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We present results of the computer simulation of the time evolution of a model binary alloy following
quenching. Our model system is a simple cubical lattice the sites of which are occupied either by 4 or B
particles. There is a nearest-neighbor interaction favoring segregation into an A-rich and a B-rich phase at
low temperatures, T < T,. Starting from a random configuration, 7= oo, the system is quenched to and evolves
at a temperature (kp3)~' where the probability of an exchange between an 4 and B atom on nearest-neighbor
sites is assumed proportional to e~ #U(1+4 e~ #2Y)~1. AU is the change in energy resulting from the exchange. This
depends on the configuration of the ten sites neighboring the pair of sites on which the exchange would take
place. In the work reported here we used a 30X 30X 30 lattice with half the sites occupied by A particles. The
system was quenched to temperatures T/ T, = 0.6, 0.8, 0.9, and 1.1. Results are presented for the evolution of
the Fourier transform of the spherically averaged structure function S(k,¢) and of the energy. Comparison is
made with various theories of this process and with some experiments.

1. INTRODUCTION

The phenomenon of “coarsening, ” which in some
cases is referred to as “spinodal decomposition”
(a term apparently introduced by Cahn'), in alloys
is of great practical as well as theoretical interest,
It occurs in its simplest form when an AB alloy
(such as ZnAl) is quenched, i.e., cooled very rap-
idly from some high temperature Ty where the sys-
tem is in a molten state to a temperature T <7,
the critical temperature for phase separation in the
solid alloy. At temperatures below T, the equilib-
rium state of the system is (for certain ranges of
composition) one of coexistence of two phases, one
A rich and one B rich. Since the cooling is very
rapid (ideally instantaneous) there is no time for
phase separation to take place and the system stays
homogeneous during the quench. Consequently,
the system is left in a thermodynamically unstable
state and begins to undergo a process of phase
segragation or coarsening. Since the alloy is now
in a solid phase the motion of the atoms is hindered
by potential barriers. These are overcome with
the help of kinetic energy supplied by the lattice
vibrations (phonons) which serve as a thermal res-
ervoir at the quenched temperature 7., The prob-
lem for the theorist is to describe the kinetics of
this process which is in some ways similar (and in
others different) to the development of liquid drops
in a supersaturated vapor.

The classical, essentially phenomenological,
theory of this process was developed by Cahn, t

Hillert, Hilliard, 3 and Cook 4 It focuses attention
on the structure function S(k t) which is the Fourier
transform of the spatial correlation function

G(F, t)={nE", ) =T[nE +T, 1) -7]) .

Here, 7 describes the average composition of the
system, e.g., the fraction of A atoms less the
fraction of B atoms in the whole system, and 7(T, )
is the composition at position T at time ¢, The
(Yin (1.1) 1ndlcates an ensemble average (or
average over I’ in a macroscopic system). The
function S(k, t) can, in principle and sometimes
also in practice, be obtained from scattering ex-
periments,

At time =0, that is, immediately following the
quench, S(K, ) is entirely structureless, since
G(F, 0)~ 0 except for ¥~ 0 if T is sufficiently high.
The classical theory predicts the existence of a
certain k,,, at which S(E, ) will have its most rapid
growth during the initial stages of the coarsening
process. This would correspond physically to the
development of regions, whose linear dimensions
are of order 2m/ky,, in which there is an excess of
one of the phases. It is usually further assumed
that during the “initial stages” of coarsening the
process can be described by a linearized theory
which then predicts that the peak of S(k, ) will re-
main at ky,, and that S will vary exponentially with
time. A Ginzburg-Landau or a linearized diffusion
approach would predict that the linear size of the
segregated regions grow with time® as /3,

As we shall see later some of these predlctions
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FIG. 1. Phase diagram for the AB alloy or for the in-
finite three~dimensional Ising model. The coexistence
curve (solid line) is drawn according to a low-temperature
series expansion (Ref, 12), The “spinodal” curve (dashed
line), supposed boundary between metastable and unstable
states, is characterized by 82f(7)/872 =0 and is drawn as-
suming a free-energy density of the form f(n) = - a n?
+B 1 below T,
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FIG. 2. Development with time of S(k,¢) vs k at T
=0,59T,. Increasing values of the time in units of ™,
Eq. (2.2), correspond to the different graphs from the
bottom of the picture to the top.
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do not agree with the results of our computer sim-
ulations of the process in an idealized system.
Recent theoretical computations by Langer, Bar-
on, and Miller’ and by Binder and Stauffer® (which
were influenced to some extent by our work) pro-
duce better agreement with these results., We
shall make some detailed comparisons, especially
with Langer’s theory, later on, For the present,
we shall content ourselves with a brief description
of the general form of the kinetic equation for

S(k, t) which is common to both Langer’s and the
classical theory. (The reader is referred to Lang-
er’s papers®” for detailed discussions,) This
equation can be written in the form

oSk, )

™ ~ 2 MR [KR%S(R, t) + Uk, t) — kRT].

(1.2)
Here, kjpis Boltzmann’s constant, M is a positive
“mobility constant;” K, also a positive constant,
is the coefficient of the gradient term in the ex-
pression for the “coarse-grained” free-energy
functional

Finh=J [ )+ 5 k@ny?las . (1.3)

This free energy is assumed, both in the classical
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FIG. 3. Development with time of S(,t) vs k at T
=0.78T,.
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FIG. 4. Development with time of S(¢,t) vs k at T
=0,89T,.

theory! and in Langer’s semimicroscopic theory,
to describe the quenched (nonequilibrium) system
with a spatial composition 7(%, #). In particular,
the gradient of the variational derivative of F with
respect to 7(T, ), which is interpreted as the local
chemical potential, furnishes the driving force for
spinodal decomposition. The term Q(k, ) on the
right side of (1.2) depends on f (1) and is very com-
plicated; indeed according to theory®” it should not
be expressible in terms of S(k, ) so that (1.2)
would not be a closed equation. It is therefore
necessary to approximate it in some way and it is
the manner in which this term is approximated
that distinguishes the different theories for all
practical purposes. In the linearized classical
theory S(k, ) is set equal to [0 2F (7)/87 %] S(K, ¢),
while in the theory developed by Langer, Bar-on,
and Miller” @(k, t) is assumed to be of the form
A(t)S(k, t), where A(t) depends both on f (1) and on
S(k, t) in a highly nonlinear way (but is independent
of k).

It is the purpose of the computer simulation
work reported here to obtain explicitly the time
behavior of S(k, £) and other quantities of interest
for a simple model system. We believe that de-
spite the many crude oversimplifications of reality
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made in our model (which is described in Sec. II)
it contains the essential physical features of the
processes occurring in real systems after quench-
ing; indeed we obtain results which are very simi-
lar to experimental results, cf. Sec. V. If this is
granted, then it follows that any theory claiming

to describe this process in real physical systems
should also be able to describe in a quantitative
way what happens in our model system. The model
is thus useful as a test of theory. Even more im-
portant, the model, because of its flexibility can
be used in some cases to identify the important
physical steps in the coarsening process which
need to be built into a good theory.

1. DESCRIPTION OF MODEL

The model system we are using here is the same
as that used by Bortz ef al, ® to simulate this pro-
cess in two dimensions. (We refer the reader to
that paper, to be called I, for details, see also
Flinn!® and Binder. ) At each site of a simple
cubic lattice there is assumed to be either an A
atom or a B atom. We let 7(¥;)=+1 (-1) when
there is an A (B) atom at the site ¥;. The T; range
over an LX L XL cubical region containing L3=N
sites (the lattice constant is unity). This system
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FIG. 5. Development with time of S(k,#) vs 2 at T
=1,077,.
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is isomorphic to an Ising-spin system where the
spin at each site can point “up or down” and to a
lattice gas where each site can be either occupied
or empty.

We assume an interaction between atoms on
nearest-neighbor sites of the form

U=J . 'n(F)n(%,) . 2.1)
The sum in (2, 1) is over nearest-neighbor sites
and we use periodic (toroidal) boundary conditions
so that corresponding atoms on opposite faces are
considered nearest neighbors. For J>0, the situ-
ation considered here, the low-temperature equi-
librium state of this system is one in which there
is a segregation into A-rich and B-rich phases.
[This corresponds to regions with up and down

T TEMPERATURE 8 T

C

S(k,t)
4.95

30

3.

1.65

) }

LIT. . 2003
S
b
o+
FIG, 6, Early-time
3 evolution of S(2,t) as a
function of time for dif-
e ) ferent values of k2 at T
=0,59T,. At the end of
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g u=30k/2.
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magnetization in the Ising-spin language. We are

also carrying out computations for J<0, in which
case the equilibrium state below T, is for a certain
range of 77 an “ordered” (antiferromagnetic) one. ]
The phase diagram of this system, in the ther-
modynamic limit L-, is shown in Fig, 1, using
low -temperature Padé approximants and a §5 power
law near T,~4.510J/ky.
The kinetics of our model are described, as in
I, by specifying the probability per unit time for an
interchange of an A and B atom located on neavest-
neighbor sites T; and ¥,. We set this equal to

P, = e®Uil /(14 0001y | (2.2)

where 8= (k3T)™ and AU;, is the change in the en-
ergy of the system which would result from the in-

FIG, 7. Early-time
evolution of S(k,t) as a
function of time for dif-
ferent values of # at T
=0,78T,.
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terchange, This change depends on the configura-
tion of atoms on the ten sites surrounding the pair
¥;, ¥;,. a™ is taken to determine the unit of time
and treated as if it were independent of the con-
figuration of the neighbors and of the temperature.
(In comparisons with experiments on real systems
a will certainly need to be taken temperature de-
pendent since the strength of the phonon reser-
voirs decrease with temperature. This amounts
however only to a change in the time scale, cf.
Sec. V.)

To carry out the computer simulation we start
the system with N, (Ng) particles of type A (B) in
a completely random configuration, i.e., N, sites
are picked at random from the available N sites

r
t

TEMPERATURE 218 T,

and designated as the position of the A atoms. We
then follow the time evolution of the system as ex-
changes take place between unlike atoms on neigh-
boring sites according to the Markov transition
probability (2. 1) (see also Bortz, Kalos, and Lebo-
witz®®), The expected value of any function of the
configuration at time ¢ can be obtained by taking the
average over many independent runs. (We expect
however that for functions which are extensive, like
the energy and a smoothed S, the number of runs
needed should decrease with the size of the system;
for a macroscopic size system almost every run
should produce typical results.) In the work re-
ported here L=30, N=27000, and the number of
runs was eight.

FIG. 9. Complete
evolution with time of
the spherical averaged
structure function for dif-
ferent values of 2 at T
=0, 787,
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A. Computation of system properties

For this system (see I),

S(K, 1)=2_ ¢ G(%, 1), (2.3)

G(%, )= N-IZ;[‘U(F‘+-{‘, Hyn(E,, ) -12 , (2.4)

where T and T; run over the N=27000 sites,
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2 evolution with time of the
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and we have indicated explicitly in (2. 4) the time
dependence of 7(T;). Note that from our definition,

N S(R, £)=1-92, (2.6)
=

S(k=0,1)=0, 2.7

and that corresponding to the random initial con-
figuration present at =0, immediately following
quenching,

S(k,0)~1-7% for k#0 . (2.8)

The energy U, given by (2. 1), is related simply
to the value of G(T, #) for T a nearest-neighbor vec-
tor. If we denote this value of G (averaged over the
three orientations) by + g, we have

f=N" 77*=N-1N—N),
7—7. E (1) Ny B @.5)
k= (Fm 0= (& (s, 1y, 1o,
with
Ke=0, 1, ..., 299 a=x 9, 2
’_; T TEMPERATURE 1.07 TC
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FIG, 11, Complete
evolution with time of
the spherical averaged

1 ’ 1 structure function for
e W different values of # at T
g =1, 07Tc.
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U/N= _3J(g+17—a)=J(2NAB /N—3)= (zu "'3)‘] ’ (2- 9)

where N,z is the number of A-B bonds and u=N,p5/
N,

We also define the spherical averaged structure
function

Sk, 1)=22S(%, 0/ 21,
k k

where k=&, p=1,2-++, and the sum 3 goes
over all values of K such that Zru=Ikl<&r (u+1).
In the actual simulation we computed S(lft, t) for k
in one octant of the reciprocal lattice up to | kl

=274, i.e., inten shells, The number of k values
in the different shells are 6, 13, 19, 39, 55, 72,
91, 114, 169, 178,

III. RESULTS

We report here the results of our observations
of the time evolution of S(, t) and the energy U after
quenching our system to temperatures 7/T,=0. 59,
0.78, 0.89, and 1,07. N,=Nz=13500, 77=0,

(We have also carried out computations, at these
temperatures, for Ny=0.2N; these will be re-
ported separately.) The three lower temperatures
are in the two-phase region of the phase diagram,
the “spinodal” region, while T=1,17, is in the
one-phase region, see Fig, 1, This latter tem-
perature is however sufficiently close to T, that
significant “local ordering” may be expected which
for short times might look very similar to coarsen-
ing. All our results are averages over eight in-
dependent runs which appeared sufficient to wash
out most fluctuations. The estimated reliability
(essentially the rms fluctuation) is indicated in
some of the figures, The data were collected at
initially assigned intervals of a certain number of
(actual) exchanges. The intervals were increased
as time progressed and the evolution slowed down.

The spherically averaged structure function
S(%, t) is plotted in Figs., 2-5 as a function of & for
different values of ¢ after quenching to the tempera-
tures mentioned earlier. The growth of the peak
and its shift to smaller values of % are evident and
are similar to what is observed experimentally. ®
In Figs. 6-11, S(k, ) is plotted as a function of
time for different values of 2, Figs. 6 and 7 cor-
responding to the very early time behavior at two
temperatures which are representative of all tem-
peratures studied.

It is clear from these figures that there is no
time regime in which S(%, t) can be said to grow
exponentially with time, As in our two-dimension-
al study, reported in I, S(%, ) for each value of %
has an initial growth in time, reaches a peak, and
decays. The time required to reach the peak in-
creases as k decreases and the peak is never
reached, during the course of the experiment, for
the smallest values of 2, The slope of S(k, ¢) vs ¢

(2.10)
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appears to decrease monotonically with ¢ (for al-
most all values of ) until S(k, ¢) is past its peak,
As the temperature is increased, the decay after
the peak is reached becomes less pronounced and
for T=1.1T,, S(k, t) appears to reach its maximum
value for each 2, beginning with the largest values
of £, and remains there. This agrees with some
predictions of Langer® and is similar to what hap-
pened in the two-dimensional case,

The behavior of u defined in (2. 9) with time was
also studied. At £=0, the number of A-B bonds
is approximately 3 3N so u=3. After a rapid initial
decrease u appears to behave as (t+10)™® This be-
havior must clearly be modified for still longer
times when u should approach a finite value u.(T),
which will be very small at low temperatures.

Unfortunately, we have no reliable way of esti-
mating u#.(T), the equilibrium value of « for our
system at T<T,. What exists in the literature!*
are estimates based on Padé approximants for the
equilibrium energy in the pure phase u,(T), i.e.,
along the coexistence line and in the one-phase re-
gion =0 for T=T,. The size-effect corrections
to this energy can be expected to be very small for
our system.® What is not negligible for our sys-
tem are the interfacial energies, which since we
have a finite system (with a fixed value of 7) give
a nonvanishing u.(T) even for T=0, u.(0)=%, 7=0.
Fisher!® suggested that we estimate this interfacial
energy u;(T), for T <T,, by multiplying #;(0) by
the surface tension o(7'). This would give

#o(T) = ur(0) 0(T) +u,y(T) ,
where o(T)=0 and u,(7T) is the one-phase equilib-
rium u for T= T, and 6(0)=1, u,(0)=0. Using for
o(T) the results of Monte Carlo computations!’ we

have analyzed the variation of u —u (T) with time,
assuming an asymptotic behavior of the form

u—uo(T)~ ",

(3.1)

We have also looked, in a similar way, at the be-
havior of u —u,(T),

-pte

u —-u,(T)~ (t+10)" .

TABLE I. Values of b, b/, and b’’ obtained from a
mean-square fit to the data from ¢ =50, The correspond-
ing rms fluctuations for increasing temperatures are 1,6.
2.7, 2.7, and 1,6%; 1.1, 2.1, 4,2, and 12,7%; 1.2,
2.3, 4,0, and 11,9%, respectively.

T/T, b b bt
0.6 0.16 0.22 0.18
0.8 0.10 0,22 0.16
0.9 0.06 0.21 0.13
1,1 0,02 0.79 0.79




The values of b, b’, and b’’ at different tempera-
tures are listed in Table I.

For the two-dimensional case we reported in I,
b~b"")~% at T=0.58T, and b'~F for T=1,1T,;
the only two temperatures analyzed there, [The
computations reported in I have been extended to
longer times and now appear to give b~ at 0, 587;
Rao, Marro, Kalos, and Lebowitz (unpublished). ]

The behavior of b at the lowest temperatures is
in good accord with a prediction of Binder and
Stauffer® which gives, at “low temperatures” b’’
=(d+3)™, d the dimensionality of the space con-
sidered. For T>T,, onthe other hand, these au-
thors predict '~ +d, but there may be a cross-
over effect for T=~T,.'® It is not clear to us at the
present time how much weight one should put on
the fits or misfits between our results and the pre-
dictions. Our data is limited (as is clear from
Table I) and the theory may or may not be ade-
quate.

The number of (actual) exchanges versus time
was also studied. We expect the number of ex-
changes per unit time should behave, at the lower
temperatures, approximately like the number of
A-Bbonds. This was confirmed by our results
which gave for the slope of a log-log plot, at in-
creasing temperatures, 0,86, 0,94, 0,97, and
1. 05, respectively. (It is not exactly the same
since the probability of an exchange depends on the
configuration on the sites surrounding the A-B
pair. When the A and B regions are segregated,
however, this should affect the rate only through a
constant factor, )

Two important parameters characterizing the

time evolution of S(%, ¢) are the location of the peak,

k,(t) and the height of the peak S(%,(t), f). Due to
the finite (small) size of our system, which leads
to a wide spacing between the values of 2 we can
measure, it is difficult to determine these param-
eters precisely. Under a parabolic fit to three
values of 2 around k,, we find a reasonable fit with
the following formulas:

knt)~a’(t+10)™", (3.2)
S(k,(8), )~ a'(t+10)*"", (3.3)

TABLE II, Values of a, a’ and a’’, The correspond-
ing rms fluctuations for increasing temperatures are ap-
proximately 1,6, 2.7, 7.4, and 5,8%; 3.7, 6.4, 6.4,
and 4,8%; and 0,5, 1.1, 2,1, and 1.1%; respectively.

T/T, a’ a’’ a
0,6 0,21 0,69 0,17
0.8 0,25 0,74 0,21
0.9 0.25 0,65 0,23
1.1 0,22 0.38 0.12
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We also computed k(f), the first moment of
S(k, t). %(t) which behaves more smoothly than
k,(f) and its “asymptotic” behavior is well de-
scribed by

E(t)~a(t+10)™, (3.4)

The values of @, a’, and a’’ are listed in Table II,
Binder and Stauffer’s® predictions are for a”’
=3a"and a’=b"=} at “low temperatures.” The
first of these predictions seems to be well satisfied
for 7=0.6T, and T=0,87T,, the second apparently
not. For T=~T,, they predict a’~% and for T>7T,,
’=%. Only the first of these predictions seems
in agreement with our results, but again we may
be too close to T, The results of Ref. 7 are
consistent!® with a’~ 0, 21,
We have also investigated the shape of S(k, t) for
k> k,, by fitting it to the formula

S(k, t)=c,(t)/[R2 +cy(t)] . (3.5)

For T=1.1T,, c, and c; become time independent
very early, while for low temperatures the ¢’s def-
initely change with time. We also find that ¢, <0
for T/T,=0.6 and 0. 8 as one would expect for
T<T,.®

IV. COMPARISON WITH LANGER’S THEORY

As indicated in Sec, I the different theories of
spinodal decomposition all make use of the free-
energy expression (1.3). Both the classical theory
and the one worked out by Langer et al.” approxi-
mate f (1) by an even quartic polynomial [in our
model there is a rigorous symmetry about 7=0
(cf. Cahn'™)]. Assuming the validity of dynamical
scaling, the function S(%, #) may be expressed in the
vicinity of the critical temperature T <7, in a
“universal form” $(g, 7) in terms of the dimension-
less variables’

T=0y(1=T/T)""*t, q=a,1-T/T)"k, (4.1)
8(g, )= ag(l = T/T,)" S(k, 1) . 4.2)

The values of the parameters for the kinetic three-
dimensional Ising model simulated here are given
in Ref, 7 as

Y=%, v=g, @;=3.51, @;=0.35 and wy=2,59,

In Fig. 12 we plot 8(g, 7) as a function of 7 for se-
lected values of ¢q. If scaling is valid and we were
in the region of scaling (which we definitely are

not for T =0, 67, and only marginally for T=0, 87T,)
then, for a given g, $(g, 7) should be the same func-
tion of 7 for different temperatures. Surprisingly
enough, for g=1 this is the case even for 7'=0, 6T,.
For smaller values of ¢ the deviations increase as
7 increases. (It is because of the scaling of # that
Wwe ran our computer simulations to larger values
of ¢ for T closer to T,.)
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peratures, Note that for ¢g=0,65 (which is in the neigh- / N
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tions for similar values of q.

In terms of the reduced variables g and 7, the
approximation by Langer el al. for Q(k, t) in (1, 2),
Q(k, t) = A(t) S(k, t) leads to the equation

88(g, 1)

T 4.3)

= -q%q®+a(r)]sq, 1) +q?.

It was this equation which was solved in Ref, 7
and the results compared in part with our computer
simulation, We make such a comparison in Figs.
13 and 14 where we compare the function §(g, 7) ob-
tained by Langer ef al. from the solution of (4. 3)
(and an equation for A) with the results of our sim-
ulation. The agreement for T=0. 8T, and 0. 97, is
quite impressive. As a more direct, and more
stringent, test of the approximation (4.3) we have
also plotted in Fig, 15 the function

FIG. 13, Comparison of the computer simulation re-
sults with those of Ref, 7 (solid curves) for 7= 26,

FIG. 14, Comparison of the computer simulation re-
sults with those of Ref, 7 (solid curves) for 7=97,

I, ﬂg(% 98(g, )

o —1) sUg, 1) +q®,  (4.4)

which is taken directly from our computer simula-
tion. According to (4.3), I'(g, 7) should be inde-
pendent of ¢ and of the temperature T if T<7,.

Finally, in Figs, 16 and 17 we plot the function
R(q, 7)/q% where R is the logarithmic derivative
of 8§,

9
R(g, 7)= v In8(g, 7) (4.5)

This is a quantity usually plotted by experimental -
ists, 5 and our results are in qualitative agreement
with those obtained experimentally, The linear
classical theory would predict a straight line, in
disagreement with experiment,

V. COMPARISON WITH EXPERIMENT

In order to compare the results of the computer
simulation with possible real experiments on ideal-
ized systems (i. e., being able to neglect vacan-
cies, defects, etc.), we have to establish some
(order-of -magnitude) relation between our units of
length and time and those of real systems. Our
unit of length is clearly the lattice spacing a,,
which is of the order of several angstroms; in the
experiments of Rundman and Hilliard®®»%(»20 op
aluminun-zinc alloy (22-at,% Zn) at 423°K=0, 7T,
ay~2.5 A. Thus, our k=27u/30a,~0,84px10"/
cm; the location of the peak in the Rundman-Hil-
liard experiment was around k5107/cm, Interest-
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ingly enough, the location and height of the peak in
these experiments appears to behave with time in
accordance with Eqs. (3.2) and (3. 3) with a’~0. 2
and a¢’’~ 0,7, which are close to the values found
by us. Our unit of time is a™ which according to
(2. 2) is just one-half of the average time between

a_
0.60
0.62
0.69
1.07
1.04
1.04 FIG. 15, Time evolu-
Langer et al tion of the function
T(q,t) as defined in Eq.
(4.4), The dashed line
is obtained using the ap-
proximation made in
Ref. 7.
| 1
80 100

exchanges which do not change the energy of a con-
figuration, e.g., 2/a is the mean time between
jumps to a neighboring site for an A atom in a sea
of B atoms. Hence, according to (2.2), a™ is re-
lated simply to the diffusion coefficient of an A
atom in a crystal of B atoms (and vice versa),

Rq7) % @T/T=06 ET/T=06
¢ | 55 X T/Te=0.8 T=50||AT/T¢=08 T=I0
xT/T#09 +T/7=0.9
1.00 1 X T/T,=0.6 FIG. 16, Function
o +T/T08 T35 R(a,t)/q* [see Eq. (4.5)]
o B T/T=0.9 vs ¢* for different times
® T/Te=t .1 (reduced units), The

0.75+

0.50 1

0.25+

0.00+-

inset corresponds to
earlier times, There is
only little temperature -
dependence but a definite
time dependence, that
has also been reported in
scattering experiments
(Ref, 5).
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R(q)
q ;
® T/T =06
I & T/T,=08 T=20.
| + T/Te=0.9
@ T/T=0.6,7=10.6
A T/T=08,T=96.1
0.75 1\ — THE((:)RETICAL PREDICTION FOR INDICATED TIME mPI;IiG. ;Zf Samezgz)lot Zs
. 4 g. 16 for 7~ an
72100 including the com-
parison with the calcula -
tions by Langer et al,
0.5 (Ref. 7).
0.25
0.0 S Co 4
[
1.8 qz

a™(T)=af/[12Dy(T)],

where Dy(T) is the diffusion constant at temperature
T in the limit of zero concentration of A (B) atoms
(when the system would of course be in a one
phase), If we set*22 D (T)~ 10" cm?/sec for
the Rundman-Hilliard experiment, then a™~# sec,
We should mention here that we have been re-
cently informed by Goldburg and Huang® that in
their experiments on a binary fluid, # which is

quenched into the two-phase region very close to
T,, they find that S(&,(t), t) does initially grow ex-
ponentially with ¢ (as would be predicted by a
linearized theory). The exponent appears to de-
pend very strongly on T - T,
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