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Abstract— We study the segregation process in quenched binary alloys by analyzing and comparing the time
evolution of the structure function and of the grain distribution obtained from computer simulations on a
model system. We find good agreement between cluster sizes and densities determined directly on the
computer sample and ones obtained by the Guinier method from the structure function. We then describe a
graphical method for determining the scaling behaviour of the structure function S(k, £) which gives good
statistics because the whole curve S(k, t) vs k is used. This yields very good agreement between the scaling
function (scaled with the Guinier radius) obtained from the computer simulations and from a variety of real
experiments. This function shows a universal behaviour independent of the alloy composition, the
temperature and even the substance investigated. Our results are also not consistent with the more recent
theoretical work (Binder et al., Furukawa et al.) which give alternate derivations and extensions of the Guinier
formulas.

Résumé—Nous avons étudié la décomposition d’alliages binaires aprés trempe par une analyse comparée de
I'évolution en temps de la fonction de structure et de la distribution des grains de précipité, obtenues par
simulation sur ordinateur 4 I'aide d’un modéle d’Ising. Il y a bon accord entre la taille et la densité des précipités
déterminées d'une part directement sur I'échantillon Ising et d’autre part suivant la méthode de Guinier
partir de la fonction de structure. Ensuite nous décrivons une méthode graphique permettant de déterminer la
loid'échelle concernant 1a fonction de structure S(k, t) avec une bonne statistique puisque toute la courbe S(k, 1)
vers k est utilisée. La fonction obtenue en réduisant les échelles avec le rayon de Guinier, autant pour les
simulations que pour différents systémes réels, s’avére universelle indépendamment de la composition de
I'alliage, de 1a température et méme de la nature de 'échantillon. Nous résultats ne sont pas en accord méme
avec les travaux théoriques plus récents (Binder et al., Furukawa et al.) qui redémontrent et généralisent les
formules de Guinier.

Zusammenfassung—Der isotherme Entmischungsprozess in bindren Legierungen wird mit Computer-
simulationen an einem Modellsystem untersucht, indem die zeitliche Verinderung der Strukturfunktion
sowie die Verteilung der Ausscheidungsteilchen analysiert und verglichen werden. TeilchengréBe- und
Anzahl, bestimmt einerseits durch direktes Abzihlen an der Probe und andererseits durch Anwenden der
Guiniermethode an die Strukturfunktion, stimmen gut iiberein. Weiters wird eine graphische Methode zur
Bestimmung des Skalierungsverhaltens beschrieben, die eine groBe Genauigkeit erlaubt, weil die gesamt
Kurve S (k, ¢) gegen k verwendet wird. Man erreicht dadurch eine sehr gute Ubereinstimmung zwischen allen
Skalierungsfunktionen [S(k, ¢) skaliert mit dem Guinierradius J, die fiir die Computersimulationen sowie eine
Reihe von realen Systemen bestimmt wurden. Es wird daher auf eine universelle Funktion geschlossen, die
unabhéngig ist von dem Mischungsverhdltnis in der Legierung, der Temperatur und sogar der untersuchten
Substanz. Unsere Ergebnisse sind auch mit neueren theoretischen Arbeiten (Binder et al,, Furukawa et al.)
nicht konsistent, die neue Ableitungen und Erweiterungen der Guinier’ schen Formeln angeben.

1. INTRODUCTION

Many alloys such as AlZn, which are homogeneous at
high temperature, segregate when quenched into the
miscibility gap. That is they form localized regions
having compositions corresponding to macroscopi-
cally different phases. Physical properties of the alloy,
such as hardness and resistivity, are strongly influenced
by the character of the inhomogeneity, which, in turn, is
determined by the kinetics of the segregation process.
For this reason, the formation of structure after

quenching has been extensively studied in many alloys.
Quantities of particular interest include the size and
composition of the grains, i.e. regions rich in one of the
components precipitating out of the uniform
background.

The grains can be observed in some cases directly by
using electron [1] or field ion microscopy [2] or by
indirect methods like resistivity [3], calorimetry (4]
and EXAFS [5]. There are various limitations and
drawbacks to the above techniques and a frequently
used method for studying the time evolution of the
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structure of quenched alloys is the small angle
scattering of X-rays [6, 7], light [8] or neutrons [9-11].
This measures directly the structure function S(k, t), the
Fourier transform of the composition correlation
function of the alloy, at any given time t after the
quench. The function S(k, 1) contains much useful
information about the density of different size grains
and their spatial distribution at the time t. How to get
this information deciphered is, however, by no means
obvious and is the subject of our work, as it has been of
many earlier studies [12-21].

It is clear from the beginning that one can define a
variety of characteristic wave vectors such as k,,.(f),
k,{t), corresponding to the location of the maximum of
S(k, t) or to the value of its first moment at time t. These
will, by necessity, be related in some way to
characteristic lengths of the system at time ¢, e.g. the
“radius” of the average grain size, the composition
wavelength, etc. [12-21]. What is not clear however is
how to go beyond these very qualitative statements.
Doingthis requires some quantitative understanding of
the relation between the shape of S(k, ) as a function of k
and the morphology of the system at time ¢,

1t should be noted however, that, even in principle,
Stk, 1) cannot give full information about the
geometrical structure of the system; it simply doesn’t
contain it. What is being considered here is rather how
to extract maximum information from S(k, t) about the
evolution of the segregation process in the system. In
this connection it is important to realize that
experimentally S(k, t}is often known only over a limited
range of k values and sometimes with rather large errors
duetothehigh background in scatteringexperiments at
very low k. A theoretical understanding of the structure
function is therefore very important for its optimal
practical utilization.

A frequently used method for analyzing experimen-
tally obtained structure functions is due to Guinier [16].
A plot is made of In [S(k,2)] vs k* and the “slope” of a
straight portion of this plot is used to define a mean
“radius of gyration” of the clusters. The method is based
on various assumptions, i.e. independent clusters, small
k expansion, but is often used outside the domain of
validity of such approximations; the characteristic
straight lines appear in such plots even in cases, where
the basic hypotheses of the model are not satisfied. It
therefore seems of interest to clarify the meaning of the
“radius” obtained by this method, regardless of the
validity of the Guinier model, by comparingit to cluster
sizes used in statistical theories. This comparison may
be carried out using computer simulations, where both
structure function and cluster distribution are known.
These kind of simulations have been shown to give
results similar to those of real experiments [15]. It was
in fact these computer simulations which first showed
clearly the scaling of S(k, ) during the later stages of the
decomposition, i.e. for late times S(k, 1} depends to a
good approximation only on one variable k/k,(t), so it
defines only one independent length scale. This was
subsequently found to hold also in many experimental
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situations [ 7-9, 15]. This behaviour is also predicted or
incorporated in different theoretical models {18-21] of
the time evolution following quenching.

In this note the simulations of Ref. [15] plus some
new ones in order to compare directly the structure
function and the cluster analysis data are reanalysed.
We find that there is a good agreement between the
Guinier radius R and the mean cluster size determined
directly. R is identified as a good scaling length of the
system and therefore R has some physical meaning
even in cases where the Guinier hypotheses are not
satisfied. We also describe a direct method for deciding
if experimental or computer data show a scaling
behaviour and how to determine the scaling function
F g graphically. Fg is defined via the relation

Sk, 1) = Jlt)* Folk* Relt)]

where Rg(t) and Jg(1) are the scaling lengths (of the k
and the S axes) determined by the Guinier method. By
doing this we found in our simulation data as well as in
recent experimental results on real systems, that for
large x, F4(x)(x = k* Rg)isindependent of temperature
T, density p, and even the substance investigated. In fact
F4{x) may be written in all cases as

Fglx) = ®x)-¥[x - &(p, T)]

(L.1)

(L2

where ® and W are universal functions. ¥ may be
interpreted as describing the intensity diffracted by a
single cluster and ¥ is a “cluster interference function”
which differs from 1 only at small values of k, dis a time
independent constant which characterises the point in
the phase diagram where the experiment is performed.
It would certainly be interesting to test this
“universality” inmore experimental cases. It would also
be very useful to find simple theoretical expressions for
®and V.

Note here that the work of Binder et al. [18],
Furukawa [19], Rikvold and Gunton {20] and Ohta et
al. [21] provides a more general framework for
discussing the scaling of the structure function and ipso
facto the scaling length R which enters there, than does
the original work of Guinier [16]. We have couched
most of our discussion in the language of Guinier.
Because (a) it is the seminal work on the subject and in
fact leads to essentially the same final formulae as do the
more recent works, compare for example equations (59)
and(66)in [16] witheguations(1)and {2)in[20] and (b)
it provides a simple picture of the segration process and
gives concrete prescriptions for finding Rg(¢) which are
universally used by metallurgists. Even when the
Guinier picture is not literally applicable it provides
useful qualitative insights into a very complex process,
Our analysis here is intended to extend the Guinier
picture without losing its simplicity. This will hopefully
provide the metallurgist with practically useful
methods for analyzing experiments. It also provides
new quantitative data on which future more complete
theories, which combine the Guinier picture with the
more general scaling analyses, can be based.
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2. MODELS AND APPROXIMATIONS

2.1. Simulations

The model system is described in detail elsewhere
[15]. It is a simple cubic lattice with N = 2 (L = 30 or
50in the present simulations) lattice sites each occupied
by either an A or B atom. We use periodic boundary
conditions. The number of A-atoms is given by pN, p
being their density. Starting with a random distribution
of the A and B atoms on the lattice (corresponding to
equilibrium at very high temperatures), the system is
quenched into the miscibility gap at a given
temperature. The evolution of the system is governed
by Kawasaki dynamics [22] with nearest neighbor
exchanges. The exchange probability of neighboring A
and B atoms is given by

P=exp(—p-AU)-[1+exp (=B AU)]I™' (2.1)

where f = 1/kpT (kg is the Boltzmann constant) and
AU is the change in the energy

U=—JY nr) n);J>0 2.2)
due to the exchange. The sum in (2.2) is over nearest
neighbor pairs; n(r;) is 1(— 1) if there is an A(B) atom at
siter;. Each nearest neighbor pair is chosen at arate a/3
and an exchange is accepted with probability P-o "
isthen the average time between two attempts tochange
the occupation of a given lattice site and we take it
as our time unit. The miscibility gap for this model
is represented in Fig. 1: the critical temperature is
T, = 4 1/0.88686 ky [23]. The points where simulations
were performed are indicated in Fig. 1 and described in
Table 1.

2.2. Cluster analysis

Clusters are defined in the computer simulations as
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Fig. 1. Phase diagram of the binary Ising model. The crosses

indicate points where computer experiments have been

performed. Points A, B and C are on the coexistence line;

points 9 and 10 are inside the miscibility gap but appeared to

be metastable states; at points 1-8 the decomposition process

has been observed. A more precise description of these points
is given in Table 1.

groups of A-atoms connected by nearest neighbor
bonds. A cluster containing j A-atoms is called a
J-cluster. We call the number of j-clusters in the
sample n( /), so that
2jnlj)=pN. 23
J
This definition is useful only for p < 0.2 when the
clusters of A-atoms may be identified with the grains of
the minority phase. The development of large clusters
following quenching then corresponds to coarsening of
the alloy. For p > 0.20 the system soon develops
clusters of infinite size, even on the coexistence line [15].
It was found in the computer simulations at low

Table 1. Description of all points in the ising model phase diagram (Fig. 1) where computer experiments were performed

No. of
averaged
Pointin  Temperature Density independent  Lattice size Max. duration Min. time
Fig. 1 (T/T) (o) runs (L) of run of scaling
1 0.591 0.050 1 50 14,000 8000
2 0.591 0.075 1 50 10,200 5000
3 0.591 0.100 1 50 7300 3000
4 0.591 0.200 8 30 3900 900
5 0.591 0.500 8 30 3600 300
6 0.780 0.500 8 30 1700 700
7 0.887 0.500 8 30 6600 500
8 0.887 0.200 8 30 1700 400
9 0.591 0.035 1 50 16,000 Metastable state
10 0.780 0.075 1 50 800 Metastable state
A 0.591 0.01456 1 50 Equilibrium at
coexistence line
B 0.780 0.06130 1 50 Equilibrium at
coexistence line
C 0.887 0.12463 1 50 Equilibrium at

coexistence line

Points A, B and C are equilibrium states at the coexistence line and the equilibrium structure functions were used for
background determination (see Section 2.3). Points 9 and 10 were metastable states inside the miscibility gap, whereas at
points 1-8 decomposition occurred. The maximum duration of each runand the time needed to reach scaling behaviour are
indicated in units of 2~ ! (see Section 2.1). The size of the lattice was 50 x 50 x 50 or 30 x 30 x 30. In the latter case 8
independent runs have been averaged 10 get better statistics.
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densities [15] that, after some initial time, n(j) varies
slowly with time for j < 10. For comparison with
experimental data we define an average cluster size by

h=X i nw/ ¥ i)

i>Je i>Je

(2.4)

where j, is an arbitrary cutoff. For the present analysis
we have taken cutofls of 10, 20 and 50. We also define

np= Y n(j) 25
iz
the number of clusters greater than j,. Thus
Ny=j'nm (2.6)

is the number of A-atoms in clusters bigger than j..

2.3. Structure function

The intensity scattered in a neutron or X-ray small-
angle scattering experiment J{k, t) may be related to the
model structure function J(k, f) calculated in the
computer simulation on a lattice of size N = I? by

)
2.7

where ¢ indicates the site occupation [24], it is 1 if there
isan A-atom at the lattice site r; and 0 otherwise. Iy isa
constant (for X-rays I, is slightly k-dependent [16])
depending essentially on the scattering lengths of the A
and B atoms.

We define the function

Sk, 1) = J(k, )= J oy(k) 2.3

where J.q is the equilibrium intensity (computed like J)
at the coexistence line at the same temperature as J.
This background subtraction has been discussed in
detail in Ref. [15]. In most experiments on real systems
this background is not available and therefore a
constant background (Laue level) or no background at
all is subtracted. In the simulations too, after some
initial time, and at temperatures not too close to T, (so
that the fluctuations and therefore J,, are small )} J is
small compared to J(k, 1) and may be neglected. At the
very early times of the decomposition however J and
J., may be of the same size and one has to be very
careful in the interpretation of the structure function.

To simulate an experiment on a polycrystal we have
performed a spherical average of S(k, #) and the
structure function so obtained is finally written S(k, 1).
The present definition is slightly different from that in
Ref. [15] butis more consistent with the notations used
in classical small-angle scattering theories [16]. It is
related to the function §, defined in Ref. [15] by a
simple formula

Ik, 1) arel
W-J(k,t)-N <

Yexp(ik-r) o (r,t)
7

]
Stk, 1y = ) Mg~y Sk n 2.9
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where 7 =1—2p and m, is the value of # at the
co-existence density. For details see Ref. [15].

3. GUINIER ANALYSIS OF THE STRUCTURE
FUNCTION

At low densities of A-atoms the A-rich and A-poor
regions are expected to be separated by sharp
interfaces. When one assumes widely separated
identical clusters {so that there is no interference
between them) the Guinier approximations should be
valid and the scattered intensity will take a Gaussian
shape for small values of k, i.c.

2
Sk, 6y =~ Jglt) - exp (- 5‘—;(}-) k’) a.n

Rg(t) is then identified as \/5/3 times the radius of
gyration of the cluster, (for a spherical cluster R would
be its radius) while J(t)/R8(t) should be proportional
to the number of clusters in the sample. Comparing this
with the definitions (2.4-2.6) one would expect, when
(3.1} is valid, that

4
jraVe=3n R} (3.2)

Nl -4 ‘,G/VG‘ (3'3)

Generally Rg and J in (3.1) are determined by fittinga
straight line to the curve In [S(k, 1)] against k2. It is
found however that for very low k (which corresponds
to long distance correlations) there is a deviation from
the Gaussian shape. This is taken into account [16] by
writing

Stk, 1} = Jglt) * exp (-—- I—{%(-Q k’) * H(k, t) (3.4)

where H{k, t) is equal to 1 for large k. The straight line
used for finding R; and Jg thus appears only in a
portion of the curve S(k, t) against k? : a portion which is
often outside the domain of validity of the hypotheses
which Guinier made to derive his model. This is the
case, in fact, for our computer simulations, Such a plot
with its straight portion may be seenin Fig. 7 (although
the scales are reduced there, as explained later on in the
paper). Since the Guinier method is nevertheless used
quite successfully in practice it is particularly
interesting. It should also be mentioned here that the
Gaussian shape is not expected to hold for very large k.
An estimation first carried out by Porod [16] predicts
an asymptotic behaviour like k™4 of the structure
function.

3.1. Test of the Guinier method for low densities

In the case of low densities p, cluster sizes obtained by
the Guinier method from the structure function can be
compared to those obtained by direct observation of
the sample. The information one expects to get from the
Guinier plot is the mean volume of the clusters ¥
= 4/37R} (3.2), and the total number of A-atoms in
large clusters, which is proportional to J;/V;; (3.3).



FRATZL et al.:

1000 [~ ¢ 5
e 5 % 300 o
a 75% 210 T =039 ¢ . -../
x 10% 200 o °
© X }’.?
G Py
*.
oor e
e O
o %1% 4=048 1
oK
ek A
| I i |
o i 100 200 300 400

/, teut oft j. =20)

Fig. 2 The volume of the mean cluster determined by the

Guinier method V; is plotted vs the mean cluster size [,

determined directly with I, = 20 (see Section 2.2) for three

different densities at T = 0.591 T.. l, is growing with time, so

that the minimum size /,, corresponding to the minimum time

where the structure function scales, may be determined. The
values of I, are indicated in the figure.

InFigs2and 3, Vyand J;/V; obtained fromfitsof In S
vs k? have been plotted against j, and N,, which were
computed with various cutoffs j, (see Section 2.2), for
the densities 5, 7.5 and 10%.

There is a good linear relation between Vg and j, for
Je = 20 (Fig. 2). j, computed for j. = 10 or 50 gave a
similar behaviour but more scattering of the data
points. The relation

1

i1 & 3 Ve 3.5)
holds for times much earlier than the beginning of the
scaling regime. j, is growing with time and one may
determine its value at the time when the structure
function begins to scale. This value is denoted by j, and
is indicated in Fig. 2 where one may see that relation
(3.5) holds for j; much smaller than j,. Only at very
early times is there a small deviation from this relation,
because j, is sensitive to the cutoff (j, is always larger
than j,).
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Fig. 3. The total volume of A-atoms in the large clusters

determined by the Guinier method J ¢/V; is plotted against the

number N, of A-atoms in clusters greater than 10 (open

symbols) and clusters greater than 50 (solid symbols)

determined directly (see Section 2.2). Three different densities

at T = 0.591 T, are included and there is a fairly good linear
dependence for [, = 50.
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In Fig. 3it can be seen that, when a cutoff of 50 is used

for N, the relation
5

NN =3 JolVe (3.6)
holdsfor all three densities (5, 7.5 and 10%}) and all times
except for very late times of the run at p = 10%,
Nevertheless this direct proportionality between N,
and Jg/V; is very sensitive to the choice of the cutoff
used for the computation of N,. For j, = 10and 20 the
dependence (3.6) does not hold any more (see Fig. 3 for
the case j. = 10). The fact that J;/V;; is more consistent
with N, computed with a cutoff at 50 than at 10, seems
reasonable because the Guinier approximation which
uses a radius of gyration, gives more weight to the
bigger clusters. It appears therefore from Figs 2 and 3
that if the right cutoff for j, and N, is chosen, a good
agreement between V; and j; on one hand and Jg/V
and N, onthe other may be obtained. The agreement in
both cases then holds for times much earlier than the
beginning of the scaling regime. Hence one can expect
good results from the Guinier method even before the
scaling regime.

The cluster sizes and densities so obtained seem to be
more satisfactory representations of the complicated
microscopic structure of the involving system than the
ones obtained with k, in Ref. [15]. The slope of k, vs j,
depends on the density whereas the slope of V; vs j, is
the same for p = S, 7.5 and 10%,.

3.2. Integrated intensity

Another classical method to evaluate N, the total
number of atoms in large clusters is via the so called
“integrated intensity” S(¢), the integral of S(k, ¢), where
|k| varies between O and a given cutoff " defined in
practice by the experimental conditions

Sn=N""' Y Sk
k| s
(for the simulations we took X = 0.551. At low

densities a linear dependence between Sand N, may be
expected [16]. In Fig. 4, § has been plotted vs N, for p

3.7

P cut oft {tor M)
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— X"
& 78% j=20 T=0591 1, x"/x
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N o
. Ll
|
(o] 0.05
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Fig. 4. The integrated intensity S is plotted against the total

number N, of A-atoms in clusters greater than /. Three

densities at T = 0.591 T, are included and different cutoffs I,

had to be taken for each density to get a good linear
dependence.
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= 5,7.5and 10%,. One finds a good linear dependenceif
one takes a different cutoff j, of N, for each density p (see
Fig. 4).
The relation between N, and § (Fig. 4)
N,/N =~ % S (3.8)
is very close to the one between N, and J4/V (3.6).
However, as already mentioned, to get the linear
dependence (3.8) N, had to be computed with a cutoff
dependent on the mean density p throughout the
crystal, whereas (3.6) was obtained with the same cutolf
j. = 50for each p. This may be due to the fact that the
integrated intensity is strongly influenced by the atoms
in small clusters, whereas in the Guinier method the
bigger clusters predominate, (We have however, no
convincing evidence for this.)

3.3. Higher densities

An essential hypothesis for the exponential
approximation of Guinier is that the clusters are widely
separated. This may be true in the case of low densities
but it is certainly not so at p = 509, where only one
cluster contains most of the A-particles. Even in this
case, however, a “Guinier radius” may be determined
by the usual method. Since j, is now approximately
equalto N,,itisnolonger proportional to V3 One must
therefore find some other way to relate Rs to a
characteristic length of the system. One such way is to
use the energy per lattice site defined as, see equation
22

U/N=3=E=EN"'v, (3.9)

where v,, is the total number of nearest neighbor A-B
bonds in the system and E, = 2J. Letting

E,=6E, " pl—p.) (3.10)

be the energy corresponding to either of two uniform
phases p, = p at the coexistence line (p, = 1.5% at
T = 0.59 T}), E— E, may be interpreted as a measure of
the total surface of the interface boundaries. In the
case of low densities, if one assumes spherical clusters of
radius r and a cluster density n, then E—E, is pro-
portional nr. If the total volume of the clusters
remain nearly constant, nr® = const. ~ p—p,, then
one may expect (E—E,)™! to be proportional to r. In
Fig. 5(a) the Guinier radius R has been plotted vs
(E—E,)"'for T = 0.591 T, and the densities 5, 7.5, 10
and 50%. For each density the product V = RG(E—E,)
is in fact nearly constant. The ratio V/(p—p,) is not
exactly constant and gives some indication of the
shape of the interfacial region, greatly decreasing for
50% when there are no isolated large clusters (see
Table 2). The interpretation of the Guinier radius in
terms of the total surface of the interface boundaries
provides a certain physical significance for Rg at
higher densities which might be possible to check in
real systems.

In addition the total enerzy E has been plotted in Fig.
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5(b) against +~'/3, where ¢ is time in units of ¢!,
Straight lines have been fitted to the curves, but the
values for E extrapolated at infinite time do not
correspond to the equilibrium value E,, as one would
expect.

4. SCALING BEHAVIOUR

It was shown in Ref. [15] that the structure function
scales dynamically for late times. In the scaling regime
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Fig. 5.(a) The Guinier radius R is plotted against theinverse of
the totalenergy (E— E,)” ! for several densitiesat T =0.591 T..
There seems to be a linear dependence in each case and the
slope V = RHE—E,) in indicated. (b) The total energy has
been plotted against t ~ /3, where t is time in units of ™', for
several densities at T = 0.591 T;. Straight lines could be fitted
to the curves, which might be related with a t'/® behaviour of
Rg. Nevertheless the energy extrapolated at infinite tlime is
different from E,. It has been tried to use this extrapolated
value instead of E, as the bulk energy, but then the plot
analogous to Fig. 5(a) did not show anymore a good linear
dependence between Rz ' and the energy.
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Table 2. Several constants of the scaling regime

Temperature

k, =k, k o=k

Sample Density (T/T)) ) a, i, 2, B, Viip-p.)

0.05 0.591 078 194 130 124
0.075 0.591 066 202 150 9.6
0.10 0.591 0.40 2.35 300 230 293 9.4
0.20 0.591 037 260 480 242 533

Ising model 0.50 0.591 034 272 636 257 780 44
0.50 0.780 0.37 266 500 242 585
0.50 0.887 043 232 264 199 236
0.20 0.887 054 185 208 168 222

Au-60 at.% Pt 0.40 0.6 0.37

80B,0,-15PbO-5A1,0, (wt%) 0.77 0.38

648,0,--27PbO-9A1,0, (wt%,) 0.80 0.34

a, = Rg(t) « kf{t)and B, = J(t)/J (t) are constant when the structure function is scaling (sec Section 4.1) and are indicated here
in the case k, = k, (first moment) and k, = k,, (position of the maximum). V = (E —E_) * R defines the relation between
Guinier radius and total cnergy of the system (see Section 3.3). § is the constant introduced in Section 5.3. Notice that § is
smaller as the experiment is performed deeper inside the miscibility gap. The data concerning the real systems (see Figs 9

and 10) are taken from Refs. [7] and [10].

S(k, t) is described by only one characteristiclength and
therefore k{*, ka!, R are proportional and any of
them may be used as the scaling lengths. In Ref. [15] the
length used was k; ! defined as

Y Sk, ¢)

ks

ki)=Y kS, t)/ 4.1)

ks

4.1. Scaling function

In order to demonstrate scaling and obtain the
scaling function we proceeded as follows in Ref. [15]:
we set x = k/k,(t) and defined

Fy(x, t) = S[xk,(t), £1/J,(z) @42
Jy(t) = -227'[- kid @) Y, k*Sk, o). 4.3)
ks

It was then observed that for each point in the
miscibility gap there was some initial time period, given
in Table 1, after which F,(x, t) =~ F,(x)independent of¢.
The function F;(x) depended on the region in the
miscibility gap to which the quench was made, without
any appearent relation between the different scaling
functions.

To clarify this point we shall here choose the Guinier
radius as the basic scaling length and define F so that
[x = kR¢(1)]

Fo(x, 1) = S[x/Rs(1), 1}/ J5(1) 449

where J(t) is defined by relation (3.1) in the k-region
where the Guinier method may be applied (see Section
3). Ascan be seen from (3.1) the function F reducesina
suitableinterval of x simply to exp (— x2/5). The scaling
regime is defined by F¢(x, t) ~ F4(x) independent of
time.

To clarify the relation between F, and F; we note
that if k;'(¢) is any scaling length and F(x) the
corresponding scaling function so that [x = k/k(t)]

Fy(x) = S[x k), t}J (1) 4.5
thenk, ! and J (t) are proportional respectively to R(1)

and Jg(t), and the scaling function F (x)is related simply
to Fg(x) by

Fs(x) = ﬁs : FG(as : X) (46)
k. (1) = Re(t)/e 4.7)
J{8) = J 1)/ B, (4.8)

i.e. thescaling function Fis determined uniquely by the
constants a, = Rg(t) * k{t) and 8, = J4(t)/J,(t). These
have been computed for the case k; = k,,J, = J, given
in (4.2), (4.3) and for the position and height of the
maximum of S(k, t), thatis k() = kpay(t); Jo(t) = Jmanlt)
= STknax(t), t]. k, and B, appear indeed to be
independent of time in the scaling regime and their
values are listed in Table 2.

4.2. A natural scaling length

The scaling lengths introduced until now (k7' !, k!,
Rg) are computed from the structure function without
using all the information contained in it. Thus k7 ! uses
integrals of S, k,, ! the maximum position and Ry the fit
of S to a gaussian in a given k-interval. A natural way of
deciding whether there is scaling and determining
immediately a scaling length using the full function
S(k,t) is provided by the following method:

(i) In S(k, 1) is plotted vs In k for various values of
Ht,i=1,m),

(ii) the curves for two different times ¢, and ¢, may be
shifted with respect to each other so that the x and y axis
of both plots remain paraliel,

(iii) if the curves can be superposed so that they
overlap exactly, the structure function scales. If not,
threre is no scaling behaviour,

(i) if the structure function scales after some time .,
one has to choose one of the curves as reference. One
might use the curve S(k, t,,) at the last time investigated.
Thenalicurvesfort, < t; < ¢, should besuperposed on
the curve at ¢, so that they overlap. The difference
between the k-axis at time ¢; and t,, is then exactly in
[J(t)] and the distance between the In S-axes is In

AR (]
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Fig. 6. The “natural scaling” method isillustrated in the case of
P2(T = 0.591 T, and p = 7.5%). First the structure functions
S(k, r) are plotted as In S vs In k. Then the curves at the time ¢,,
= 9948 (triangles) and ¢; = 5034 (circles) are superposed by
shifting the axes so that they remain parallel. Ifthecurve at ¢, is
taken as reference we have in this case In [k }(z)] and In
[J; }(t)] negative and given respectively by the differences of
the two y-axes and the two x-axes. One may see also that at
time 872 (crosses) the structure function does not yet scale.

This is illustrated by Fig. 6 where some points
corresponding to the simulation at point P2 (see Table
1) are plotted according to this method. k;” }(t) and J(t)
are then called the natural scaling lengths. It is
important to notice that no normalization of the
scattered intensity or of the wave vector is necessary.
Since differences in logarithmic scales are taken, all the
multiplicative constants specific for each experiment
drop out. Thus the wavelength of the incident beam, the
lattice spacing of the sample, the detector efficiencies,
the sample volume, or the diffusion lengths of the atoms
in the sample have no effect on the analysis. The scaling
functions, Fg, obtained by this method differ only when
different times t,, are chosen for the reference scale. To
get a final normalization of F, a Guinier plot of Fg may
be performed (see Fig. 7 for the case of P2). Ifin a certain
x-range immediately after the maximum of Fg(x) a
straight line appears in the plot In Fg(x) vs x2, the slope
of the curve may be interpreted as —a2/5 and the
intercept as In B,. Therefore the Guinier radius will be
Rg(1) = ok, Y(tyand J4(t) = BJ(t) and the normalized
scaling function F; may be written as given by relation
(4.6) Fo(x) = B 1 Fy/).

5. GENERAL EXPRESSION FOR THE SCALING
FUNCTION F,

5.1. Computer simulations

The scaling function F has been determined for all
pointsin the phase diagram indicated in Table 1. In Fig.
8 all these functions are plotted on a log-log scale. It
appears that for large values of x all data points fall on
the same smooth curve, represented by a thick line in
Fig. 8. Hence for large values of x, the scaling function
F¢ is independent of the density p and the temperature
T This is not surprising in the x-region where the
Guinier approximation, Fg(x) = exp (- x%/5), is valid,

STRUCTURE FUNCTIONS IN QUENCHED BINARY ALLOYS

;' taseg)

Fig. 7. Guinier plot of the scaling function F, determined using
any scaling length k,”* (see Section 4). In the case of P2 (T
=0.591 T,andp = 7 5%). —a?/5istheslopeofin F,vs x? and
In B, the intcrcept of the straight line. The normalised scaling
function Fg is then given by Fg(x) = §;' * F(x/a,).

butitiseven true for much larger x. This corresponds to
the idea explained in Section 3, that for large k the
scattered intensity S(k, ¢) is determined by the “single
cluster function”. We define this “single cluster
function” dXx) as being equal to exp (—x?/5) for small x
(thin line in Fig. 8) and to Fg(x) for large x (thick line in

[l

—
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. € < »p X

Fig. 8. Plot of In [F(x)] against In x for the points 1-8 in the
Ising model phase diagram (sec Tabie 1). The thick line
symbolises a high density of data points due to the
superposition of all the curves. The thin line (full at one end,
broken at the other) corresponds to the Guinier approxim-
ation F(x) = exp (— x%/5). The “single cluster function™ ® is
then defined as the thick full line extrapolated by the thin full
line.
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Fig. 9. Plot of In [F 5(x)] against In x for several real systems.

Broken line is the function @ as taken from Fig. 8 (computer

simulations), full line are data from Ref. [11] and the other
symbols are data from Refs [7} and [10].

Fig. 8). Therefore using equations (3.4) and (4.4) we
write

Fg(x) = ®(x) * H[x/R¢(t), 1]. (.0

It follows that H[x/R¢(t), t] = H(x) is independent
of time and equal to 1 for large x [i.e. when @(x)
= Fg(x)}. H, is density and temperature dependent,
whereas ®(x} is a universal function independent of p
and T (see Fig 8), at least for these computer
simulations.

5.2. Real systems

(a) Au-60 at.%, Pt: decomposition in this sytemat T
= 550°C (T/T, = 0.6) has been studied by neutron
scattering [10]. The scaling function of Ref. [15] has
been normalized to give F; as indicated in Section 4.2.
and is shown in Fig. 9.

(b) B,O;-PbO-AL, O, glass: recently the scaling
hypothesis has been tested in this sytem using k,, as
scaling length [7]. Scaling behaviour was confirmed
but discrepancies for some of the curves were observed.
Nevertheless these discrepancies are probably due, as
pointed out by the authors, to the intrinsic inaccuracy
in determining the position k,, of the intensity maxima.
Figure 9 shows that the curves fit together perfectly
when the “natural scaling” method described in Section
4.2 is used.

{c) Al-Zn-Mg—-{Cu): neutron scattering data for
these ternary (quaternary) alloys were reanalyzed and
Fig. 9 shows that the structure functions scale very well

{11.

For all these systems the normalised scaling
functions F; were plotted on a log-log scale in Fig. 9,
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together with the “single cluster function™ ® taken from
the computer simulations (Fig. 8). It appears that the
experimental data agree perfectly with each other for
large values of x. Therefore the true scaling function
Fux) is, for large x, independent of density, tem-
perature and even the subsiance investigated, which
can be binary, ternary of even amorphous. This seems
to conform the existence of a universal function ®{x}
(the single cluster function), describing the structure
function at large values of k.

There is a small discrepancy between the computer
data and real systems at very large x (Fig. 9). If we take
as the correct shape for ¢ the one determined by the real
experiments, thus ¢(x) ~ 7/x* for large x. This x™*
dependence is known as Porod law [16].

5.3. The cluster interference function

The existence of the universal function ¢ enables us
todefine both for real and for computer experiments the
function

Hy(x) = Fg{x)/®(x) 52)

which should describe the effect of cluster interference.
Here we can find an analogy to the language of
molecular liquids, where the so called liquid structure
factor £{k) is obtained by dividing the total scattered
intensity by the intensity scattered by a single molecule
[25]. Since F 4 is the scaled total intensity, we consider ¢
the scaled intensity of a single cluster, then H, is
analogous to L{k). In molecular liquids L(k), small near
k = 0, rises to a maximum at k,, and then has damped
oscillations of period ~ k,, [25]. In the case of solid
solutions, which we are treating here, H,{x) also first
grows with x but then quickly reaches the constant
value 1.

H, has been plotted on a log-log scale in Fig. 10,
including both real and computer experiments. By
shifting these data along the x-axis by a certain amount,
In (8) (a function of the substance, its composition, and
the annealing temperature) a fairly good superposition
of the data may be obtained for ranges of . This suggests
that one writes

H,(x) = $(6x).

The values of § used to get the superpositionare listed in
Table 2. It appears that J is smaller for experiments
deep inside the miscibility gap. However the idea that §
is related to some mean distance between clusters was
not confirmed accurately in the computer simulation:
the expected proportionality & -~ p~'® was not
confirmed.

For the samples where 8 <0.38 the “cluster
interference function™  may be represented fairly well
by i(x) = x* for x < 1; and ¢ = 1 otherwise. When
& > 0.38 a better approximation is y(x) = x* for x < 1;
and Y(x) = 1 otherwise (see Fig. 10). This difference in y
between “deep” and “shallow” quenches is not very well
understood. Perhaps there is some relationship with
theold spinodal dichotomy between the nucleationand
growth regions inside the miscibility gap {12-14].

{(5.3)



1858 FRATZL et al.

Ln (£ )-LN (@)

STRUCTURE FUNCTIONS IN QUENCHED BINARY ALLOYS

0.5 1.0
Ln (x}

Fig. 10. The scaling functions F; of Figs 8 and 9 have been divided by the “single cluster function” ®(x) and put

together in this log-log plot. The thick line, as in Fig. 8, is a superposition of many data points. The thin lines

(with slopes 2 or 3) seem to fit the data for a given experiment (the symbols used are defined in Figs 8 and 9).

Thereofre by shifting the data along the x-axis a superposition resulting in the function ¥ drawn in the inset
seems possible.

Nevertheless one should be careful interpreting the
structure function for very small k in the case of
computer experiments. There the smallest possible
value of k is 2n/L and finite size effects are expected in
this k-region. For instance, a single very long run at
T = 0.59T, and p = 50%, was undertaken, and after a
very long time the maximum of the structure function
could no longer shift to smaller k because of finite size
effects distorting the scaling function. For the earlier
times however there was no indication that size effects
were important at these relatively shorter times.

Using the universal function ¢ and y, the final
expression for thescaling function F 5(x)is then given by
(1.1). The corresponding formfor the scattered intensity
is

S(k, 1) = Jg(t) - ¢k * Ro(0)]* ylk - Rg(t) - 8(p, T)].
(5.4)

This empirical relation recalls the expressions for the
scattered intensity in the classical two phase models
[16, 23] even if the “single cluster function” ¢ and the
“cluster interference function” y are now somewhat
different.

6. DISCUSSION

Structure functions of quenched binary alloys
obtained from computer simulations performed at
different quenching points in the coexistence regions
were analysed to see how one may best get reliable data
on the cluster size and density from the structure
function. In all cases the first moment k, the position of
the maximum k., and the Guinier radius Rg were
determined and, where it was possible (no percolation),

cluster sizes and densities were also determined
directly. During the scaling regime of the structure
function, Rg, k! and k) are all proportional and
consistent with the cluster sizes determined directly.
Furthermore the Guinier radius gives a good
description of the clusters even before the scaling
regime and even in cases where the approximations in
the Guinier model are not valid.

At early times however the agreement is very
sensitive to the cutoffs chosen to compute the mean
cluster size and density (Section 2.2) and also the
background subtracted from the structure function
(Section 2.3). Furthermore at all times, even during the
scaling regime Rg, k7 ! and k. are known only with
low accuracy because they do not' use all the
information contained in S(k, t). In order to get the best
possible statistics, a graphical method, using the whole
curve S(k, t) vs k was developed for determining the
scaled structure function. This should help in
determining cluster sizes and numbers from S(k, t).

When the so obtained scaling function is normalized
to Fg, the structure function scaled with the Guinier
radius Rg, it appears that the structure function for the
computer simulations as well as for some real systems
may be written as

Sk, 1)y = Jg(t) * @[k - R(t)]
- ylk - Rglt) - &p, 1))

In analogy to classical two phase models [16] and
molecular liquids [25] ¢ is called the “cluster
interference function” and ¢ the “singie cluster
function™. & seems to depend on how deep inside the
miscibility gap the experiment is performed. At low

(5.4)
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Fig. 11. Thesingle cluster function d(x) has been represented in
alog-log plot. Full line is due to experimental data (Fig. 9) and
dotsindicate a small deviation of the computer data from real
systems at high values of x. A universal scaling function for the
motion of random interfaces f(z) proposed recently by Ohta et
al. [21] has been normalized to Guinier behaviour at small k

by &(x) = f(x-./3/5)/1(0) and & is drawn with broken line.

Besides the Guinier behaviour at small x, ® and ® havea A/x*

decay at high x (Porod law [16]). The value of A for @ and dis
however somewhat different.

values of k, describes the cluster interference, but
at higher k,¥* =1 and S(k, ¢) is determined uniquely
by the Guinier radius Ri{(¢) and the corresponding
parameter J(z). The universal function (x) is inde-
pendent of density, temperature, and even of the
substance investigated.

Recently Ohta et al. [21] have computed a universal
scaling function for the motion of random interfaces.
This function has like ¢ a Gaussian shape at small xand
an x ~* behaviour at large x. To compare the function
proposed by Ohta et al. [21] to ¢(x) we have
normalized the function I(z) from Ref.[26] so that ithas
the Guinier behaviour at small k. That is we define ¢(x)
= [(x \/3/5)I(0). This function ¢(x) has been plotted in
Fig. 11 (broken line) together with ¢(x) determined by
experiments on real systems (full line) and computer
experiments (dots). There is a very good agreement in
the region of Guinier behaviour (x < 10) but in the
region of the 1/x* decay (Porod law [16]) the function
proposed by Ohta et al. provides values which are
somewhat too high.

From this analysis it may be concluded that, during
the scaling regime, the structure function follows, in the
case of computer experiments as well as some real
systems, a universal behaviour. Besides some effects at
very small k (cluster interference) S(k, t) is mainly
determined by Vy{t) = 4/3 = R, the mean cluster
volume, and by J 4(t)/V;(t), the total number of clustered
atoms. In fact when the structure function is scaled with
R(t) and J (1), a universal curve is obtained, the main
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features of which may be understood in terms of
Guinier and Porod laws. Nevertheless to get a
quantitative understanding additional theoretical and
experimental work has to be done.
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