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We propose a kinetic equation for dense gases which does not diverge in the kinetic stage and allows us to 
establish some conclusions about the analyticity of the reduced n-particle distribution function and about the 
evaluation of transport coefficients. 

Starting from the Liouville equation for the probability density in the phase space of  N point molecules inter- 
acting through a two-body finite-range repulsive potential ~ojk = ~ ( [ r j - r  k I), and using projection operator tech- 
niques as in ref. [1],  we have obtained [2] the following equation for the rate of  change of  the n-particle momen- 
tum distribution function: 

l { f o ~ K n n + m ( T )  } ~fn(t) = ~ pm dr ' fn+m ( t -  r) + Kn, n+m (t) hn+m(O ) 
~)t m =1 ~}r 

t 

- ipl+l f dr Kn, n+l(r) ( 1 -Pn+l ) In+l, n+/+l hn+l+l (t - r ) .  ( l )  
0 

This equation is valid in the thermodynamic limit and has been derived by iteration of  eq. (22) of  ref. [ 1 ] which 
follows from the BBGKY hierarchy without additional assumptions. Here p = N/V, where V is measured in units 
of molecular volumes and t is in units of r c (average duration of  a collision between two particles); 

Kn, n+m(t ) = ( - i )  m lim io n Ln, n+ 1 
V--+ oo 

I ' 

× I s  k=l rk_l 
dr k exp ( - i t  k Ln+ k ) (1 --Pn+k ) g n+k,n+k+l exp (irk Ln+k+l )Jord } exp(-itLn+m) ' (2) 

where r o = 0 and the index 'ord '  denotes that the product (equal to 1 i fm = 1) is ordered from left to right accord- 
ing to increasing values of  k; 

f f  O~Pj, m+l 0 . Lm,m+ 1 = i drm+l dPm+l ~r/. Opi' 
]=1 

where L m is the Liouville operator of  the isolated set of m particles and Pm is the projection operator. From the 
reduced n-particle distribution function F n one gets: 

fn(pn;t)=PnFn(rn,pn;t)= ~ f  drnF,(r",pn;t) ; hn(rn,pn;t)=(1-Pn)Fn(rn,pn;t).  
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It can be shown [2] that eq. ( I )  may be writ ten in Markovian fronl either (a) by developmg./)~+m(t r) m a 
Taylor  series around t and put t ing  together tile terms of the same power in p. ot (b) by making a partial integralion 
and subst i tut ing for the operators Kn,n+m(r) their assymptotic values for large times. By nleal :, of  procedure (a) 
the Choh Uhlenbeck equat ion can be derived from { 1 )" however this procedure does no1 provide exact compact  
equat ions bul ,  instead, equat ions with in.[k'nitel)' many  terms. Procedure (b) shows thai the initial correlations 
decay for zero order in p, and the Boltmmm equat ion can be derived from { 1) and its existence proved by con- 
sidering the limit p -~ O, t ---* oo, pt  finite. The derivation of both the Bol lzmann and the ( 'hoh tJhlenbeck equ>  

lions requires moreover  tile assumptions of initial spatial un i formi ty  and initially finite-range correlations. 
On the other hand,  a s tudy of each term in eq. ( 1 ), based on the generally-assumed "'good-behaviour'" of  the 

funct ions j'~(t) and h~z(t) and of  the operators KH.,+m(r), shows that the first [ terms on the right-hall_d side of 
( 1 ) and the remainder are respectively bounded  by quanti t ies  of the order of (p,t) l. and p(pt )  I. Thus for gases 
far enough from condensat ion  (p << 1 ), one can neglect the last term in eq. ( I ) which involves the cont r ibu t ion  o l  

collisions of more than l + 1 particles. Our equat ion has no divergent terms for times such that pt < 1. A simple 
evaluation shows that such times cover the whole kinetic stage and therefore may be used in calculating the cor- 

rections to the Bol tzmann term for atl.l' order in the density. For larger times lilt ,> I ) our equat ion does not 
converge. Because of  the generality of  eq. ( 1 ) and lhat of  the hypothesis  about  the behaviour of,/it, h ,  and 

Kn, n+ m we are allowed to think that the difficulties arising for large times are due to the facl that the reduced 
n-particle dis t r ibut ion funct ion is not  analytic in the densi ty  (except at p = 0). These difficulties are m~t on/3' due, 
say, to Bogolubov's  hypothesis.  It is not  possible, therefore, to calculate the corrections Io the transport  coeffi- 

cients by means of tile assumptions,  say. of  the Chapmall Enskog method:  it is necessary h) employ other 
procedures [e.g. 3] ,  or to look for an expansion parameter  other than the density. 
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