function, Ro, k;’ and k2 are all proportional and 
consistent with the cluster sizes determined directly. 
Furthermore the Guinier radius gives a good 
description of the clusters even before the scaling 
regime and even in cases where the approximations in 
the G&tier model are not valid. 

At early times however the agreement is very 
sensitive to the cutoffs chosen to compute the mean 
cluster size and density (Section 2.2) and also the 
background subtracted from the structure function 
(Section 2.3). Furthermore at all times, even during the 
scaling regime Ro, k; l and k& are known only with 
low accuracy because they do not’ use all the 
information contained in S(k, t). In order to get the best 
possible statistics, a graphical method, using the whole 
curve S(k, t) vs k was developed for determining the 
scaled structure function. This should help in 
determining cluster sizes and numbers from S(k, t). 

When the so obtained scaling function is normalized 
to Fe, the structure function scaled with the Guinier 
radius RG, it appears that the structure function for the 
computer simulations as well as for some real systems 
may be written as 

S(k, t) = J&t) * +Ck * RG(OI 

* $Ck - R,(t) - &P, N. (5.4) 

In analogy to classical two phase models Cl63 and 
molecular liquids [25] 9 is called the “cluster 
interference function” and 4 the “single cluster 
function”. S seems to depend on how deep inside the 
miscibility gap the experiment is performed. At low 
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Fig. 11. Thesinglecluster function @(x) has been represented in 
alog-log plot. Full lineisdue toexperimentaldata(Fig.9)and 
dots indicate a small deviation of the computer data from real 
systems at high values ofx. A universal scaling function for the 
motion of random interfaces f(z) proposed recently by Ohta et 
al. [21] has been normalized to Guinier behaviour at small k 
by qx) = &x*,/@)/fiO) and 6, is drawn with broken line. 
Besides the Guinier behaviour at small x, @ and cb have a x4 

Y decay at high x (Porod law [ 161). The value of 1 for @ and is 
however somewhat different. 

values of k,$ describes the cluster interference, but 
at higher k,JI’= 1 and S(k, t) is determined uniquely 
by the Guinier radius &-(I) and the corresponding 
parameter Jdr). The universal function (x) is inde- 
pendent of density, temperature, and even of the 
substance investigated. 

Recently Ohta et al. [21] have computed a universal 
scaling function for the motion of random interfaces. 
This function has like C#J a Gaussian shape at small x and 
an xb4 behaviour at large x. To compare the function 
proposed by Ohta et al. [21] to d(x) we have 
normalized the function @from Ref. [26] so that it-has 
the Guinier behaviour at small k. That is we define 4(x) 

1(x m)(O). This function C&X) has been plotted in 
Gg. 11 (broken line) together with b(x) determined by 
experiments on real systems (full line) and computer 
experiments (dots). There is a very good agreement in 
the region of Guinier behaviour (x < 10) but in the 
region of the 1/x4 decay (Porod law [ 161) the function 
proposed by Ohta et al. provides values which are 
somewhat too high. 

From this analysis it may be concluded that, during 
the scaling regime, the structure function follows, in the 
case of computer experiments as well as some real 
systems, a universal behaviour. Besides some effects at 
very small k (cluster interference) S(k, t) is mainly 
determined by V&) = 4/3 II R& the mean cluster 
volume, and byJ,(r)/V”(r), the total number ofclustered 
atoms. In fact when thestructurefunction is scaled with 
Ra(t) and J&t), a universal curve is obtained, the main 

features of which may be understood in terms of 
Guinier and Porod laws. Nevertheless to get a 
quantitative understanding additional theoretical and 
experimental work has to be done. 
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