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We present a new formalism in Fourier space for the study of spatially nonuniform fluids in 
nonequilibrium states which generalizes previous work on uniform fluids. Starting from the 
Liouville equation we obtain a hierarchy of equations for the reduced distribution functions 
which gives their rate of change at any given order of the system mean density as a sum of a finite 
number of terms. Using a finite-ranged repulsive interaction potential we derive, as a first 
application of the formalism, the Boltzmann integrodifferential equation for an infinite system 
which is initially in a "weakly" inhomogeneous state. This is accomplished introducing an initial 
statistical assumption, namely initial molecular chaos; this condition is seen to hold during the 
time evolution described by the resulting kinetic equation. 

1. Introduction 

The  s ta t i s t i ca l  ana lys i s  o f  fluid d y n a m i c s  a w a y  f rom equ i l ib r ium has  po in t e d  

out  dur ing  the las t  d e c a d e  or  so some  o u t s t a n d i n g  f e a t u r e s  of  p r e s e n t - d a y  

k ine t ic  t heo ry ,  ma in ly  the  " long- t ime  ta i l "  e f fec ts  and  the  d i v e r g e n c e s  in the  

nonequ i l i b r i um vir ia l  e x p a n s i o n s  L2) wh ich  have  a t t r a c t e d  m u c h  a t t en t ion  

l ead ing  to a be t t e r  u n d e r s t a n d i n g  o f  the  sub jec t .  The  a t t en t ion  has  a lso  been  

c o n c e n t r a t e d  on a more  gene ra l  b e h a v i o r  of  fluids t h rough  the  ana lys i s  of  

so lub le  m o d e l s  3) and  c o m p u t e r  exper iments4) ,  and  on s e m i p h e n o m e n o l o g i c a l  

theoriesS);  the  c o m p a r i s o n  b e t w e e n  these  a p p r o a c h e s  s e e m s  to ind ica te  tha t  

k ine t ic  t h e o r y  is in g o o d  shape .  I t  las ts  h o w e v e r  a f u n d a m e n t a l  i n t e re s t  in 

gene ra l  m i c r o s c o p i c  f o r m a l i s m s  a l lowing  the s tudy  of  some  bas ic  p r o b l e m s  o f  

theory2'6-a). In  this  sp i r i t  we  p r e s e n t  in this  p a p e r  the  g e n e r a l i z a t i o n  to 

spa t i a l ly  i n h o m o g e n e o u s  (or  n o n u n i f o r m )  fluids o f  p r e v i o u s  w o r k  9-") which  
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was restricted to uniform sys tems and hence prevented  of most  interesting 
applications. We also deal here with the concrete  problem of a controllable 
derivation of the familiar integrodifferential Bol tzmann equation f rom the 
Liouville equation. This is expected  to shed some light on the conditions of 
validity of Bol tzmann 's  equat ion and on the connect ion between a reversible 
microscopic  description and an irreversible macroscopic  model,  i.e., on the 
precise way in which irreversibility is introduced in the formalism. 

The formal ism we develop here is concerned with the time evolution of the 
reduced distribution functions f , (R, ,p";t)  where p" denotes  the set of 

momenta  and R, the position of the center  of mass of a subsystem of n 
particles. By means of an appropr ia te  project ion of the B B G K Y  hierarchy ~2) 
for the rate of change of the functions F,(q", p"; t) we obtain a new hierarchy 
for the functions f , (R, ,  p" ;  t) which presents  the same formal  structure as the 
one previously obtained 9) and investigated TM) in connection with spatially 

homogeneous  systems.  In the form suitable for the applications in this paper,  
the rate of change of f ,(R,,p"; t) is thus expressed  as a sum of two types of 
terms besides the characterist ic s treaming term: terms which at finite times 
are of the order of the mean system (number-)  density,  D, and which also 

involve the initial conditions F.(q", p";  0), and a term which at finite times is 
of the order of  the square of the mean density. Iterating this equation one is 
led to familiar non-equilibrium virial expansions;  we can write the resulting 
equations,  however ,  as a sum of a finite number  of terms (for any order in the 
density) as an exact  consequence of the Liouville equation in the ther- 
modynamic  limit for a sys tem with a finite-ranged repulsive interparticle 
potential. 

The formal ism accounts  for the sys tems nonuniformity through the depen- 

dence of f,(R,, p"; t) on R,. Thus,  one may deal with the Fourier components  
f , ( k , p " ;  t) where the wave  vector  k plays the role of an " inhomogenei ty  
parameter" .  In the case k = 0 we recover  the functions f,(p"; t) relevant  in 

the analysis of uniform systems.  The formal ism trivially reduces then to the 
one previously considered 9'1°) which allowed a controllable derivation of 
kinetic equations. For k "smal l"  the formal ism can be applied to the much 
more interesting spatially inhomogeneous  sys tems where the distances over  
which the sys tem changes significantly are large compared  to the range of the 
interparticle potential. 

In this paper  we apply the equations corresponding to the latter case to the 
investigation of a controllable derivation of Bol tzmann 's  integrodifferential 
equation. As is well known, the Bol tzmann equation consti tutes a great step 
towards understanding the temporal  evolution of infinite sys tems but its 
original derivation involves uncontrolled approximat ions  and raises serious 
conceptual  problems.  The familiar B B G K Y  approach,  on the other hand, fails 
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to derive that equation in a consistent way, and the alternative statistical 
approaches developed by several authors present similar difficulties. The 
situation is especially discouraging in the case of nonuniform systems where 
one encounters extremely difficult problems related to the existence and 
uniqueness of the nonlinear inhomogeneous Boltzmann equation~3). Accord- 
ingly, given that this equation is known to be valid as an empirical formula, 
and given that there is no proof of it being completely correct, the interest of 
new derivations allowing the analysis of its validity is clear. In particular, 
beyond the zeroth-order approximation corresponding to homogeneous 
systems2'S'9'J3), of primary interest is the situation in which (a) the system is 
initially "weakly" inhomogeneous and (b) there is initially a condition of 
"molecular chaos". Under these conditions, we show that the terms of the 
hierarchy for fn(Rn, p ' ;  t) which for finite times are of the order of the mean 
density, D, together with the streaming term, give rise to Boltzmann's equa- 
tion in the limit of low mean density and for times longer than the collision 
time. The term containing the initial conditions vanishes in this limit. 

The persistence of conditions (a) and (b) during the kinetic evolution of the 
system is also investigated. This is intimately related with two interesting 
questions which are proved in this paper, namely the factorization at any time 
of the n-body reduced distribution functions in terms of one-body reduced 
distribution functions and the existence of the corresponding kinetic equation 
as a consequence of the Liouville equation. Concerning the latter, we can see 
that the relative importance of spatial correlations at a given time, t > 0, is 
measured in a sense by the relative magnitude of the term of order D 2 (at 
finite times), i.e. the "remainder" term in our hierarchy, which is presented in 
a closed form. This question, which was already analysed in connection with 
the homogeneous case, was translated there into the more transparent one of 
the existence of a proper limit for a well-defined function when the relative 
distance of two particles tends to infinityg). The problem can be formulated in 
similar terms in the case of inhomogeneous systems. We mention that an 
alternative procedure in the investigation of kinetic equations, in particular a 
proof of the existence of the Boltzmann equation for homogeneous systems 
which avoids the above restriction, was given elsewhere~l); this, however, was 
restricted to a limited class of potential functions. 

Section 2 contains the general formalism in phase space while section 3 is 
devoted to the analysis of the integral kernels appearing in the time evolution 
equations. In section 4 we translate the formalism to Fourier space. Section 5 
contains the analysis of initial conditions; in particular, we introduce the 
condition of initial weak inhomogeneity in order to state the relevant equa- 
tions for the applications in this paper. We also show in section 5 that, as a 
consequence of the initial finite range of the correlations in the infinite 
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system,  the functions f ,(k,  pn;0)  factorize into a product  of n one-body 
distribution functions,  and the term in our equations containing information 
about  the initial state vanishes in the limit of low density. The latter result is 
necessary  in order to prove  the existence of a kinetic equation. It is also 
proved  in section 5 that the relevant  collision opera tor  for weakly in- 
homogeneous  sys tems essentially reduces to the relevant  one in the case of 

homogeneous  systems.  In section 6 we obtain f rom our formalism some 
previously derived results 9,j°) for compar ison and completeness ;  in particular 
we derive the Bol tzmann equation for homogeneous  systems.  Section 7 

contains a derivation of the familiar nonlinear Bol tzmann equation for non- 
uniform sys tems;  we also prove  the pers is tence in time of the factorizat ion of 
the reduced distribution functions in a certain familiar sense (molecular chaos). 
The problem of the existence and correctness  of Bol tzmann 's  equation can be 

formulated in simple terms;  the conditions for its derivation are analysed in 
section 8. 

2. General  t ime evolut ion of reduced distribution functions: expansions  with a 

finite n u m b e r  of t erms  

Let  us consider a classical conservat ive  sys tem of N identical point- 
particles of  mass  m confined in a bounded region/2  of volume V. The state of 
the sys tem at any time t can be specified by the N-body  distribution function 
or Gibbs ensemble  density I z N ( q N ,  p N ;  t )  which we choose normalized to 

unity. Here  q N =  (ql . . . . .  qN) and p N =  (P l  . . . . .  P N )  denote respect ively the 
coordinates and conjugate momen ta  of the N particles or, al ternatively,  the 
representat ive  point in the associated phase space. Relevant  information 

about  kinetics is also contained in the n-body reduced distribution functions 
F . ( q " ,  p" ; t), n = 1,2 . . . . .  defined by 

where dq ~N-') = dq ,+~ . . ,  dqN and dp (N-n) = dpn+~ • . .  dpN. Integrat ions with 
respect  to the particle coordinates are restricted to the r eg ion /2 ;  integrations 
with respect  to the momenta  are extended to all possible values. We now 
introduce 

1 n 
Rn = n ~ qi, r ~  ) = qt - q . ,  (1 = 1 . . . . .  n - 1), (2.2a) 

j = l TM 

P, = ~ Pj, 7r~ )= ( P l - P , ) / n I / ( " - I ) ,  (1 = I . . . . .  n - 1), (2.2b) 
i=1 
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which correspond respectively to the position of the center of mass, the 
relative positions, and the corresponding momenta;  all of  them refer  to the 

n - r :  ( r ( l ) ,  r~-~)), the change of subsystem of n particles. Denoting r .  . . . ,  
variables (2.2a) transforms the reduced distribution functions F.(q",p"; t) 
into F.[q"(R., r."-l),p"; t] which we may write as F.(R.,  r~, -~, p"; t). Next  we 
define a new set of n-body reduced distribution functions [.(R.,  p"; t) through 
the relations 

f . (R. ,  p"', t) = 
f 

V-("-~)Jdr .  "-~ F.(R.,  "-~ °; r .  ,p  t) 

= V - ~ " - ' ) f d q " 6 ( l ~ q j - R . ) F . ( q " , p " ; t )  
",'~ i=1 

= a .F . (q" ,  p";  t), (2.3) 

with 8 the Dirac delta function. The last equality in eq. (2.3) defines the 
idempotent operator  A.(A] = A.). We also introduce the operator  F. such that 
A. + F. = 1. The evolution with time of the functions f . (R . ,p" ;  t), which no 
longer depend on the relative coordinates,  is the main subject of the present 
paper. 

The Gibbs ensemble density satisfies the Liouville equation, 

Odzu = - iLu~u ,  2.4) 

where 0, - O/Ot and Lu denotes the Liouvillian associated with the set of N 
particles. To be specific, we consider the Hamiltonian function 

N N 

Hu(qU, pU) = ~ (p~[Zm)+ ~ ~ ~i,, (2.S) 
/=1 j> l= l  

where q~j~ = ~([rjl[) stands for the finite-range repulsive interaction which is 
assumed to act between particles i and l; r~ ~- qi - q~. Thus, the Liouvillian L.  
associated with any set of n -- 2, 3 . . . . .  N particles assumes the explicit form 

L.  = - i  ~_~ (pi/m)" Vi + i Z " Z  v~pj, • 0,, (2.6) 
i= l  ./>/=1 

where we have used the notation Vj --- OlOqi, Oj~ =- O/Opj - O/Opt; also 8 i --- O/Opi, 
fT. -~ O/OR. will be used. 

By integrating eq. (2.4), discarding surface integrals at infinity in phase 
space and using (2.1) one obtains the set of coupled equations [BBGKY 
hierarchy~Z)] 

O,F. = - i L . F .  - i(N - n) V-J ~.,.+ IF.+~, (2.7) 

for the reduced distribution functions F.(q", p"; t). Here 

nf f . . . .  1--=i~ dp.+l dq.+lVj~i..+l • 0j. 
j=l  

(2.8) 
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We now apply to the hierarchy (2.7) the project ion operators  A, and Fn 

defined through eq. (2.3); the resulting equations respect ively reduce in the 
thermodynamic  limit ( N ~ ,  V ~ ,  N / V  = D finite constant;  this limit will 

hereaf ter  be denoted T-lira) to the two coupled sets of equations 

0,f~ = -i/-~,d'. - iD T-lim A . ~  .. . .  ,h .+,. (2.9) 

a,h,, = - i ( L .  - /7 . . ) f .  - i L . h .  - i D  T-lim F.S . . ,+ ,h .+~.  (2.10) 

where 

hn(q n, p" ;  t) - F . F . ( q " .  p" ;  t) = F . ( q " ,  p" ;  t) - f . ( R . ,  p " ;  t).  (2.11) 

Here use has been made of the propert ies  

T-lim An~ ..... lf.+~ = 0. T-lim A . L . F .  = l~J . .  (2.12) 

with 

l~n = - i ( n m ) - l P n  • tg.. (2.13) 

and 

~.. .+lf.+l = 0. (2.14) 

Propert ies  (2.12) are a direct consequence  of the finite range of the considered 
interaction potential;  (2.14) holds whenever  the sets of n particles are 

sufficiently far (i.e., at a distance larger than the range of the interparticle 
forces) f rom the boundaries  of the region ~2. The formal  solution of eq. (2.10) 
obtained by Laplace t ransforms is 

t 

= e x p ( - i t L . ) h . ( O )  - i I d r  h . ( t )  exp(- i~ 'L. )  
. g  

0 

x {(L° - £ . ) f . ( t  - r) + D T-lim F.~. .n+~h.+j(t  - r)}. (2.15) 

Using the same iterative procedure  in Laplace space which we used in ref. 10. 

one finally obtains 

a , f . ( t )  + i/~./n(t) 
I 

m = |  I . J  

0 

+ifd1-K . . . . .  (T)I~n+mf n+m(l -- T) t 
0 

m=| 
0 
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t 

-~- Kn.n+m(t)hn+m(O ) + i  f d ~  Kn,n+m(T)l~n+mfn+m(t- T)} 
o 

- iD I+l f dr  K.,.+l(~')F.+t~.+t,.+t+lh.+H(t - r), (2.16) 
0 

where we write 

K.,.+,.(t) = (- i )  m T-lira A.~...+l 

× {~=-t" [ /  d.kexp(- - i r ,  L.+DF.+,~.+,,.+k+,exp(i.kL.+k+,)]} 
~'k-I 

× exp(-itL,+m). (2.17) 

The product  denoted by l-l', which is by definition equal to 1 for m = l, is 
ordered from left to right according to increasing values of the index k; also 
r0=0 .  

Eq. (2.16) for the time evolution of the reduced distribution functions 
.f,(R,, pn; t) will later appear to have a more useful structure than the BBGKY 
hierarchy. Indeed, while the first expression in (2.16) is equivalent to the usual 
virial expansions, the second expression in (2.16) presents the advantage of 
being expressable for a given value of l as a sum of a finite number of terms. 
An equation for the n-body momentum distribution function with a structure 
formally similar to (2.16) allowed an interesting treatment of spatially uniform 
fluids9-"). Of particular interest is the case I = l in eq. (2.16) or, alternatively, 
the equation which follows upon substitution of an expression of the form 
(2.15) for h,+l(t) into the last term of eq. (2.9): 

odz.(t) -- - i L J n ( t )  

- D T-lim f dr  A.~., .+I exp(-irL.+l)(L.+l - L.+l)f.+l(t - ~) 
0 

- D 2 T-lira f dr  A.37 .. . .  l exp(-irL.+OF.+l~.+l,.+:h.+2(t - r) 
0 

- i D  T-lim A . ~  . . . .  n exp(-itL.+Oh.+~(O). 

If we write 

(2.18) 

J . . . .  i..+2(t) = iK .. . .  j(t)F~+l~+l,.+2, (2.19) 
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eq. (2.18) can be expressed as 

Ocf.(R. ; t) = - i /~.J . (R.  ; t) + iD f d~- K...+,(~-)(L.+, - £.+,)f.+,(R.+,; t - ~-) 
0 

t 

/ d~" J . . . .  L..+z(~')h .+2(t - "r) + DK. . .+,( t )h .+l(O).  (2.20) D 2 

0 

Here we have explicitly indicated the dependence of the functions f .  on the 
center-of-mass coordinates and on time, and omitted the dependence on other 
variables for simplicity in the notation. Eq. (2.20) gives the time evolution of 
the reduced distribution functions f . ( R , , . p " ;  t) in terms of [ .+,(R.+, ,p"+';  t), 

hn+z(qn+2, p.+2; t)~-h.+z(R.+~, r"~+~, pn+2, t) and certain information about the 
initial state which is contained in h.+,(0). 

3. Formal properties of integral kernels 

Before proceeding further in the analysis of the explicit temporal evolution, 
let us establish certain formal properties of the operator  K. . .+ , ( t )  in eq. (2.20). 
According to (2.17), (2.8) and (2.3) 

Kn..+l(t) --- K. . .+ , (R . .  p" ; t) = - i  T-lira An~...+, exp ( - i tL .+0  

× ~ V~q~.~+~ • 0; exp( - i tL .+0 .  (3.1) 
j=l 

We first note that the canonical t ransformation defined by (2.2) is inverted by 
the relations 

n I 

q . = R . - n  - l ~  r~ ), q j = r ~ ) + q . ,  (3.2a) 
I = ,  

n - I  

Pn = n- lpn  - n I/(n-I)n-I ~ "n-~ ), 

(3.2b) 
ql 71 n Y p n ,  PJ = ~ l l ( n - I ) _ _ ( j )  

with j = 1 . . . . .  n - 1. For  simplicity we shall write hereafter  

P~ = (nrn )-l P.. (3.2c) 

Using (3.2), the n-body Hamiltonian function (2.5) can be separated 

' " - '  + H . ( r .  ) ,  (3.3) H . ( q " . P " ) = ~ n m + H . ( l r .  ) . . . .  , 
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with 7r~ -~= (n'~ '~ . . . . .  ~.~-1)). Accordingly, the corresponding Liouvillian can 
be written as a sum, 

L. =/_/,, + Lr,,, (3.4) 

of a part which only depends on the center-of-mass variables,/~, as defined in 
(2.13), and another part which only depends on the relative variables, 

" - ' { O H "  0 OH" 0.,~ 
L~,=, ii~=~ \OrO ) "~_~i)-~_~J)'Ore, or , ,  Or~ ~}" (3.5) 

Given that /S ,  commutes with L~,,, one may also write 

e x p ( - i t L , )  = exp(- i tL , , , )  exp(-it / / , ,) .  (3.6) 

Now, using the canonical transformation (2.2) we write the operator  K., ,+~(t)  
in the form 

K,.,+,(t) = T-lira V-'"-"fdp.+,ffdR.+,dr".+, 
x 6 R.+~ -~ n (n  + 1) ;=~ ""+' 

x K'~,.+l(r~.+l, Ir.+j," " t ) e x p ( - i t / 2 . + 0 ,  (3.7) 

where K ' . + ,  only depends on the relative variables. 
The operator  (3.7) was already analyzed in ref. 9 in connection with 

uniform systems; we shall write K~,.+t(t)  for that operator.  It was shown 9) 
that K~,.+~(t) can be written, due to the finite range of the interaction 
potential, as a sum 

o ~ K¢£.+,) A Kn,n+l = tn-,), (3.8) 
i=1 

where each term contains the two-body operator  

_ - - ( i  l )  . K'/"' - T-lim v- l  f dp, f d, ,  f d,,  0; exp[- i tL • ]. (3.9) 

with 

LC;"~ = - i [m- ' (p ;  • V; + p~ • V , ) -  V;~o;., • a;,], (3.10) 

the corresponding Liouvillian operator.  The notation 

A~,_,, = V-~"-"  f . . . f dq.  . . . dq,_, dq,+, . . . dq . ,  (3.11) 

is used in (3.8). 
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We shall p rove  (see section 5) that the opera tor  K .. . .  1 defined in eq. (3.7) 
0 essentially reduces,  in the limit of weakly inhomogeneous  systems,  to K,,,+~, 

i.e. to the relevant  operator  in the analysis of  uniform systems.  Given the 
relation (3.8), it follows that K .. . .  ~ can be essentially written in this limit as a 

sum of operators  which only involve pairs of particles (j, n + 1). Thus the 
interaction between the set of n particles and particle n + I, as well as the 

complete  dynamics  of the set of n + 1 particles, can be reduced under these 
conditions to a two-body problem. Accordingly,  we only have to consider 
binary collisions among the particles in the system as long as we are 
concerned with the first order in the mean density. 

One also notes the proper ty  

K~Ja)(O)G(pj, pl) = 0, (3.12) 

as an immediate  consequence  of definition (3.9); here G(p/,p~) denotes  an 
arbitrary function of the momen ta  of  particles j and I. Proper ty  (3.12) at t = 0 
will be needed later. Otherwise,  we shall be mainly concerned with the 

asymptot ic  behavior  of  the opera tor  K~ia~(t) for large times (see section 7); 
this fact  fur ther  simplifies our dynamical  problem. Indeed, one has 9) for large 

times (in fact ,  for times larger than the duration of a collision) 

lim K~Ja)(t)G(pi, pl) = K~'I~G(pj. p~). (3. ! 3) 
t -~c  

with K~ '~) the corresponding Bol tzmann collision operatorg'g): 

p , ) :  f dp, f f dx dy 2m-lip, - p,,[G(p°,.p°) - G(p,, p,)], (3.14) 

where p~ denotes the m om en t um  of particle j before the collision, and x. y 
refer  to the relative coordinate in a reference  f rame for which the positive z 

axis points in the direction (pj - p~). In short,  the initial (n + l)-body problem 

may be ignored here: only the values of the momen ta  of  particles j and ! 
before  and after  a collision happen to be relevant  quantities in this case. 

4. Time evolution of Fourier components  

We now consider the Fourier  expansion of F.(R.,  .-i p.  r .  , ; t) with respect  
to the coordinate of the center  of mass:  

F.(R. ,  .-i  p .  = f . r . .  ; t )  V(27r) -3 d k e x p ( i k  R.)F.(k ,r~ t . p " ; t ) ,  (4.1) 

where the corresponding Fourier  components  are given by 

~.(k, . i . V - i f  r .  , p ; t) = dR.  e x p ( - i k  • R.)F.(R. ,  r."-l, p" ; t). (4.2) .I 
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Note that for k 0 we have F,(0, ,-1 = =- F , ( r ,  ,p~; t) which are the r .  , p" ;  t) n - I  

appropriate distribution functions for the analysis of spatially uniform fluids. 
We also introduce according to (4.2) the Fourier components 

p";  t) = V -I f dR. exp(- ik  • Rn)f .(R. ,  p"; t) i.(k, # 

= v-"fdq"exp(-in-lk.~q~)F~(q",p";t) ,  
j=l 

(4.3) 

A 

where the second equality follows from (2.3); f,(0, p"; t)=- f , (p";  t) coincides 
with the n-body momentum distribution function. From (2.11), (4.2) and (4.3) 
we have 

/~.(k, "-' r .  , p " ; t ) = F . ( k ,  "-~ "" r. ,p  , t ) - / . ( k , p " ; t ) .  (4.4) 

The term affected by a factor D 2 in eq. (2.20) happens to give no contribu- 
tion to the main result in this paper. This term will be analysed in sections 6 
and 8 and we shall omit it for the moment in our equations. Thus, the Fourier 
transform of eq. (2.20) and the use of (4.1), the inverse transformation to (4.3) 
for f .  and/n+l, and the relation between hn+l and/~n+l, leads to the expression 

O~.(k; t) = - i (nm)- lP .  • k[.(k; t) 

t 

f f  - iD dr  dk'  K~. .+I(z)(L.-I-  L n + l ) f a + l ( k  , t - T) 
o 

+ D f d k '  K~,n+l('r)tla+l(k'; 0). 

Here we have written 

(4.5) 

K".+l(t)  ------ K~,.+l(k, k', p"; t) 

= (2w) -3 ~ dR. exp(- ik  • R.)K., .+I(t) exp(ik' • R.+0 
2 

(4.6) 

and used the result (3.4), i.e. that L .+I -  I~..+t = Lr,.+~ has no dependence on 
R.+I. Using expression (3.7) and the identity 

8(X) = (2'rr) -3 f d k  e - i f ' x ,  (4.7) 



308 J. BIEL AND J. MARRO 

one has 

K'.+,(t)=T-lim(2~r)-6V-("-') f dp.+, f f dR.+, dr~+~ 

× f dR. f d k " e x p ( - i k . R . )  

j=! 

x K...+~(r.+: " ~r.+t," • t) exp{ik' • (R.+t - P'+~t)}, (4.8) 

where we have also applied the general property 

exp{ - tP ;+ , .  ~.+~}4,(R.+1) = ~b(R.+,- P'+,t). (4.9) 

The operator K'~,.+~(t) can also be expressed as follows, 

, / f K.,.+~(t) = T-lira V -~"-l) dp.+l dr~+l 6 ( k -  k') 

x e x p { - i k  [ n ( n + l ) ] - ' ~ ]  (i~ } • r . + l  - i k '  • P'+lt 
j=l 

t n t l  . × K.,.+l(r.+l, ~'.+1, t), (4.10) 

as a consequence of delta function properties. The use of this expression in 
eq. (4.5) leads to 

Of.(k; t) = - i P ' .  k/ .(k; t) 
t 

- iD T-'lira v ' " " f d ,  f d , . + , f  dr.+," 
0 

x e x p { - i k . ( [ n ( n +  1)]-' i~" 1 r.+l°) + P ' + t , ) }  

t n × K..+tt(r.+l,. ~.+1," " z)Lr.+l].+l(k'. , t - r) + D T-lira V -~"-I) 

× f  d , . , f  dr" .+ ,exp{ - ik . ( [n (n+ I)-I£ r.+, ~) + P ' + , t ) }  
j=l 

× Kn,n+l(r.+l, " " " " ' " 1r.+l, t)h.+t(k, 0). (4.11) 

This equation gives the rate of change of the Fourier components ,  ].(k, p";  t), 
of the reduced distribution functions f . (R . ,p";  t) in terms of /.+,(k,p"+~; t) 
and the functions /~.+~(k, r~+~, P.+t, ~r~+~; 0) which refer to the initial state of 
the system. No approximation has been introduced up to here. Eq. (4.11) has 
been derived from the Liouville equation in the thermodynamic limit assum- 
ing a finite-ranged interaction potential. We have restricted ourselves,  
however ,  to the first order (at finite times) in the number density D in order to 
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focus attention to the applications in the following sections. In any case, it is 
to be noted that eq. (2.16) can be easily submitted to the same trans- 
formations;  this would lead to time evolution equations with a general interest 
in the theory of fluids. 

5. Nonuniform systems; initial conditions 

In this paper we are mainly concerned with spatially nonuniform systems 
which initially present  "weak"  inhomogeneities; let us first characterize these 
systems. A homogeneous system would present  the proper ty  of  translational 
invariance of the n-body distribution functions: 

Fn(q~ . . . . .  qn, pn; O) = F,(q~ + a . . . . .  q, + a, pn; 0), 

with a an arbitrary vector  in O. Accordingly, the functions F, (R , ,  r~n-~, p*; O) 

will not depend on R, and we have k = 0 in /~(k ,p~;  0) for  a homogeneous 
system. Thus, a "weakly"  inhomogeneous initial state can be roughly charac- 
terized by a " so f t "  dependence of F,(0) on Rn, i.e. "small"  derivatives with 
respect  to R~. Indeed, for  such a state one expects the difference between F~ 
at two points to be small even in the case that the points are separated by a 
macroscopic distance. Then we can associate a characteristic length, A, to the 
gradient fT,Fn(O) such that L/A -~ Ll~,Fn(0) l, with L a macroscopic length, is 
small. From eq. (4.1) it follows that for  a weakly inhomogeneous system the 
magnitude of the vector  k at t = 0 is small, and of the order  of l/X. 

We can introduce now a new wave vector  scale defined by 

k = DK. (5.1) 

This can be seen as an initial property of  our system which is made up by 
particles not influenced by external forces;  indeed, one can relate the charac:  
teristic length A in these cases to the free distance between particles. Eq. 
(4.11) shows that relation (5.1) will persist during the subsequent evolution. 
The utility of change (5.1) shows up in the limit of low mean density and large 
time, 

D ~ 0, t ~ o¢, Dt = s finite, (5.2) 

which shall be introduced later in our  equations. For  the moment  we note that 
using (5.1) the term e x p { - i [ D K / n ( n  + 1)]. E~ r~)+l} in eq. (4.11), where the range 
of the relative coordinates r,+~(/) is limited by the finite range of the inter- 
particle potential contained in the operator  K~.,+l [compare eqs. (3.7) and 
(3.1)], reduces to unity in the limit (5.2). If we drop this term, still considering 
the original time scale, eq. (4.11) can be written with the change (5.1), using 
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the same notation for /~,  a n d / , ,  in the form 

t 

O,/.=-iDP" Kf.(K, t)-iD T-lim v-"f d, f dp.+, f l  dR.+1 dr~+l 
o 

. . . .  ~') exp(-i~-£.+0 X K n , n + l ( r n +  , ~ n + l ,  

• • P.+I~'}f~+j(K, t -- ~') × Lr.+l exp{--iDg ' " " 

f ff . . . . .  

+ D T-lim V-" dp.+l dR.+l dr.+l K.,.+1 (r.+l, 1r.+t, t) 

× exp(- i t /~ .+0 exp{--iDK ' ^ • • P.+tt}h.+l(K, 0). (5.3) 

The actual form of the last two terms in eq. (5.3) is obtained af ter  introducing 

V -~ f dR,+l exp(- i t /~ ,+0  which only acts as a fac tor  given that the dependence  
on R,+I was already removed.  Using the canonical change of the variables 
(3.2) we obtain [cf. eqs. (3.1) and (3.7)] 

OJ. (~; t )=- iDP ' .K f . (~r , t ) - iDT- l im  V-" i dT f dp.+, f dq"+~ 
0 

× ~ Vj~oj,.+l • 0 i exp(-izL.+OL.+l 
j=l 

× exp{- iDK • P'+O'}/.+I(K; t -- ~-) 

+ D T - l i m  V-" dp.+l dq "÷~ ~ Vjq~i,.+l • 0j e x p ( - i t L . + 0  
j=! 

x exp{- iD•  • P '÷d}h.÷~(K; 0), (5.4) 

where the opera tor  /2.÷1 contained [see eq. (3.4)1 in Lr,.+~ appearing in the 
second term of the right-hand side of eq. (5.3), which acted on a function 

independent  of R.+I, has been omitted. Simplifying the notation, one may 
write eq. (5.4) in the form 

O~.(K, p"; t) = -iDP'." K/.(K, p"; t) 
t 

D ( d~[O.K°.+l(z)] exp{--iDK ' ^ .+1. + • P . + m ~ ' } L + , ( K ,  p . t - ~-) 
, l  

o 

P . + l t }  h.+l(s, r~+,, + DK° . .+~( t )  e x p { - i D K  • ' " p . + l ;  0). 

(5.5) 

where the opera tor  K°.,+~(t) was defined and analysed in section 3. This 
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equation can be finally written: 

Oj.(K, p"; t)= - i D P ' .  Kf~(I¢, p~; t) 
t 

+ D ~ dr(0~K~'"+l)(r)) exp{-iDK • P'+O'} 
j= l  

0 

× [,+I(K, p"+l; t - ~') + KO'"+l)(t) exp{-iDK • P'+d} 

x a(.-,)/~n+l(K, " .+l. ] r ,+t ,p  ,0) , (5.6) 

where use has been made of property (3.8). 
Before extracting any more consequences from eq. (5.6) let us consider in 

Fourier formalism the initial factorization of the reduced distribution 
functions. 

We may assume that all correlations in the infinite system (i.e. in the T-limit 
in our formulation) are finite ranged at time t = 0. In particular, we can write 
the functions Fn(0) in the form 

, = l )  F,,(q", p"" O) Fl(qj, Pi; 0)[1 + g,,(qn, p . ;  0)1, (5.7) j=l 

which defines the correlation functions g,,(q", p~; 0), where 

g,,(q",p";O)=O, if Ir.l~>¢, for  all pairs (£1), (5.8) 

here ~ is a characteristic length of the order of the (finite) range of the 
interparticle forces.  Applying the transformation (4.3) to (5.7) we have 

f ] ~ ( k , p " ; 0 ) =  V -~ dq" l - I e x p ( - i k ,  q~[n)Fl(qj, pj;O)[l+g~(q",p";O)]. 
j=l  

(5.9) 

We note that the second term in the right hand side of this expression 
vanishes in the T-limit in view of property (5.8); thus, using (4.3) for n = 1, 
(5.9) reduces to 

L(k, p~; o) = rI  ::,(k/n, p,; 0). (5.10) 
i=t 

That is, as a consequence of the assumption (5.8) for  the initial state, the 
Fourier  components  fn referring to the infinite system are factorized at t = 0. 

Another interesting question which can be analysed at this stage concerns 
the influence of initial conditions on the time evolution of  the system; this is 
relevant in order to obtain a true kinetic equation. The explicit character  of  
the present formalism allows us to prove that the last term on the right-hand 
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side of eq. (5.6), the one which contains the contribution from initial condi- 
tions, vanishes in the limit (5.2) when (5.8) is assumed. To this end we first 
note the relation 

^ n n + | .  ~ x  A~.-I~F~+I(K, r .+bp  ,uj  

-- V(21r) -3(~+j~ f dR.+t exp(--iK • R.+l) 

f 0):,(k.,...,. 0) x 

x ~ f dkl f dr~)+l exp(ik/- qt)~'l(kb ql; O)exp{i(kj .qi+k, ,+l .q , ,+l)}  
I¢j 

× [1 + g,+](q~+t, p,+t; 0)], (5.11) 

which follows from definition (5.7) when one applies the transformation (4.2) 
and the operator (3.11), and uses expression (4.1) for n = 1. We shall assume, 
in addition to (5.8), that the correlation functions g,+l(0) have no dependence 
on R,+I, and that the integrations to which they are subject  in (5.11) do not 
modify their fundamental character, mainly (5.8). Then, using delta function 
properties, we have after some manipulations 

lim A<~_l>/~'.+t(t¢, r.+l, " p"+l'"',u~ 

n 

= l i ra V(2-n-) -3 ] - [  #',(Kl(n + I ) ,  Pl; O) 
Iq.~+d-~ t=l 

x J dk j  p l ( k j ;  pj ;  0 )p I ( 2K / (n  + 1) - kj, p j ;  0) 

x exp { i r j ,  n+l • [k  s - K / (n  + 1)]}. (5.12) 

Now we recall 9) (see section 3) that one of the main effects of the operator 
K°'"+')(t) in the limit (5.2) is the introduction of the limit [r~..+,l~ into the 
functions to which it is applied. Realizing that the latter limit has no effect on 
/,(k, p";  0) and that we have A ~ , _ j , ( 0 ) = / , ( 0 ) ,  it follows from (4.4) and (5.12) 
that 

n + t  

lim A(,-J~n+I(K, 0 ) =  I-I Pl(tc/(n + 1); 0 ) -  L0¢;  o )=  o, (5.13) 
Iri..+ll --~ 171 

where use has been made of the result (5.10). 
Now we come back to eq. (5.6) and redefine the time scale through the 

transformation of variables 

s = D t ,  c r = D r .  (5.14) 
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Using (5.14) in eq. (5.6) one has 

OJ~(K, p~ ; s) = - i P ' .  K/.(K, p" ; S) + KO'n+l)(s/D) 

x exp[-is¢ ' " n + l .  f • P~+1s]fn+I(K,p ,0)-- dtrKO"+l)(tr/D) 
o 

P~+1o']f~+l(/¢, P , s - or))} x O~(exp[--iK" ' ^ .+1. 

+ K~"+1)(s/D) exp{--iK ' • P~+lS}A(.-i)hn+l(g, r~,+l, p~+l; 0), 

(5.15) 

where we have also performed a partial integration and used property (3.12). 
Introducing the limit D ~  0 in eq. (5.15) [or introducing the limit (5.2) in eqs. 
(5.6) or (2.20); both procedures are equivalent given (5.14)] we have 

n 

Oj.(K, p" ; s ) =  - i P ' .  K/n(g,p~; S ) + ~ .  Kg"+')/.+,(g,p'+'; S), (5.16) 
j=l 

after using the asymptotic properties (3.13) and (5.13). The inverse Fourier 
transform of this equation can be written as 

aJn(R~, p";  s) = ~ [ - m - ' p j -  VJ.(R~, p";  s) + K~'~+l)f~+l(Rn, p ~+l; s)], 
i=l 

(5.17) 

since ¢~rn(Rn) = nVJn(R~) when R~ = n -I 2~'=1 qj. 
Let  us summarize here the conditions which have been introduced at 

different stages during the preceding derivation: 
(i) The thermodynamic limit in the usual sense; it is necessary in order to 

obtain useful kinetic equations. We have implicitly assumed that the functions 
involved in our development present nice properties under this and the 
following conditions. 

(ii) The system is spatially inhomogeneous, but the distances over which the 
system properties change significantly at t = 0 are large compared to the range 
of the interparticle potential (see the beginning of this section). 

(iii) The interparticle potential is repulsive and has a finite range in order 
for the binary collision description to be meaningful. This weakens condition 
(ii). 

(iv) The number density of the system is low enough in the sense of the 
limit (5.2); this limit also restricts the validity of the resulting equations to 
times much longer than the collision time, as one would desire in order to 
obtain irreversible equationslS). 
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(v) The spatial correlations have a finite range in the initial state, at t = 0, 
for the infinite system [see eq. (5.7)]. 

Note that eq. (5.17) is an exact consequence of the Liouville equation under 
(i)-(v) provided there is no contribution of the term with D2 in eq. (2.20) 
under these conditions; the latter point is analysed in section 8. 

6. Kinetic equations for initially uniform systems 

In spite of the fact that the case of uniform fluids is not very interesting 
from a strictly physical point of view, given that there is no change at all in 
the macroscopic variables nor fluid dynamics without spatial variation, it is 
instructive at this point to consider the consequences of the preceding 
formalism in that simple case. As already stated, the functions L(k,  pn; t) for 
k = 0 reduce to the familiar n-body momentum distribution functions fn(p~; t) 
of interest in the theory of uniform fluids. Then eq. (5.16) reduces to the form 

-± o~f~(s) - KOB'~+')f.+t(S). (6.1) 
j=l 

We omit the details of the derivations in this section given that they are 
essentially similar to the ones in refs. 9-10. Assuming initial factorization of 
the n-body momentum distribution function, which is a direct consequence of 
initially finite-ranged correlations in the infinite system [see eq. (5.10)], one 
readily obtains the factorization at any time, 

n 

f~(p"; s) = I I[ l (ps;  s), (6.2) 
j=l 

and the Boltzmann equation for homogeneous systems 

Odft(pj; s) = K~'t)fl(pi; s)fl(pt; s). (6.3) 

In order to complete this derivation, however, one has to prove that the 
term with a factor 0 2 in eq. (2.20), 

t 

R(D,  t) = D z f dc Jn..+l,n+2(¢)hn+2(q n+2, pn+2; t - ~-), 
0 

(6.4) 

vanishes under the above conditions leading to (6.3). Once this is accom- 
plished, one would have the interesting result that a low-density kinetic 
equation referring to a system in an initially uniform state of finite-ranged 
spatial correlations, is a direct consequence of the Liouville equation. Mazur 
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and Biel 9) have shown that this is the case provided the function 

~ ( r i ,  n+l ' pn+l, t) --- i T-lim A~,_l)~',+l.,+2h,+2(q "+2, p~+2; t), (6.5) 

ri.,+~ = qi-qn+~, has a proper limit ~®(p~+~; t) for [ri.~+d~oo, and that this is 
equivalent to the (reasonable) assumption that a certain time average, 

t 

if [ f ] lim~- drKthn+~)O') ~(ri..+t; t -  z ) - T - l i m  V -I dri..+l~(ri,.+l; t -  r) , 
t--~o 

0 

(6.6) 

vanishes. A different approach") to the analysis of (6.4), which avoids the 
above restriction, is based on the direct estimation of the orders of magnitude 
involved in R(D, t). In this way one readily shows that 

! 

R(D, t) = D 2 1 dz N(t ,  ~'). (6.7) 
0 

Assuming that Vj~oj,n. #ih,(q~,p~; t) is well-behaved, one obtains an upper 
bound A to the function N(t ,  ~'). Then R(D, t)<-AD2t which vanishes in the 
limit (5.2). 

We also note, although this paper will not deal with the corresponding 
problem in nonuniform systems, that the preceding formalism leads cor- 
rectly ~°) to the Chon-Uhlenbeck triple collisions terms which contain the 
dominant effects beyond the Boltzmann contribution~4). 

7. The Boltzmann integrodifferential equation; persistence in time of the initial 
molecular chaos 

In this section we are directly concerned with a controllable derivation of 
the conventional Boltzmann integrodifferential equation for nonuniform fluids 
from the Liouville equation. To this end we note that the set of equations 
(5.17) is to be solved subject to some initial condition on the reduced 
distribution functions; one easily convinces oneself that condition (5.7), which 
simply states finite-ranged correlations in the initial state, is not a sufficient 
condition to obtain the traditional Boltzmann equation from eq. (5.17). Let  us 
assume initial molecular chaos in the sense 

n 

Fn(q; pn; 0) = r I  F,(q, pj; o), (7.1) 

where we note that Fn(q)~ f~(q). Condition (7.1) is analysed in section 8. The 
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important point here is that once condition (7.1) is verified at s = 0, it will be 
verified at all times s: 

Fn(q; pn; s) = ['I Fl(q, pi; s). (7.2) 
i=1 

Indeed, the set of equations (5.17) has solutions of the form (7.2), where 
F~(q, pj; s) satisfies the equation 

cgsF~(q, pi; s) = -m-~pj • V jF~(q, pj; s) + K~")F~(q, pi; s)F~(q,p~; s), (7.3) 

given that eq. (5.17) becomes an identity for any n with (7.2) and (7.3). Thus, 
the eqs. (5.17) with the initial conditions (7.1) are equivalent to eqs. (7.2) and 
(7.3). Writing explicitly the symbol K~ '~) [see eq. (3.14)] we have 

asFl(ql, pl; s) + m-lpl • VIFI(qj, Pl; s) 

= f dp2 f f dx dy 2m-' lp,-p2'[Fl(q, ,p°;  s)F,(q~,p°; s) 

- Fl(q~, p~; s)Fl(qb P2; s)], (7.4) 

which corresponds to the conventional Boltzmann integrodifferential equation 
if one neglects the difference in position of the two colliding molecules. 

8. Discussion 

We complete our derivation of the Boltzmann equation from microscopic 
dynamics by analysing in this section: (a) the  initial condition (7.1), and 
(b) the contribution of the term with D 2 in eq. (2.20) to the kinetic evolution of 
the system. 

Concerning (b), it was argued in section 6 that the contribution which (for 
finite times) is of order D 2 vanishes in the low density limit for initially 
uniform systems 9) where the distribution functions are invariant under trans- 
lations. (Note that once this invariance is verified at t = 0, it will be retained 
by the system under a translational invariant Hamiltonian). Let  us show that 
the proof outlined in section 6 can also be applied to the systems with initial 
weak inhomogeneities in which we are interested here. 

The third term on the right-hand side of eq. (2.18) which we omitted in the 
subsequent discussion, can be essentially written as 

t 

f d¢ ~.n+l(r)Fn+l..~'n+t.n+2hn+2(t - 7). (8.1) K 
0 

Using the results in section 3 and introducing the transformations in sections 
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4-7, in particular the wave vector  scale (5.1) and the time scale (5.14), this is 
t ransformed into a sum from j = 1 to j = n of terms 

$ 

f dorK°'"+l)(or/D)O.+l(~, ri..+l, s - Or), (8.2) p n + l ;  

0 

where 

0,+1(1¢, r].n+l, p n + l ;  S --  or) 

T- l ime xp{ - iK  P '  ",.+1~ " .+l .+2. ---- • . + 1 o r } F  ° A ~ . _ l ~ . + l , . + 2 h . + 2 ( t ¢ ,  r .+2 ,  p , s -  or) ,  

(8.3) 

which would have appeared in eq. (5.15). Here  we have used the previous 
notation and F °'"+l) = ( 1 -  V - 2 f f d q i  dq.+l). Thus we also have, as in the case 
of initially uniform systems, terms of the form (8.2) with a function 0.+1 which 
only depends on r--r~,._l at all times under a translational invariant Hamil- 
tonian (2.5). We first note 9) that one can write 

$ 

dor KO'"+°(or/D)O.+l(#¢, r, p"+t', s - or) lim 
J 
0 

t 'I = slim}- drKO"+l~(r)O,+l(K, r, p,+l; t - ~'), (8.4) 
t - ' ~  

0 

in the time scale (7.1), i.e. that a proof  showing that terms (8.2) vanish in the 
limit D ~ 0  (s finite) is equivalent to showing the annihilation of the time 
average (8.4), In order  to state the problem in simpler terms, we now follow 
step by step the proof  in ref. 9 to realize that (8.2) vanishes if 

lim 0,+l(K, r, p"÷~; S -- or) = 0. (8.5) Id--~ 

One can also realize that the function (8.3) can be written as the difference 
between a given function ~,+~(r) and its space average, 

= ~,+l(r) - T-lim V -I f d r  On+l(r) ~.+,(r), (8.6) 

so that (8.5) is equivalent to the existence of the limit 

lim 6.+~(K, r, p.+l; s - O r ) =  ~®(p"+~; s -Or). (8.7) 
Id--~ 

By comparison of expressions (8.6) and (8.3) one convinces oneself  that, apart 
from irrelevant factors,  the functions ~..1 in (8.7) are essentially a sum of 
distribution functions h.+~(K, "+~" r.+2, s - Or) (see also section 5). 
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This justifies our assumption neglecting the term (8.1) in the time evolution 
equations. Accordingly, we have shown that the Boltzmann equation (7.3) is 
an e~act consequence of the Liouville equation under conditions (i)-(v), 
enumerated in section 5, and initial molecular chaos in the sense of expression 
(7.1). Fur thermore,  we have shown that (7.1) is conserved at all times [see eq. 
(7.2)] during the kinetic evolution of the system when this is described in 
terms of the time scale (5.14). 

It is interesting to compare this derivation of the traditional Boltzmann 
equation with the corresponding derivation in the case of initial spatially 
uniform states (section 6). The relevant initial hypothesis for homogeneous 
systems is (6.2) with s = 0; this is a consequence of (5.10) with k = 0 which 
in turn follows from the hypothesis of initial finite-ranged spatial correlations. 
Thus, only conditions (i) and (iii)-(v) in section 5, and initial spatial uniformity 
are needed in that case. In the case of initially inhomogeneous systems one 
also would like to proceed from similar (mild) conditions but we have seen 
that, in addition to (i)-(v), one has to introduce the condition (7.1). This is not 
surprising at all because the intuitive original derivation of the Boltzmann 
equation involves certain uniforinity assumptions 16's) much more restrictive 
than our initial hypothesis  (ii) and (v); thus our initial condition (7.1) somehow 
contains those of the original Boltzmann assumptions which are really needed 
in a derivation from the Liouville equation. In order to understand the 
contents  of (7.1) one may start with the more familiar formal expression of 
the initial molecular chaos assumption: 

Fn(q", pn ; O) = I-I F~(qj, pj; 0), (8.8) 
i=1 

which follows from (5.7) when g,(qn, p~;O)=O, i.e. when all the relative 
coordinates of the subset of n particles are larger than the correlation length 
[which is supposed to have initially the same order of magnitude as the range 
of the interparticle forces;  see eq. (5.8)]. Expression (7.1) follows from (8.8) 
when I~J-ql is smaller than A, the characteristic length for the system 
inho~ogenei t ies  (see section 5). 

Finally, we mention that from condition (7.1) and the above considerations 
it follows, given the definition (2.11), that h , (0 )=  0, which is consistent with 
property (5.13). (In the same way, it follows from our result (7.2) that 
h~(s) = 0; this might seem to imply that the term (8.1) is identically zero but 
we note that (7.2) was obtained assuming that (8.1) vanishes in the low density 
limit). 
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