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Abstract. We study the processing of weak signals in a realistic neural medium
of spiking neurons by means of the stochastic resonance mechanism. Assuming
a Hebbian prescription for the maximal synaptic conductances that balances ex-
citatory and inhibitory synaptic connections, and short-term synaptic plasticity
processes affecting such conductances, the system exhibits dynamical well-defined
phases. This includes a memory phase, in which population of neurons remain
synchronized, an oscillatory phase characterized by jumps between different syn-
chronized populations of neurons, and an asynchronous noisy phase. Increas-
ing noise in the medium when a weak input stimulates each neuron, intriguing
phenomena occurs near all the transition points between phases resulting in the
emergence of stochastic multi-resonance. This is shown to be quite robust, as it
occurs for different levels of synaptic plasticity, type and number of stored pat-
terns, and network topologies. Such robustness suggests that the behaviour shown
by the models here should also be observable in actual systems, as a recent psy-
chophysical experiment seems also indicate. Would this be the case, monitoring
multi-resonance may help neuroscientists to identify and investigate the existence
of phase transitions in the brain, which have been recently associated to some of
its high level functions.
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1. Introduction

Many physical systems present ambient fluctuations that may play a funda-
mental role in the functioning of natural systems. They may, for instance,
optimize signals propagation by turning the medium into an excitable one,
originate order at macroscopic and mesoscopic levels or induce coherence be-
tween the intrinsic dynamics of a system and some weak stimuli it receives,
a phenomenon known as stochastic resonance (SR) (see [1] and references
therein). Recently, this last intriguing phenomenon has received the interest
of the neuroscience community for its possible implications in the complex
processing of information in the brain [2, 3, 4]. In fact, neural systems present
the main factors involved in SR, namely, different sources of intrinsic and ex-
ternal noise and complex nonlinear processes affecting excitability of neurons
and the transmission of their complex signals through the synapses.

In the last years, it has been reported that simple perceptrons and fully
connected networks of binary neurons can efficiently detect weak signals by
means of the SR mechanism through more than one level of intrinsic noise
[3, 4]. These new stochastic multiresonance phenomena (SMR) are induced by
biophysical processes producing short-term synaptic plasticity at the synapses
and by the existence of adaptive processes affecting neural excitability. Here
we report that this intriguing SMR phenomenon is more general and can also
appear in more realistic complex networks of spiking neurons. Moreover, we
hypothesize that SMR appears as a consequence of destabilization of dynam-
ical attractors since SR peaks appear around the transitions points between
different phases in the system.

2. Models and Methods

Our main findings here has been obtained in a complex network of N spiking
neurons. For simplicity, we considered a simple integrate and fire description
of the neuron activity defined by the following dynamics for the membrane
potential Vi of neuron i :

τm
dVi(t)

dt
= −Vi(t) +RIi(t) if Vi(t) < Vth

Vi(t) = 0 (tsp < t < tsp + τref ) if Vi(tsp) > Vth,

(1)

where τm is the cell membrane time constant, R is the membrane resistance,
Vth is the voltage threshold for neuron firing, tsp is the time at which V (t) ≥
Vth, τref is the so called refractory period and Ii is the total input current to



J.J. Torres et al 23

neuron i which we assumed to be:

Ii(t) = Iexti (t) + Isyni (t) +Dζ(t). (2)

Here, Iexti (t) = I0 + Isignal(t) is the current generated by an external input
constituted by a constant term I0 plus a weak sinusoidal signal Isignal(t) =
δI sin(2π fst) with amplitude δI ≪ 1 and frequency fs. On the other hand,
Dζ(t) is a noisy current with ζ(t) being a white noise with ⟨ζ(t)⟩ = 0 and
⟨ζ(t)ζ(t′)⟩ = δ(t− t′). Finally, Isyni (t) is the postsynaptic current generated at
neuron i due to the activity of its neighbors.

We considered also short-term synaptic plasticity at the synapses using
the synapse model introduced in [5]. Here, the state of a given synapse j
is described by variables yj(t), zj(t) and xj(t) representing, respectively, the
fraction of neurotransmitters in active, inactive and recovering states (see [5]
for details). Within this framework active neurotransmitters yj(t) are the
responsible for the generation of the postsynaptic response to incoming presy-
naptic inputs and become inactive after a typical time τin ∼ 2 − 3ms. Thus,
the synaptic current is assumed to be Isyni (t) =

∑
j Aωijeijyj(t) where eij

is the adjacency matrix, and Aωij is the maximal synaptic current that can
be generated by a single presynaptic input, normally associated to maximal
synaptic conductances, where ωij are Hebbian synaptic weights. On the other
hand, inactive neurotransmitters recover during a typical time τrec which is
order of a half second for typical pyramidal cells [5]. Recovered neurotransmit-
ters become immediately active with some probability U (the so called release
probability) every time a presynaptic input arrives to the synapses.

One can associate a binary variable, si(t) to each neuron in the network
with si(t) = 0 if Vi(t) < Vth and si(t) = 1 at t = tsp, that is when an action
potential or spike is generated. In this way, m(t) ≡

∑
i si(t) monitors the mean

firing rate, or mean activity, in the network. One can measure the degree of
correlation between the network activity and the weak input signal Isignal(t)
for different level of noise D in the network by computing the function

C(D) ≡
|Cfs |2

(δI)2
,

where Cfs = limτ→∞
1
τ

∫ t0+τ
t0

m(t)eifst is the Fourier coefficient of the mean
firing rate at the weak signal frequency. This function help us to explore the
existence of stochastic resonance phenomena in our system for a wide range
of neuron, synapse and network topology parameters.
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Figure 1: Emergence of SMRs in complex networks: Panels A, B, C and
D corresponds, respectively, to a fully connected network, a random diluted
network, a scale-free network with p(k) ∼ k−3 and a Watts-Strogatz small-
world network with pr = 0.5. Resonance curves have been obtained for a
network of N = 400 nodes with a random stored pattern at the synapses after
averaging over ten different networks. In cases B, C and D the network mean
connectivity was ⟨k⟩ = 100. In all panels the insets depict single resonance
peaks that emerge in absence of short-term synaptic plasticity (τrec = 0.)

3. Results and conclusions

Figure 1 summarizes our main findings here, that is, the emergence of robust
SMRs characterized by the existence of two optimal levels of ambient noise
at which network activity strongly correlates with the weak input signal. An
extensive analysis of this SMR phenomenon shows that both resonance peaks
appear around levels of noise at which phase transitions occur [6]. In partic-
ular, the low noise resonance appears when stable memory attractors become
metastable originating a new non-equilibrium dynamical phase characterized
by jumps of the network activity among these metastable states. The reso-
nance peak then occurs when the typical frequency for jumps is coupled with
the frequency of the weak signal. On the other hand, the second resonance
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peak at large noise appears when the amplitude of the jumps decreases and
their frequency increases consequence of the larger noise and, consequently,
a second order phase transition towards a non-memory phase takes place.
Around this transition point the potential barrier among attractors is so small
that the weak signal can drive the jumps. The consequence is the appearance
of a modulation of the noisy activity with the same frequency of the weak signal
which results in the emergence of the second resonance peak. We concluded
then that the existence of the nonequilibrium dynamical phase between the
memory and non-memory phase is a necessary condition for SMR. This phase
emerges due to the existence of short-term synaptic plasticity at the synapses.
For static synapses this phase is not present and, therefore, only an one-peak
SR phenomenon appears around the critical point between the memory and
non-memory phases, as it is depicted in the inset graphs o all cases shown in
figure 1. The figure also illustrates the robustness of the SMR phenomena for
different network topologies including a fully connected network (panel A),
random diluted networks (panel B), scale-free networks (panel C) and Watts-
Strogatz small-world networks (panel D). Such robustness suggests that SMRs
should also occur in actual systems as a recent experimental data suggest [2].
Would this be the case, monitoring SMRs may help neuroscientists to identify
and investigate the existence of phase transitions in the brain.
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