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INTRODUCTION 

A binary alloy, such as ZnAt, is spatially homogeneous when it is in thermal 

equilibrium at sufficiently high temperatures; that is, it consists of one thermo- 

dynamic phase. If the system is suddenly quenched to a lower temperature (see 

Fig. l), it remains spatially homogeneous. Thermal equilibrium, however; requires 

the coexistence of two phases, one A-rich and one B-rich, whenever the fraction 

of "B-atoms" E is in the range cAccccB in Fig. 1. The nature of the time evolution 
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Fig. 1. Schematic phase diagram of a binary alloy with a miscibility gap. The 
time evolution of the quenched system is also indicated. 

of the system after the quench is a problem of great practical interest in metal- 

lurgy. It also presents a challenge to the theorist. We first briefly summarize 

some of the main ideas and problems of the classical theory of this process. 

According to the classical (Cahn-Hilliard) theory (ref. l-3), one has to dis- 

tinguish two regimes of different kinetic behavior. If the quench is to a state 

within the so-called &~zirzud& C~_GWC (see Fig. l), the system is supposed to be 

unstable with respect to menk &&c&&cd (i.e., long wavelength) fluctuations; 

the growth of these fluctuations into zones of the two coexisting phases is called 

the bpinodne decompobXon mechanism. For states between the spinodal curve and 

the coexistence curve, the system is stable with respect to these delocalized 

fluctuations, but still unstable with respect to n;ttong tocatized fluctuations 

(i-e_, nucleus formation). Phase separation is then a consequence of the ~~uc.Ccntioiz 

mechanism, considered extensively in the other chapters of this volume. After 

microdomains have been built up by some mechanism, these domains grow further 

(co~erz&g 05 grraiuza). This coarsening may proceed by single atom processes 

where larger grains grow at the expense of smaller ones which are dissolved in 

the matrix (Obacatd ZtJmtibZg of the grains [ref. 4,51, as treated by the 

Lifshitz-Slyozov [ref. 61 theory), or by effective diffusion and coagulation of 

the grains (ref. 7) (as first considered in the Smo.Cuchol~Mhi coagut2zEiorz Cref. 81 
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of raindrops in the atmosphere)_ In Fig. 1, z is arbitrarily chosen closer to 

CA than to CR so that the droplets grow primarily by agregation of B atoms in a 

background of A-rich phase. 

While these ideas certainly give much insight into what is happening, a full 

theoretical treatment of this process should be expected to yield not only qualitative 

notions of the relaxation mechanism, but also quantitative estimates of the relaxation 

rates. This latter task leads to severe problems (ref. 9-19). Some of the open 

questions are: 

1. The theory of spinodal decomposition (ref. 1-3) is based on the co::cept of 

a local free-energy density function (depending on the local concentration) for 

nonequilibrium states, but even the appropriate definition, let alone the explicit 

construction, of such a function encounters serious difficulties. Indeed, the 

existence of a well defined spinodal curve which usually derives from this free 

energy is questionable (ref. 9,16,17). Rather, there may be a continuous transition 

between spinodal decomposition and nucleation (ref. 2,16), especially in alloys_ 

(In the case of long range interactions, however, nucleation rates can become arbi- 

trarily small and the spinodal line can be given a well defined meaning (ref. 18,19). 

2. Even if this free energy is given, the derivation of closed kinetic equations 

describing the time evolution requires further assumptions and approximations (ref. 

10-12) _ 
3. The treatment of the resulting nonlinear equations describint the kinetic 

evolution of the system is difficult (ref. 10-15). 

4. In the critical region (T+Tc and concentration near ccrit; see Fig. l), 

a complicated interplay of the relaxation mechanisms with critical fluctuations 

may occur, which needs a separate study (ref. 7). 

5. The regime of validity of descriptions of the asymptotic relaxation, t-F_, 

is unknown. The Lifshift-Slyozov theory (ref. 6) considers the coarsening in the 

case where the difference between the average concentration, z, and the concentra- 

tion at the coexistence curve, cA, is very small, and it may break down the larger 

concentration differences. 

6. A particularly difficult problem arises if well separated grains can no 

longer be distinguished, and one has a rather irregular “network” of interpenetrat- 

ing zones. This regime should probably be treated from the point of view of 

“percolation theory” (ref. 20-27). That theory, however, usually considers only 

random mixing of two species A,B, and only very few studies take particle interactions 

into account (ref. 22). 

Since some of these problems are the same as those which hamper the progress 

of the liquid-vapor nucleation theory, a more general study of phase separation 

kinetics wil7 help elucidate that phenomenon as well _ For the construction of 

such a theory, we need more quantitative information about the nature of the 

cooperative microscopic processes going on during phase separation_ For reasons 
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explained in the next section, some of this information is best provided by the 

computer simulation of simple model systems (ref. 23-25, 14). These computer 

experiments and their implications :for the theory are the subject of this article. 

'The outline of this article is 'as follows: In the second section, we give a 

brief review of some relevant experiments on phase separation kinetics. It will 

be pointed out that insufficient knowledge of the microscopic properties of the 

samples and complicated effects influencing-the kinetics make a meaningful compar- 

ison with theory very difficult_ In the third section. the theoretical concepts 

mentioned earlier are described more fully and their quantitative predictions 

reviewed. The fourth section describes the lattice models used in the computer 

simulation; sites of a rigid lattice are occupied by two kinds of atoms and neigh- 

boring atoms are interchanged according to a transition probability which assures 

detailed balance and an approach to the final thermal eouilibrium state_ In the 

fifth section, we then give some details of the computational techniques and a 

selection of the numerical results obtained (ref_ 23-26,14)_ In the last section, 

we give our conclusions concerning the validity of the various theories_ 

We are well aware that the "kinetic Ising model" of Kawasaki (ref. 27), used 

in our computer simulations, is a great oversimplification of nature where exchange 

occurs indirectly via vacancies, etc., rather than directly,and where "lattice 

misfits" of the two kinds of atoms (and resulting elastic distortions) have to 

be taken into account. We nevertheless believe that the results of the computer 

simulation provide a stringent test of theories: If a theory fails to describe 

this very simple model, there is no reason to assume that it will work better 

for more complicated real systems! 

EXPERIMENTAL SITUATION 

Typical examp7es of the systems we have in mind are binary alloys liek ZnAe, 

etc_ Since the scattering length o f the two kinds of atoms in the alloy are 

usually (e-g., in ZnAe) sufficiently different both for x-ray and neutron scattering, 

the structure factor S&t) may be determined experimentally. This factor is 

proportional to the intensity scattered with momentum transfer k; it can be expressed 

as the Fourier transform of the (spatial) concentration correlation function: 

S&t) = z eik-r G(r_t). 
r - 

where 

(1) 

G(c,t) = ((c(r:t) -C)(c(r'fr,t)-E)>. (2) 

Here, c(1.t) is the fractional concentration of the B-component at position E 

and time t. If we assume further, as is generally done, that the total atom 



density remains constant, then c(t-,t) also yields the different atom densities 

at r and t. over r' - The bracket < Jindicates an average - in the macroscopic 

system; note that c E (c&t)) is constant during the temporal evolution. In 

most cases, activation energies for the diffusion of atoms in the lattice are 
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high enough so that the coarsening proceeds on a macroscopic time scale. Therefore, 

one may take "snapshot pictures" of the state of the system with the radiation 

neglecting the variation of S&t) with t during the picture taking time. In 

practice, one lets the system evolve up to some time t after the quench to the 

chosen temperature and then rapidly quenches the system to a much lower temperature 

where the scattering experiment is performed. The variation of S(k,t) with time - 
during (and after) this second quench can be neglected. 

An example is presented in Fig. 2, where experimental results of Rundman and 

No. Time (Set) 

Fig. 2. X-ray spectra from ZnAe-alloys quenched and annealed for relatively long 
times at IOO°C (=0.7Tc). 
(from ref. 28). 

The structure function S(k,t) is plotted versus k 

Hilliard (ref. 28) are shown for a i!nAe system quenched to around 100°C and annealed 

there during some interval of time, after which it was cooled to very low temperatures 

so that the state of the system was frozen in. If one neglects short range order, 

the initial state in Fig. 2 would correspond to a horizontal straight line. It 

is seen that a maximum develops, which grows steadily and is also slowly shifted 

to smaller values of the momentum transfer. 

The position of the maximum may be related to the typical linear dimension of 

the zones which are precipitated in the coarsening process. Much interest has 

been devoted to the growth law of the zone mean radius, i?. Since, due to resolution 

problems, it is hard to observe the later stages of the coarsening by x-ray or 

neutron scattering techniques, the usual method for measuring the "droplet" sizes 

is by means of transmission electron microscopy and electron diffraction after 

cutting the cooled sample into thin foils (ref. 4,5). A typical example of such 

results, obtained by Speich and Oriani (ref. 29), for the growth of Cu-precipitates 

in Cu-Fe alloy is shown in Fig. 3..The same data are plotted against tIf3 and 
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Fig. 3. Time evolution of the mean rticle radius of 
The same data are plotted versus t and versus tI~Lt-~r;ic~~~~~'~k'"~~rFe- _ _ 

$/5 
5 demonstrating that while the increases in the mean particle radius can be 

represented by a power law: 

R- tar, (3) 

where the exponent a' is a small number; the exponent cannot be determined unambig- 

uously from this experiment. The Lifshitz-Slyozov theory (ref. 6) predicts a'=1/3, 

but the data seem to be consistent with smaller values for a' as well. Results 

similar to those shown in Fig. 3 have been obtaSned by other authors on a variety 

of systems (ref. 4,5). The particle size distribution at late times was also deter- 

mined in some cases from the data (ref. 5), although only crudely- We do not 

discuss these measurements in detail because most of them are rather imprecise. 

One further example, which seems to give a more convincing confirmation of the 

Lifshitz-Slyozov theory (ref. 6), is shown in Fig. 4. These results, taken from 

1400~~ 

lOOO-- 

0 12515 60rn s 16 40 200h 

[AGING mb4E]“3 

Fig. 4. Plot of the "characteristic wavelen th" of the precipitated zones of a 
quenched Cu-Ni-Fe alloy versus (aging time) 9 13 for three temperatures (from ref. 30). 
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But1 er and Thomas (ref _ 30)) refer to the decomposition of a 51.5% Cu - 33.5% Ni - 

15% Fe alloy. 

Other techniques used for studying quenched alloys include magnetic measurements 

(ref_ 30) and measurements of the electrical resistivity (ref. 31). While these 

techniques have some distinct advantages, they yield only indirect information 

and hence their interpretation is rather difficult and we will not discuss them 

furhter. 

In general, we may expect that in all experiments on real substances there will 

be a complicated inerplay of different processes which will make their theoretical 

interpretations difficult; e.g.. a different behavior is obtained if the diffusion 

of atoms occurs preferentially on grain boundaries or dislocations (ref. 32), or 

if the reaction of the atoms with grain surfaces rather than diffusion in the 

matrix is the rate-determining step (ref. 33) for the coarsening. In addition, 

due to the difference in lattice spacing between the two constituents, long range 

elastic distortions build up which tend to destroy the matrix lattice, resulting 

in “loss of coherence” (ref. 30). 

There are also problems which prevent the experimentalist from studying the 

very early stages of the process: 

1. The clustering on the atomic length scale which occurs at the initial stages 

is beyond the resolution of usual electron micrograph techniques, and in x-ray or 

neutron scattering there are often problems with the intensity due to background, 

etc. 

2. Complications arise from the effects of finite cooling velocity and result- 

ing temperature gradients. 

Thus, the interpretation of the available experiments is somewhat difficult, 

and the clarification provided by “computer experiments” on idealized simple model 

systems is needed. 

ELEMENTARY DISCUSSION OF TEHORETICAL CONCEPTS 

Classical theory 

The macroscopic theory uses the concept of a coarse-grained concentration n&t) 

which is a slowly varying function of 1, in contrast to c&t) itself, which varies 

rapidly on a dimension of atomic scales (ref. 10). Such a theory in which rapid 

local thermal flucturations are averaged out should be a much simpler description 

of the processes in which we are interested here. A disadvantage of this approach 

is, of course, that it is hard to give a precise definition of n&t)_ We may 

think of it, as is done in hydrodynamics, as the number of particles in a volume 

w centered at 1 divided by the volume of O. which volume is very small on a macro- 

scopic scale but large enough to contain “many” molecules. 

It is easiest to consider first the case where.n(r,t)=c is uniform throughout 

the system. Now if C is is the one phase region of the system, then the true 
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equilibrium Helmholtz free energy of the system will be given by: 

F(c) = VF(c) = Vdr f(c), _l (4) 

where V is the volume of the system (and we have omitted the dependence on the 

temperature). As already mentioned, the classical Cahn-Hilliard theory (as well 

as the theory of Langer and coworkers [ref. 10-121) makes the assumption that it 

is possible to define a meaningful free energy for a system having a temperature 

T and average density c inside the coexistence curve which is not separated into 

two phases, Such a system is of course not in equilibrium and such a free energy 

can therefore not be derived form the standard formalism of statistical mechanics 

or of thermodynamics without further assumptions; see the article by Penrose and 

Lebowitz (ref. 19) and also Reiss (ref. 9). To avoid dealing with this problem, 

it is usually simply assumed that f(c) can somehow be extended into the two-phase 

region and that the F(c) corresponds either to a "local" minimum or to a local 

maximum in the free energy over all concentrations {n(r)) which are "close" to 

the uniform density. The global minimum corresponds to a phase separation. (This 

analysis can actually be made rigorous for systems with very long range potentials, 

c. _) f Penrose and Lebowitz [ref. 18,191.) The simplest function having this be- 

havior, and which leads to the phase diagram of Fig. 1, is f(c) =3;A(c- cc,)2 + 

%B(S-c )4 f f(ccr) with 

is that % u(r) 7 n(c)- ccr 

A(T)<0 for T-=Tc. The next assumtion which is made 

is not spatially uniform, then it is still possible 

to write a free energy functional which involves, in addition to Y, only its gradient 

VY, i.e.: 

F = VdI(%AY2(c) +%zB'~"(r) +4KLv?(~)12) + F(ccr). (5) 

where A, B and K can depend on T with A(T)<0 for TcTc and B and K always positive. 

The integrand ‘!n Eq. 5 is interpreted as a "quasi" local free energy density. 

The motivation for introducing the "free energy" defined by Eq. 5 is to obtain, 

by taking the (functiona;) derivative of F with respect to Y at position r, taking 

into account the constraint of constant composition, an effective local chemical 

potential n(r): 

(Actually, since we are dealing with a two-component system, 1. should be a functional 

of two coarse-grained concentrations, ‘;k@) and ~~(1) with u,(r) = 6F/6Yu(r). a= 

A,B. According to our assumption, however, the total coarse-grained density is 

fixed so that ~(1) should be interpreted as the difference, nA(~)- nB(r).) It 

is now assumed that the gradient of ~(1) will act as a driving force for a current 
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J (A atoms in one direction, B atoms in the opposite direction): 

J = -MO In(c)1 = -MvIAv(r) f By’(r) - Kv2WJ = (7) 

where M is a diffusion constant (or mobility). This term will generally lead to 

a time variation in Y. The equation describing the time evolution of Y(r.t) is 

obtained by combining Eq. 7 with the conservation of mass expressed by the con- 

tinuity equation: 

w&t) 
at + vJ(r,t) = 0. 

This procedure yields the basic equation of the Cahn-Hilliard theory: 

altr(r,t) 
at = Mv’IAy(r,t) f BY3(y,t) - Kv2,(r,t),. 

(81 

(91 

Let us first discuss the case where I is a constant so that2 = 0; i.e.,: 

-3 n = A? + B’? _ (10) 

It is seen that the minimum of F occurs when u = 0 (this is simply a matter of 

normalization) which putes the coexistence curve at: 

Fr 
coex 

=*m 3 

If we consider the response function (“susceptibility”) x defined by: 

y1 E ?LL , y1 = 
ay 

A -I- 3BF2, 

(111 

(12) 

it is found that x -1 vanishes (and changes sign) at a stability limit (“spinodal 

curve”) given by: 

5 
‘spinodal 

=m (13) 

The crucial role played by the spinodal curve can be understood by considering 

the dynamics _ To do so , we linearize Eq. 9 around ? as determined by Eq. 10, 

i.e., we write: 

Y3&,,) = CT + rY(&t) - W3~ F3 + 3t2 IY(r t) - ?l . -3 (141 

Then we obtain from Eq. 9: 
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Wr,t) = 
at- 

Mv2 [(A f 3Bl;r2) - Kv2J Y&t)_ 

Eq_ 15 can be solved by Fourier transformation_ Setting: 

Y&t) = ; e ik-r +(k.t). 

we obtain: 

a@;$t) = _Mk2 [(A + 3B$) + Kk*l $&t)- 

(15) 

(15) 

(17) 

The solution of Eq. I? gives and exponential relaxation: 

q(k,t) = O&3”) f rdk,fJ) - 0(11.-)I exp I-Mk2tC(A f 3BT2) f Kk2Tl. (18) 

If the composition F is outside the t+inodaL curve, we have A f 3BF2=-0 and the 

time constant of the exponential is positive for all small vectors k of the concen- 

tration fluctuations. This result means that the homogeneous state q is stable 

with respect to any infinitesimally small fluctuation (where Eq. 14 is appropriate), 

i-e., we have a stable or metastable state. The former will of course occur outside 

the coexistence curve, while the latter corresponds to uniform systems with composi- 

tion c between the coexistence and spinodal line. Since in both cases, however, 

the uniform state is a a;tnfionlan~ ao&~ZLon 06 Eq. 4 which is stable 

to small perturbations, Eq. 9 predicts an infinite lifetime for the 

state. 

More interesting is the behavior within the spinodal curve where 

increase exponentially with time, provided their wave vector k does 

critical value kc given by: 

kc = -(A f 3BF2)/K _ 

The maximum growth rate occurs at: 

km = kc/m . 

with respect 

metastable 

fluctuations 

not exceed a 

(19) 

(20) 

The enhancement of fluctuations within the spinodal means that the homogeneous 

state F is unstable and phase separation sets in. 

Theories including fluctuations 

As mentioned already in the Introduction, some of the basic predictions of the 

classical theory, such as the sharp distinction between the behavior inside and 
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outside the spinodal region, are not in agreement with observations. This predic- 

tion of the theory is unfortunately not changed if we take a more general expression, 

f(U), for the local free energy function instead of the simple iandau expression, 

4A’ir 2 -I- 3jB’?‘; - 1-t only leads to the replacement of the factor A f 3BF2 by 

(a2 f/ay2)T in the determination of the spinodal region. It is neglect of intrinsic 

thermal fluctuations, those which have to be put in explicitly when one uses a 

macroscopic (course-grained) description of the physical system, which is responsible 

for th? infinite lifetime of the metastable states in the region between the co- 

existence curve and the spinodal .curve. 

Among the first attempts to take fluctuations into account was the work of 

Cook (ref. 34) who obtained the following linear equation for the Fourier transform 

of the correlation S&t) defined in Eq. 1: 

as(!$ = -2Mk2 {[(A + 3BG2) + Kk21 S&t) - kBTI, (211 

with kB = Bol tzmann constant. (The extra factor of 2 in Eq. 21 as compared with 

Eq. 17 is essentially due to the relation S(k,t)&l$(k,t)12, and the extra kBT 

introduces thermal fluctuations. ) This equation, which is indeed an improvement 

over Eq. 17, still, however, predicts a sharp transition at the spinodal line. 

Furthermore, both Eqs. 17 and 21 predict that inside the spinodal region S&t) 

increases exponentially for all k-values in the range Ockckc, and develops a 

steadily increasing peak at the value km which is independent of time. Such be- 

havior would imply that no particle coarsening occurs since the typical wavelength 

does not change with time. This fact is a consequence of the neglect of the non- 

linearities in Eq. 14. (Langer [ref. I01 gave some arguments according to which 

the nonlinear terms should lead to a behavior km(t)=t-1’3 in three dimensions.) 

Similarly, the unlimited exponential increase of fluctuations predicted by Eqs. 

I7 and 21 is actually limited by nonlinear terms in I;r(r,tj neglected in Eq. 14. 

Thus, even if Eq. 9 was valid, Eqs- 15-21 would be expected to hold only for 

the early stages of the phase separation process. However, as we shall see later, 

the computer simulation results make it very doubtful that the linear theory is 

a valid description at all_ This analysis casts doubt also on the validity of 

the nonlinear theory which, as emphasized already, has been derived in an entirely 

phenomonological manner. 

~ To obtain a more microscopic theory, Langer (ref. 10) formulated a master equation 

for a probability distribution of the “concentration function” V(E) of the system, 

PWl. This equation may be written as: 

aPW1 _ - -- 
at _I- dc$$, (22) 



where the “probability current” J(r) is given by: 

J(c) = MV2 {h - KV2Y(c) f kgT &3 PCYI . (23) 

This approach still postulates the existence of a local free energy function, f(Y), 

but is more microscopic in that Y(E) is now considered as a “random” field with 

a certain probability distribution whose average value is the macroscopic concen- 

tration. If Eq. 22 is multiplied by Y(E) Y(r’), integrates over the- probabi 1 i ty 

distribution P and again takes Fourier transforms, one obtains instead of Eq. 21 

a similar equation: 

as;$‘t) = -2Mk2 CKk2 S&t) + n&t) - kBTI , (24) 

where the quantity I 1 &f 
a2Y Y 

S&t) in Eq. 21 is replaced by a function, n&t.), 

which contains higher order correiation functions. Thus, Eq. 24 is not a closed 

equation, and in order to obtain a solution at all, it is necessary to approximate 

the term n&t) in some way. 

The simplest approximation which goes beyond Eq_ 21 is to make an assumption 

about the form of the probability distribution PCY). l-anger first assumed that 

PI?3 can be approximated by a Gaussian distribution centered at Y=O (ref. 10, 

35). This approximation leads, however, to a behavior similar to that described 

by Eq. 9. The unsatisfactory nature of this approximation can be understood from 

the fact that the actual PIY) peaks at the two values of Y corresponding to the 

concentrations on the coexistence curve c 
A 

and c B rather than having one peak at 

Y=o. 

A substantially better approximation is obtained (ref. 12) if one approximates 

the two-point probability density P2iY(r), ~(1’)). Specifically, a closed equation 

for S&t) is obtained if one writes: 

P2IY(r), Y(~‘))=P11Y(~)3P11Y(~‘)311ty(~~-~’i)][Y(~) - F] [Y(c’) - FJ. (25) 

Here, PjI~(~])..... Y(c~)> is the probability density for finding specified values 

of the concentrations at positions, t-l,.-.,~j_ The Pj will depend also on the time 

t and on the positions 111,. _ . ,r -. Clearly, y=O makes Y(r) and Y(r’) statistically 

independent. Generally, y(lrrg’l) is related to the concentration correlation 

function (ref. -12) : 

n(k,tl = S&t) A(t), (26) 

where the function A(t), which is independependent of k, has to be determined 

self-consistently. The solutions of Eq. 24 can be obtained only numerically in 
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this case, and additional simplifying assumptions are necessary in order to obtain 

explicit results (ref. 12). Since it is not obvious how accurate these approxima- 

tions (and the basic assumption of Eq_ 25) are, it has to be stated again that 

computer simulation results are necessary as a check of the theory_ Also, the 

validity of the coarse-graining procedure which gives Eq. 23 may be open to doubt 

in some cases. 

Theories for the asymptotic time-dependence of the coarsening 

In order to interpret the experiments, one wants also predictions for the rate 

at which the precipitated zones grow at large times. We have already mentioned 

the prediction of the (nonlinear) Ginzburg-Landau theory (ref. 10): 

k,(t) - t-li3_ (27) 

Since the validity of this approach is rather uncertain, it is interesting to note 

that essentially the same result, Eq. 27, is obtained by a rather different approach 

using the linearized diffusion theory of Lifshitz and Slyozov (ref. 6). 

One may summarize the main idea of this theory as follows (ref. 36). We con- 

sider a concentration s rather close to c A and a very late stage of the coarsening. 

It should then be possible to describe the state of the system as a collection of 

(spherical) grains which have the composition of the B-branch of the coexistence 

curve ~8. Because of surface effects, these grains should not be in thermal equilib- 

rium with a surrounding matrix having concentration cAs but with one having a 

slightly enhanced concentration of B-particles given by: 

CR 
= c,(ltW-), (28) 

where R is the radius of the grain considered. 

Eq. 28 is related to the well known expression for the formation energy of a 

droplet of a B-rich phase of concentration cB from an A-rich phase of concentration 

E. This expression has two terms: (1) a volume term, in which appears F(c). the 

appropriate thermodynamic potential, and (2) a surface term containing the surface 

free energy Fs, Explicitly, in three dimensions: 

4*R 3 
AFT = - 3 I&,, -F(c)] + 4,FsR2. (29) 

In order that-bulk phases (where the surface terms are negligible) shall coexist 

at concentration c A and cB, we must have: 

T-(c,) = f(CB). 
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Since we assumed that c is close to cA, we may expand: 

E-c,, --i(C) 3(CB) --T(cA) - (c-CA) & 
A 

=- (C- CA) gl, 
A* 

Now Eq. 30 is used in Eq. 29 and we minimize the resulting expression for AFR 

with respect to R in order to find the equilibrium radius at a given c: 

aaFR - 
-= 

aR 
0 =- 4iiR2(% c,) El, 

A 
f 8irFsR, 

and obtain c(R) E CB from this equation, which gives Eq. 28. 

If we have a grain in whose surroundings the concentration is lower than that 

implied by Eq_ 28, evaporation from the grain will outweigh the condensation. 

Similarly, condensation will dominate if the surrounding concentration is too 

high_ When the criteria of Eq_ 28 are satisfied, the grain, according to this 

ana7ysis, will remain stationary, balanced by the two opposing tendencies. Note, 

however, that coarsening could stop at the equLt%btium described by Eq. 28. 

According to Eq. 29, such a state would correspond to a maximum, rather than a 

minimum, in the free energy and so is unstable to fluctuations in either direction. 

There is, on the other hand, a certain stabilizing mechanism in that evaporation 

of a grain leads to an environment richer in B-particles and vice versa. Hence, 

to understand fully the kinetics of this process , we must therefore consider the 

global picture when there are grains of various sizes present in the system. 

Consider now two neighboring grains a distance L apart of size R and R +-AR, 

respectively. Each grain has, when in “equilibrium”, a different nearby B concen- 

tration given by Eq. 28. The difference between these values implies a concentra- 

tion gradient between the surroundings of the two clusters of magnitude: 

(31) 

The typical distance between grains is roughly linear in the average grain 

size R because the composition E is fixed. Assuming now that R= AR== i?, we get 

concentration gradients = 1/R2. A diffusion current will result whose order of 

magnitude is: 

J= M/R2, (32) 

which will destroy the unstable equilibrium for the isolated clusters. For a 

d-dimensional system (where all previous considerations still hold), the change 

of mass (or volume) d(Rd)/dt of a grain is then given by the total current through 

its surface (whose area is proportional to id-‘) , i-e_: 
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Rd-1 diFd) Ja~Mjj~-~ . 

Hence, 

dR3 dt =const.,and R3 = Rz f const. t. (33) 

This linear relationship of R3, which corresponds to grain volume in three dimen- 

sions, with time is consistent-with Eq. 27, as well as with other methods of 

analysis (ref. 6,36). 

This simple argument, using equilibrium assumptions and macroscopic concepts 

(Eqs. 28,29), does not seem appropriate for intermediate times and intermediate 

grain sizes, even if it is appropraite for very late stages. Another coarsening 

law is obtained (ref. 7,36) by a more microscopic consideration of evaporation 

and condensation of the atoms from grains of radius R. A dimensional kind of 

justification may be used to make the new law plausible in the-following way. 

First, note that the probability for the evaporation of B-atoms from a B-rich 

grain depends only upon the local geometric arrangement of atoms in the vicinity 

of this grain, and not on the concentration in the rest of the system. Then if 

a B-atom is evaporated, it performs a random walk in the A-phase region close to 

the surface of the grain. This random walk is otherwise unrestricted. An analysis 

of the properties of such random walks readily shows (ref. 36) that the probability 

that the atom diffuses up to a distance R from the grain without hitting the 

grain surface again decreases at least as strongly as l/R. For large grains, 

the overwhelming majority of evaporated atoms rejoin the grain. By this process, 

the grain surface is rearranged, and the center of gravity of the grain is shifted 

a little. A large probability for recapture means a small probability of large 

excursions by the evaporated atom. Therefore, the mean distance (X) between the 

site of evaporation and the site of reimpingement is usually only a few lattice 

spacings. 

The shift of the center of gravity (%) produced by such a process is given 

by (ref. 36): 

A$ z G-% = xgrain d&i -Ei)fzgrain m = Xmff m = x’fRd. 

Here, we denote the mass of a B-atom by m and use the fact that the total mass 

of the grain is proportional to the grain volume; i-e., E: m=mRd in d-dimensions, 

and A' is a constant whose value is about 1, if length: are measured in units 

of lattice spacings. If we measure the time in units where each atom has on the 

average one opportunity to be exchanged with one of its neighbors, we find for 

the rate of these processes in terms of a probability p,,(i) for evaporation of 

surface atom i: 
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rate = grain'surface P,,(i) = Pev *SRa Pev *Rd-'- (35) 

Ln Eq. 35, we have made the further assumptions, reasonable for large clusters, 

that an average value of p,,(i), namely ij,,. independent of R may be used for all 

clusters- Since we assume low temperatures here, where the grain is nearly pure 

B-phase, we also must have rather compact grains and hence a geometrical relation- 

ship S R =R d-1 holds. On that basis, we find for the cluster diffusion constant 

OR' 
adding up the random displacement of its center of gravity as estimated in 

Eq. 34: 

DR <rate (4x+)* = const Rd-l (x'/Rd) = DR-IVd. 

The grains will coalesce if they come close enough to 

random walks_ We next estimate the time At needed for a 

the mean distanceai? between grains: 

(36) 

each other in their 

grain to diffuse across 

(37) 

and note that a change of volume of the order ,Rd Z(R)d occurs when two grains 

coalesce. From: 

aRd R-d -- 
At4R3+d=R 

3 
3 

We find (ref. 7) immediately, putting A(Rd)/4t= a(Rd)/at: 

$R-*-d, (R)3+ddt, R,,1/(3+d), 

(38) 

(39) 

which is a much smaller growth rate than the one predicted by Eqs. 37 and 33. 

If the latter predictions are correct, one would expect that the Lifshitz-Slyozov 

mechanism supersedes this cluster surface rearrangement and diffusion mechanism 

at long enough times. Again, of course, it is difficult to assess the validity 

of assumptions like Eq. 35, or even guess properly the magnitude of the constants 

not estimated here (ref 36) and hence computer simulations are necessary to decide 

whether a relaxation with the rate of Eq. 39 actually occurs- 

SIMPLE MICROSCOPIC LATTICE MODELS OF BINARY ALLOYS 

Equilibrium Properties 

We consider a lattice where each site i may be occupied by either an A atom 

( A=1 ‘i cB=O) or a B atom (cB- , - _-1, cA=O). We assume that the part of the 

Hamiltoni& depending on thesz local’concentration variables , ct, c$, can be 

represented by a sum of pair potentials and (local) chemical potentials P,(C). 
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+ cy u,(~i)l -I- Ho- (40) 

The background term Ho contains the kinetic energy of the atoms. We assume a 

perfect lattice without vacancies, surfaces, etc., and then the pair potentials 

vAA, etc., depend only on the relative distance ‘ij = xi - r. between the atoms. 

It is convenient to introduce a spin representation in te:i of the variable 

Si =+ 1 using the relations: 

c4 = (1 f si)/2. ‘i B = (1 - Si)/2. (41) 

which leads to the Ising model Hamiltonian: 

H=- z 
i&i 

J(rij) SiSj - F HiSi f ~~ = vision f fl'. 
0 

(42) 

where H’ is a revised background including Ho and where the “exchange constant” 

J is gizen by: 

2J(~ij) = 4PA~(llij) -r, I’pAA(~ij) f~~B(ri j)l ) (43) 

and the “magnetic field” H is given by: 

2Hi = 
c 

[(PBB(rij)-CP,,(r;ij)lf~*(T_i)-~B(Ti)- (44) 

jtril 

According to standard statistical mechanics, we may obtain the equilibrium proper- 

ties of our system by calculating a partition function: 

2 = Tr exp (-H/kBT) _ (45) 

Thermal averages of any quantity Q(<Si)) are then given by: 

LQ(fSil)> = +TrCexp (-H/kbT) Q({sil)l_ (46) 

We suppose now that 1 JI CC IvAAI. l~f55I and that I aJ/aci j l C< l a ‘PAAIa1i-j 1, la q&art-j I 
Then the effect of the set of variables CSil on the properties of the lattice 

(for example, the dependence of lattice spacing on temperature) may be neglected. 

In discussing the behavior of the Gil, we may replace J(rij) by J(sij), where 
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x_ - is the average distance between the particles belonging to lattice sites i, 
?J 
J, instead of their actual distance r. _ 

-‘IJ 
which may vary with time. We then approx- 

imate the average in Eq. 46, taken in a "compressible Ising lattice”, by the much 

simpler average: 

<QCSi3)> = + _ 
Ising 

TriexP (- H~sing/kBT) Q(i9,3)3. (47) 

This approximation is particularly bad if there is considerable *‘lattice misfit” 

between the two species A,B, since then elastic interactions (of long range) 

should be taken into account and this separation of variables is impossible. We 

thus assume that there is no lattice misfit, and in addition take J(Eijj to be 

nonzero only between nezest neighbors; so that Eq. 47 reduces to the standard 

Ising problem considered extensively in the literature (ref. 37). Then, ccr = Q-50 

and the corresponding phase diagram is shown in Fig. 5 for both two and three 

dimensions. For d = 2, the coexistence curve is given by the exact result of Yang 

(ref. 38), while for d = 3 it is based on Pad& approximants (ref. 39). It is 

important to note that close to Tc the behavior of the coexistence curve is: 

a 
‘coex =<m*>-(l- T/T,)‘, B= 1/8(d= 2).6=5/16(d= 3), (48) 

(m* is the spontaneous magnetization) which is not described correctly by the 

-1.00 -50 0.00 30 1.00 

<P? 

(aI 
(h) 

Fig_ 5_ Phase diagram of a three-dimensional (a) and a two-dimensional (b) Ising 
sys tam. The points studied are indicated. 
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Landau theory of Section III, where A = a(T- Tc) leads to 13 = l/2 for both two 
and three dimensions_ More important, one does not obtain any spinodal curve 

from equilibrium statistical mechanics (ref. X3,19). The spinodal curve as given 

in Eq. 13 is only an artifact of the approximation- One can therefore hope to 

obtain a meaninfgul spinodal curve only from nonequilibrium considerations, where 

it cot&d separate regimes of different dynamic behavior (ref. 18,19,16). Its 

location or even its existence may depend on the dynamics of the processes consid- 

ered. Numerical investigations of dynamic properties of two-diemnsional simple- 

spin-flip kinetic Ising models suggest that in this case the "spinodal" curve is 

not very sharply defined and is extremely close to the coexistence curve (ref_ 17, 

40,41)_ In three dimensions, the spinodal curve, if it can be defined at all, 

is probably much closer to the coexistence curve than Eqs. 11 and 13 would sug- 

gest (ref_ 41). 

Time-dependent properties 

The Ising Hamiltonian defined in Eq. 4P does not have any dynamics of its own, 

Of course, the kinetic energy terms contained in Ho and HA will also depend on 

the fSil and thus provide a time evolution of the ISi)_ Since the iSi) evolve at 

a much slower time scale than do the thermal fluctuations of the lattice (lattice 

vibrations), one may treat the latter as a heat bath, which induces random exchanges 

between neighboring atoms_ Since "memory effects" are only important on the time 

scale of the lattice vibrations, one may ignore them as far as +he evolution of 

the CSil is concerned, which is then described in terms of a Markovian master 

equation for the probability P(S1,...,SN,t) P P&t). 

The equation for P&t) will contain a transition probability N&+-s'). which 

gives the probability that the system makes a transition from a state z-to a new 

state S'_ - In fact, the transitions considered permit only the interchange of 

some Si with a neighboring S. so that CSi, S;,...,S~,...,S~,...S~} = 

rs,,s,,...,sj,...,si...., SNIJfor some neighboring sites i,"j. The master equation 

then reads: 

g P&t) = -P&t) s", W(S'+S) f z N(~'+S) P(S'). 
S' 

(49) 

Eq. 49 has the structure of a rate equation: the first term on the right hand 

side describes the decrease of the probability of configuration 5 due to all 

possible exchange processes; the second term describes the inverse reactions, 

which increase the chance of observing state S_ 

Nhen the system is in equilibrium at the temperature T. it will have the 

probability distribution PO(z) = 2-l exp(-H/kBT) (where we have dropped the sub- 

script I) PO(g) should therefore be a stationary solution of Eq. 49, which will 

be automatically true if we impose a detailed balance condition on the transition 
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probability: 

W(S)+-s’) PO(S) = W(s’+Z) P,(s’). 

which can be written in the alternative form: 

we = exp(-Gf/kBT), 

(501 

(51) 

where 6ff is the change in energy produced by exchange S-+s’. Of course, Eq. 51 

does not specify W(S+-S’) uniquely; but a simple choice consistent with Eq- 51 isr 

1 ew(-6WkBT) 
w&+5') = r I+exp(_G,,,kBT) = & [I- tanh(aH/ZkBT)l. (52) 

The arbitrary time constant T is taken to fit our time scale. In principle, T 

could be calculated considering the thermally activated diffusion process of an 

A-atom in a B-lattice and vice versa, but this possibility is not considered here. 

In the process described by Fig. 1, the steady state equilibrium distribution 

Po(SI,--.’ SW) will be obtained only asymptotically for t+-, and we will thus be 

interested in the time-dependent averages: 

&Q(t)>‘ = 
-c 

p(SI.---, SW.t) Q(CS$) - (53) 

CSi 1 

To obtain the structure function S&t), defined in Eq. 1, we have to put: 

Q(cSi,) = ~ 
c 

eikr rS(rI) - <S>l IS& + 1) - cS>l , 

r.rI -- 

where G> is related by Eq. 41 to the constant average concentration of B-atoms. 

From this definition, we note that: 

I z s&t) = l- <s>*, S(k= 0,t) = 0. 
NK 

(54) 

The physical interpretation of the latter relation is simply that there is no 

fluctuation of the average concentration during the evolution of our system. 

It is interesting to note.that the Cahn-Hilliard theory (ref. l-3) can be derived 

(ref. 14) from our model by making certain mean field type approximations_ This 

agreement is seen by putting Q = Si in Eq. 53, differentiating with respect to t 

and using Eqs. 42, 49 and 52. On the right hand side of the resulting equation, 

higher-order cm-relation functions are obtained. But replacing the expression: 
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(i.e.. neglecting fluctuations), one obtains a nonlinear equation for (Si(t)> 

which no longer contains any higher order correlations functions. Making an 

expansion: 

and putting tanh xz x-x3/3, one obtains precisely Eq. 9, since we may then identify 

'?(r.t) with LSi(t)>. This derivation (for details, see [ref. 141) relates the 

phenomenological constants of the Cahn-Hilliard equation (Eq_ 9) to microscopic 

interaction parameters and elucidates the basic approximation, namely, the neglect 

of fluctuations_ The advantage of our stochastic model is, of course, that its 

numerical solution by the Monte Carlo method does not involve such approximations, 

and hence a sensitive test of the validity of such approximations can be obtained. 

In order to discuss the theories of grain growth (ref. 4-7.36) within the con- 

text of our model, it is useful to introduce the definition of a "cluster": A 

cluster (~,a) is a group of z B-atoms, each of which has as a nearest neighbor at 

least one other B-atom of this cluster, and none of which has a nearest neighbor 

any B-atom outside of the cluster. a is used to denote symbolically properties 

of the cluster other than its size IL, e.g., its surface area. This definition 

provides a unique prescription for assigning to which cluster any B-atom belongs. 

(If 5~0.5, it is useful to replace A and B in this definition.) One may then 

proceed to define quantitites like the average cluster concentration, ii,(t), of 

clusters of size 2, defined by n,(t) = A z N;(t). 

of clusters (JL, a) in the system at time "t. 

where N:(t) is the total number 

It seems reasonable to identify large 

clusters (at least when they are "compact") with the grains considered in nucleation 

theory (ref. 4-7,36). 

COMPUTER SIMULATION OF TIME EVOLUTION 

Description of the method 

In the computer simulation one chooses a system size N and, using Monte Carlo 

techniques (ref. 42), explicitly carries out the Markov process described by Eqs. 

49 and 52. The first step is to generate a starting configuration of the system. 

If the initial temperature (T') is taken very high (T'+=), one may use a random 

spin configuration which is easily generated. To consider a finit initial tempera- 

ture T', one would have to let the system evolve from the random starting configura- 

tion (using ordinary spin-flip Monte Carlo samp7ing [ref. 42,40,49]) until "thermal 

equilibrium" is reached for the temperature T! The configuration of the system 

in this thermal equilibrium state may then be used as a starting configuration 

for the spin-exchange procedure by which Eq. 49 is realized_ 
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Having generated a starting configuration. a selection is made (again at random) 

of the coordinates of two neighboring lattice sites i,j , which shall be considered 

for an interchange. The energy change which would result from an interchange 

of these atoms is now calculated, using Eq. 42. Thus, one computes the transition 

probability W from Eq. 52 with -c= I, thus measuring times in units of "one Monte 

Carlo step/spin". Again a pseudo-random number c is chosen; the interchange of 

the spins is actually performed only if W>c, otherwise the old configuration is 

retained. This process is repeated a large number of times. At suitable time 

steps, t, one records the value of the function Q({Si(t)l) in the state {St1 ob- 

tained by this procedure at the time step t. When this procedure is repeated 

"many" times with different initial configurations, then the average of the value 

Q({SFl) corresponds to the ensemble average rQ(t)>in Eq. 55. This procedure 

would constitute an exact realization of a discrete time master equation analogous 

to Eq. 49. 

The size N in the computer simulations is dictated by a competition between 

the desire to make the system as large as possible so it iqitates a macroscopic 

system and also reduces the number of different runs needed for averaging and 

practical computational considerations_ The actual computer experiments have 

been made for square lattices with N= 55x 55 (ref. 14), 80x80 (ref. 23,14) and 

N=200x 200 (ref. 26) sites in two dimensions, and N=30x30x30, 50x50~50 in 

three dimensions (ref. 25). Periodic boundary conditions are used in order to 

avoid edge effects due to "free surfaces". Nevertheless, one has to worry about 

possible finite size effects which could affect the results. If one deals with 

one-phase equilibrium states, finite size effects become important if the linear 

dimension of the system has the same order of magnitude as the correlation length 

.of fluctuations (ref, 37,45,46). One may in fact obtain reasonably accurate 

estimates of the thermal equilibrium properties of infinite systems from Monte 

Carlo calculations on finite systems, apart from a temperature region of a few 

percent around the critical point Tc if one uses values of N like those mentioned 

above (ref- 46)_ The vicinity of Tc is hardly accessible due to the fact that 

there also occurs a "critical slowing down", and hence very large amounts of com- 

puting time would be required (ref, 42,46). 

In a study of phase separation kinetics, finite size problems may occur even 

far from Tc. One such effect is due to the fact that the final thermal equilibrium 

state is one of two-phase equilibrium, and we thus get a contribution from the 

interface between the two phases. The relative magnitude of this contribution to 

the energy of the final state is of the same order as the inverse linear dimension 

(N-1'd) of the system. The coefficient of the N-1'd term can, however, be quite 

large and it is therefore necessary to try and correct for these interface effects 

(ref. 14-26)_ 

In addition, it is difficult to study the very late stages of S&t), since 
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the peak of this function shifts to very low values of k. Due to the finite size 

of N, one may compute S&t) at discrete values only: 

2ir k=+ (px,py) M=21; - 
N2 

Ir=N1,3 (P~,P~,P~) cd= 31, (55) 

where the px, py, pz are integers. Therefore, in the case of d = 2, studies were 

made for both Ns =80 and Nk=200. and it was shown that this discreteness of 

momentum space did not appreciably affect the results (ref- 24.26). 

A further effect related to the finite size of the system is the statistical 

inaccuracy; e.g., one expects statistical fluctuations in the energy of the system 

whose relative order of magnitude is l/A_ Furthermore, the starting configuration 

may not be a "typical" configuration at the temperature T! The starting statis- 

tical accuracy was tested making 8 runs with independent starting configurations, 

under otherwise identical conditions (ref. 24-26). Taking averages over these 

independent runs, the values of S&t) to be presented below were obtained. The- 

relative accuracy is believed to be better than 1% in the case of the energy and 

better than 20% in the case of S&t). 

It should be remarked that in the practical realization of computer experiments, 

limited computer time is often the most serious limitation, and hence it is impor- 

tant to devise a program which is as effective as possible (ref. 24-26). Thus, 

with nearest neighbor interactions an exchange may result in one of a few distinct 

values of 6ff (and hence W) only. Therefore, the possible values of W are computed 

before the calculation and stored in an array, instead of recomputing them over 

and over in the course of the procedure. It is also desirable not to select arbit- 

rary pairs of neighboring spins for an exchange, but only those which consist of 

unlike spins (otherwise their exchange would not produce any change in the state 

of the system whatsoever!)_ Since the number of such pairs is not a constant 

during the time evolution of the system, one has to correct the relation between 

the "number of attempted exchanges" and the actual time appropriately- Nevertheless, 

the computations are very time consuming, since in the later stages of the segrega- 

tion process most attempted exchanges lead to a BH>O and this W is quite small. 

Hence, many attempted exchanges are necessary until one actual exchange takes 

place. A further improvement of the algorithm which takes care of this problem 

(ref. 44) is expected to be useful in future computations of this type. 

Finally, we remark that in order to obtain the quoted accuracy for S&t) it 

was necessary to take "circular averages". That is, one takes averages over all 

(px,py) or (px;py,pz) having the same magnitude: 

P = q' (or p = m, respectively), 
X X Y 

to the nearest integer: 
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S(k,t) = E’ S&d/g’ 1, (55) 

where the sum i’goes over all values of (P,.P~) [or (ox.oy.pz). respectivelyl, 

such that Zirp~Ikl N1’d < 2~(p C 1). Since there is little physical interest in 

the behavior of S(k,t) at large k, -S(k,t) was computed only for the 10 to 15 

sma77est values of k obtained in this way (depending on the value of N). 

Results 

Here we discuss mainly the results of Ref. 24,25,26; the much more restricted 

data of Ref_ 23 are consistent with these resu‘lts- IJe first examine the behavior 

of S(k,t) and then discuss the late time behavior of the energy and the grain 

size distribution. 

Fig_ 6 shows the initial time dependence of S(k,t) for a three-dimensional 

Ising al7oy with composition c=O.5, quenched to T=0.6 Tc. Note that the critical 

tempeature Tc is related to the nearest neighbor “exchange 

k T = 4-51 J (ref. 37). 
BC 

constant” J via 

TEMPERRTURE= -59 Tc 

Fig. 6. EarJy-time evolution of S(k,t) as a function of time for different values 
of k for a three-dimensional alloy of composition 50% A; 50% 8, quenched at 
T=0.6 Tc. At the end of each line is shown the corresponding value of p=30k/2r 
(from ref- 25) _ 

According to the Cahn-Hilliard theory (ref. l-3),these curves should be simple 

exponential functions) increasing with time for k-z kc and decreasing with time 

for k=- kc (c-f. Eqs. 18-21 and the subsequent discussion). Basically, the same 

prediction was obtained by more sophisticated theories for early stages of the 

time evolution (ref. 10,11)_ Fig. 6 is in remarkable disagreement with all of 

these predictions. Instead of an exponential increase with time, the increase 

is even weaker than linear with time! Only in the most recent versions of the 
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theory by Langer and coworkers (ref_ 12), which was partially influenced by these 

results, could a description be obtained which is consistent with these numerical 

results. 

In addition to the lack of any region of exponential increase, it is remarkable 
to observe that the curves reach a maximum and then decrease again. This behavior 

is even more pronounced if one considers the later stages of this process. It 

can be understood from the fact that the peak of the S(k,t) versus k-curves (Fig- 

7) shifts to smaller values of k as time increases. While these curves are not 

JO .30 .60 .30 1.20 i -50 1.50 2.!0 

TEt4PERRTURE= -6 
TIME 

.a 

Lg:; 

z-g 
Sl:1 
129.7 
215.2 
308.2 
405.7 
507-6 
613.0 

Fig. 7. Development with time of the spherical averaged structure frunction versus 
k for the system of Fig. 6. The increasing values of the time listed in the figure 
correspond to the different graphs from the bottom of the picture to the top. Note 
that the numerical results for S(k,t) at the available discrete values of k were 
connected by straight lines in between (from ref. 25). 
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at all in accord with the standard theories (ref. l-3), their similarity to the 

experimental results (Fig_ 2) is very striking_ 

It should be noted that the results for other temperatures are completely analogous 

as seen from Figs. 8 and 9, where data at T=0.9 Tc are presented. Due to critical 

i TEMPERATURE= -89 T_ --5 

UP l-0 100.000 EXCH. 

Fig. 8. Early time evolution of S(k,t) as a function of time, as in Fig. 6. but 
for T=0.9 Tc (from Ref. 25). 

slowing down, it now takes somewhat longer until the same peak heights of S(k,t) 

are reached. The results also look very similar if one chooses a lower concentra- 

tion of B-atoms (c=O.2), as is done in Figs. 10-13. The only difference is that 

now S(k,t) does not decrease with time after reaching a maximum as in Figs- 6 and 

8 for the chosen values of k, but rather stays constant. This behavior corresponds 

to the common "envelope" of all curves in Figs- 11 or I3 for larger values of k. 

Apart from this difference, which is in accord with the most recent theory (ref. 

12), there is no pronounced dependence on concentration. On the contrary, the 

relaxation proceeds very similarly throughout the whole two-phase region. There- 

fore, the present results give little indication that one can find a well defined 

spinodal curve where the kinetic behavior changes drastically. This fact was 

tested more thoroughly in two dimensions, where a large number of compositions 

and temperatures were investigated (ref- 24-26) (see Fig. 5b). Here we show 

only a few selected examples at c=O.5 (Figs. 14,-15) in order to demonstrate 

that the general features of the behavior are quite similar to the three-dimensional 

case_ 

In order to discuss the late-time behavior of S&t) in terms of the power law 

predictions for the position of the maximum (ref. 6,7,36) [km(t)-tma' of Eqs- 

3, 27 and 391, we determined the first moment of S(k,t): 
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TENPERRTURE= . 
TIME 

-0 
13.9 
30.1 
69.3 
99.5 
135.3 
171.6 
739-s 
1q9o.s 

%-~ 
399511 
((832-7 
5675.7 
6529.3 

.9 Tc 

Fig. 9. Development with time of the spherical averaged structure function versus 
k for the system of Fig. 8 (from ref. 25). 

(57) 

An example is given in Fig. 16, where a log-log plot of+Ckm(t)> vs. t is given. 

Power law behavior should show up as straight lines_ The curvature of the graphs 

obtained does not allow any interpretation in terms of simple power laws, however. 

But one may interpret the data in terms of a crossover from power laws where the 

"cluster diffusion and cluster surface rearrangement" mechanism is valid (i.e., 

a' = L/6 in three dimensions; cf. Eq- 39) to power 'laws with the quicker "cluster 
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Fig- 10. Early t<me evolution of S(k,t) as a function of time for different 
of k for a three-dimensional alloy of composition 80% A; 20% B, quenched at 
The corresponding va7ue of p=30k/2= is shown at the end of each line (frcm 

Fig. 11. Development with time of the spherical averaged structure function 
k of the system of Fig. 10 (c-f. Fig- 7 for explanations) (from ref. 25). 

values 
T=0.6 T _ 
ref. 25): 

versus 

TEYPERRTUREz -89 T 

rs 
-N‘ 
c.n 

Fig. 1.L Same p7ot as in Fig. 10, but for T= 0.9 Tc (from ref. 25). 

Fig. 13. Same plot as in Fig. 11, but for T=0.9 Tc (from ref. 25). 
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Fig. 14. Early growth of the structure function for representative k values (the 
numbers in the figure give the corresponding values of p) for a two-dimensional 
system of composition 50% A; 501 B, quenched at T=0.58 T_ (from ref. 24). c 

i 
c 

Fig. 15. Later-time development of the structure function in the two-phase region, 
the system being the same as in Fig. 14 (from ref. 26). 
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Fig. 16. Logarithm of the first moment of the structure function (Eq. 57) plotted 
versus the logarithm of the time for three-dimensional systems of 50% A; 50X B 
composition and several temperatures. The additive constant (10.) in the time 
scale was used to incorporate also the initial stages at this plot; it should be 
irrelevant for the determination of the asymptotic power law behavior (from ref. 
25). 

evaporation and condensation” mechanism (i.e., a’=1/3, cf. Eq. 33), which should 

dominate at large enough times_ This interpretation is, of course, somewhat 

speculative. 

On the other hand, the results are in good numerical agreement with the results 

of Langer, Bar-On and Miller (ref. 12) in the range of time studies. This good 

agreement may be considered as a justification of the approximations that they 

made_ A more detailed comparison with their predictions will be given later. 

Their work does not contain any explicit prediction for the asymptotic time 

dependence since it yields numerical results only. It can be argued (ref. 36), 

however. that for very late times the equations of Langer, Bar-On and Miller should 

yield a’ = 35_ If this assumption is correct, their treatment would seem to be 

inappropriate for the late times. 

In order to clarify these questions converning the asymptotic power lawas, the 

time dependence of the excess energy Au(t)=u(t)- u(m) has also been recorded, 

where: 



203 

u = NAB/N =qfZd f (lf2JN) Cff). (58) 

Here, NAB denotes the number of AB-nearest neighbor pairs in the lattice, and q 

is the coordination number. While u cannot be measured experimentally, it can be 

recorded very easily in the computer experiment and compared to the theoretical 

predictions (ref. 7,36), which imply: 

AU(t)- t-a'. (59) 

The computer simulation results (see Fig. 17) seem to indicate again that two 

a 
i 

SYMBOL TEMPERATURE SLOPE 
f 39 --.224 
X -78 --.23 I 
0 -89 --.237 

CD 

2 
I 

I 

LOO L51 2.02 2.53 3.04 3.55 

LOG(TIME+IO) 

Fig. 17. Log-log plot of the excess energy versus time. The system studied is a 
three-dimensional simple cubic lattice with composition 50X A; 502 B, quenched 
at temperatures T=0.6 Tcm 0.8 Tc and 0.9 Tc (from ref. 25). 

regimes with different behaviors have to be distinguished. For very long times, 

the results seem to be consistent with the Lifshitz-Slyozov (ref. 6) l/3 law_ A 

more definite conclusion is unfortunately not possible since there is considerable 

uncertainty concerning the correct values of u(a) (ref. 25). 

In order to facilitate a comparison with the theories on grain growth, the 

grains (or clusters) which form in the course of the relaxation process have been 

investigated directly_ Of course, well separated grains occur at small enough 

concentrations only; at higher concentrations one rather obtains a percolating 

network (ref. 23) _ The following results refer to c=O.Z, where well defined 

clusters were found both in ~IVJO and three dimensions. It is interesting to note, 

however, that the late time behavior of S(k,t), AU(~), etc.,seems to be unaffected 

by this percolation threshold. 

In three dimensions, the quenched system goes rather quickiy to a state where 
nearly all B-atoms belong to a few very large grains. Fig. 18 shows a “snapshot 
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Fig_ 18. Four 
quenched down 
these parallel 
is also shown 

cross sections of the 30x30~30 system with composition c=O.Z 
to T=0_6 T, at time t=3123 after the quench_ The distance between 
planes is 8 atomic layers. 
(from ref. 25). 

The corresponding cluster distribution 

picture" of four 30x 30 planes of the system. Note that even rather large grains 

have sti77 quite irregu7ar shapes_ Fig. 19 gives a p7ot of the mean grain size 

versus time- This result can be compared to the corresponsing experimental obser- 

vations (Figs. 3 and 4). For the range of times studied here, the grain volume 

Fig_ 19_ Log-7og plot of mean grain volume versus time for a three-dimensional 
lattice of composition c=O.Z quenched at T=0.6 Tc (from ref. 25). 
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does not yet follow-the V-t law (ref. 6) (Eq. 33). It must be noted, however, 

that the very smallest particle sizes observed experimentally correspond to the 

very largest’ones observed in the computer experiment, and that visual inspection 

of different cress sections in the system (as those shown in Fig. 18) does not 

reveal the anomalous (very far from spherical) cluster shape which might also be 

characteristic of real quenched alloys. 

We give more extensive results on the evolution of the cluster pattern in two 

dimensions, where observation is much easier. Figs. 20-23 show the evolution of 

a 200 x 200 &tern, quenched at T= 0.59 Tc. The most striking difference with 

the three-dimensional case is that the clusters stay rather small during the 

whole course- of observation. It is seen that the clusters become more compact 

as time goes on. Some small clusters evaporate while others coalesce or split 

into parts again. From the direct observation of all these processes, it can be 

said that the physical mechanisms postulated by the theories (ref. 6,7,36) described 

in the section entitled "Discussion of theoretical concepts - Theories for the 

asymptotic time-dependence of the coarsening” are certainly present. Unfortunately, 

there does not appear to be a well defined succession of various stages when different 

mechanisms are dominant, rather we observe all processes at the same time. This 

finding indicates that it will be necessary to incorporate their interplay into 

a quantitative theory. 

Figs. 20-23 show that the kinetics of spinodal decomposition can, at least in 

principle, be described in terms of cluster formation and growth, as in nucleation 

theory. It is always the limitations due to the diffusion of atoms and the con- 

servation of’mass which determine the rate of growth. Again, the conclusion is 

that the kinetic behavior changes very gradually if one varies the composition, 

and one should not see any drastic change at a spinodal curve (ref. 48). 

The grain size distribution is usually recorded in the experiments (ref. 4,5), 

and thus the evolution of the cluster size distribution with time has also been 

obtained (Figs. 24-27). These figures show that the system does not evolve toward 

a distribution of rather uniform grain size. The grain size spectrum stays very 

broad while its center shifts to larger values as time goes on. The large statis- 

tical fluctuations prevent us from making statements concerning the functional 

form of this distribution function. In Fig. 28 we give the time dependence of 

the mean cluster size in order to chekc the power law predictions of Refs. 6 and 

7. Within the rather restricted regimes of time and grain sizes studied, the 

data are roughly consistent with the Binder-Stauffer predictions (ref. 7) but 

inconsistent with the Lifshitz-Slyozov theory (ref. 6). 

Figs. 29 and 30 finally Show snapshot pictures of an 80x 80 lattice with equi- 

atomic composition (C = 0.5). Here, well separated clusters can no longer be dis- 

tinguished. The resulting network of B-phase on the background of A-phase (Or 

vice versa!) is quite irregular. The spinodal decomposition does not lead to any 
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Figs. 20-23, “Snapshot picturesL' of the canfiguration of a 2OOx2CJU system with 
composition c= 0.2 at various times after the quench to T=Q.59 Tc. B-atoms are 
indicated as black dots, A-atoms are not shown (from ref. 26). 
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Figs. 24-27. Cluster size distribution of the two-dimensional system obtained as 
a combination of the results from the 200x200 and 80x80 lattices with composition 
c=O.Z quenched at T = 0.6 Tc (from ref. 25). 

regular (i.e., periodic) arrangement of precipitated zones, as one might expect 

on the basis of the simplified theory presented in the section entitled "Discussion 

of theoretical concepts - Macroscopic theory". 

One main advantage of the Monte Carlo computer simulation method is that compli- 

cations arising from additional tei-ms in the Hamiltonian may-be easily considered- 
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Fig. 28. Log-log plot of mean grain volume versus time for the system of Figs. 
24-27 (from ref. 26). 

As an example, we can treat the case where a gradient in the "field" H (Eq. 44) 

is present in the system. As seen from Eq. 44, such a gradient may arise if the 

interactions Q (f 
+ 

-f., 
AA 7 -,f-)~~,(';'i j J* 

f ) do not depend only on the relative coordinate 

ri but rather on both coocdinates Fi,Fj 

for eJxample, 

separately. This gradient may occur, 

in a thin film when,due to the technical production process gradients 

in chemical composition, lattice spacings, etc., may exist across-the film. Such 

a case was also simulated (ref. 14) where a 55x55 lattice was used with a con- 

stant gradient AH in one direction. While free edges were used in the direction 

of the gradient, the two other edges were connected by periodic boundary conditions. 

Since the system is two dimensional, a thin strip rather than a thin film is repre- 

sented by this choice of boundary conditions. It turns out that in such a case 

one obtains a more macroscopic phase separation (ref. 14), the clusters of B-atoms 

following the drift of the gradient and forming a coherent domain of B-phase in 

one part of the sample (at the bottom of the strip, for instance). This situation 

is illustrated in Fig. 31 where the time evolution of the local order parameter 

m(x,t) [note that here I= (x,y), m(x,t)=Jdy y(c,t)I is shown for various positions 

in the system. In contrast to the slow nonexponential relaxation laws discussed 

so far, one now observes exponential relaxation toward the equilibrium state. 

This behavior can be understood using the master equation (Eq_ 49) from which it 

follows that: 



Figs. 29,30. "Snapshot pictures" of a two-dimensional 80x80 system with 50% A; 
50% B atoms quenched at T = 0.58 Tc (from ref. 26). 



Fig. 31. Time evolution of the local order parameter m(x,t) in a system with a 
gradient in the field after a quench to T=0.5 Tc (from ref. 14). 

am(x,t) _ 
at 

--v 2c . . ..I -cons-t. (AH)~. 

Here, in addition to the diffusive terms (denoted symbolically by I...), present 
2 

also in the homogeneous case, one now has an extra term, const (aH) , which pro- 

duces the exponential relaxation. 

DISCUSSION AND CONCLUSIONS 

From the numerical results presented above, the following points emerge: 

I_ There &ea nort e&f, in the stochastic exchange Ising model, a time regime 

in which the structure function S&t) increases exponentially with time as pre- 

dicted by the linearized version of the Cahn-Hilliard theory (ref. 1-3) (see 

section entitled "Elementary discussion of theoretical concepts - C'lassical theory". 

On the contrary, S(&t) increases more slowly than a linear function of time, all 

temperatures and compositions within the coexistence curve. Hence, we conclude 

that the linearized Cahn-Hilliard theory, which is usually considered as a reason- 

able approximation for the early stages of the phase separation process, doe not 

provide a valid description. Of course, we have shown only that it fails with 

respect to the very simple stochastic Ising model considered here, but there is 

not reason to assume that it will work better in more complicated realistic systems. 

In fact, the general features of S&t) observed experimentally (Fig. 2) and in 

the computer simulation (Fig_ 7) are extremely similar. 

2_ A reasonably satisfactory description of the early stages of the phase 

separation process is provided by the theory of Langer. Bar-On and Miller (ref. 

12) (see section entitled "Discussion of theoretical concepts - Theories including 

fluctuations"). This theory is constructed from a continuum description valid 

in the vicinity of Tc; since the critical region is not of great practical interest 

in the case of spinodal decomposition, it is important to note that the results 

of Ref. 12 provide in fact a satisfactory description of the computer simulations 

for temperatures as 7ow as T = 0.6 T,. This conclusion is demonstrated in Figs. 32-34, 
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Figs. 32-34. Comparison of the computer simulation results with the calculations 
of Ref. 12 (solid curves) for different values of time (from ref_ 25). 
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where the scaled strucKIre function z(q,:) is plotted; the curves are the results 

of the theory, while the points are the comouter simulation results. This scaling 

expression is related to S(k,t) via the "dynamic scaling" relations (ref. 12): 

.i~ = +I- T/Tc)Yt2" t,q = a2(1- T/E,-" k ; (61) 

%q,-r)=a3(l-T/Tc)y S(k,t), (62) 

where the critical exponents (ref. 37) and other parameters were related to the 

independently obtained critical properties of the Ising model (ref. 12); y = 5/4, 

v = q/14, CCI = 3-51. a2 = 0.35 and a3 = 2.59. Thus, no fitting parameter whatsoever 

was available in Figs. 32-34. The dynamic scaling property thus appears to hold 

for a surprisingly broad range of temperatures- 

3. The behavior of S&t) is qualitatively the same throughout the whole two- 

phase coexistence region. A well defined spinodal curve where the kinetic behavior 

changes abruptly does not exist in our model, and (we believe) in no other system 

with short range interactions. Thus, the transition from the spinoda? decomposition 

mechanism (at large supersaturations) to the nucleation mechanism (at small super- 

saturations, close to the coexistence curve) is extremely gradual. This fact is 

also borne out by a direct study of the cluster growth processes_ 

4. It has been demonstrated that the time evolution of the mean cluster size 

as well as the particle size distribution can be studied in computer simulations. 

Well separated grains exist for rather low concentrations of B atoms only, however, 

particularly in the three-dimensional systems. Even then, the resulting cluster 

shapes are distinctly nonspherical and quite irregular (ref. 25). If one tries 
a' to interpret the growth of the grains in terms of a simple power law t , the 

resulting exponent would be (a' l/4-1/5) which is neither in accord with the 

prediction of the Lifshitz-Slyozov theory (ref. 6) (a'= I/3) nor with Ref_ 7 

(a'=1/(3+d) in d dimensions)_ A detailed analysis reveals, however, that an 

interpretation of the data in terms of a simple power law is inadequate_ A more 

satisfactory interpretation is perhaps obtained in terms of a crossover from the 

slower cluster diffusion (ref_ 7) to the quicker cluster evaporation (ref. 6) re- 

laxation mechanism. This concept would imply that for large enough times the 

Lifshitz-Slyozov theory (ref. 6) becomes valid, but a definite conclusion concern- 

ing this point is hard to obtain, since finite size effects may affect this inference 

from the computer simulation. Since the late time behavior which results from 

the approximations of Langer, Bar-On and Miller (ref_ 12) is not consistent with 

Ref. 6, a satisfactory theory which describes all stages of the phase separation 

process does not yet exist. 

5. It has also been shown that the relaxation of the system is very sensitive 

to gradients in the interatomic forces in the system. Physically, such gradients 
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are expected to occur near surfaces, crystallographic grain boundaries, disloca- 
tions and crystal imperfections. It seems, on the other hand, that nonspherical 

clusters may appear in the system at low concentrations (ref. 25), a fact which 

is neglected in the interpretation of most experiments on the late stages of the 

evolution (ref. 5). As a consequence, great care is necessary in the interpreta- 
tion of actual experiments in terms of the various theories_ As we have stressed, 
it is one basic advantage of the computer experiments that such uncertainties 

about the microscopic properties of the system do not occur. 
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