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Excitable media may be modeled as simple extensions of the Amari–Hopfield network with
dynamic attractors. Some nodes chosen at random remain temporarily quiet, and some of the
edges are switched off to adjust the network connectivity, while the weights of the other edges
vary with activity. We conclude on the optimum wiring topology and describe nonequilibrium
phases and criticality at the edge of irregular behavior.
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1. Introduction and Model Details

Understanding the fundamentals of how high-level
brain functions result from the cooperation between
many neurons and synapses dates back to McCul-
loch & Pitts [1943] who implemented pioneering
ideas of the 1906 Nobel laureate Ramón y Cajal.
Oversimplified mathematical models such as the
Amari–Hopfield or neural network [Amari, 1972;
Hopfield, 1982; Amit, 1989] typically consisting of
binary variables, which represent the neurons, con-
nected by edges, which represent the synapses,
are relevant to this aim. Assuming inhomogeneous
time-independent connection strengths as in the
Hebb prescription [Hebb, 1949], which in a sense
stores information from a set of given patterns of
activity, these become attractors of dynamics, i.e.
retrieval of stored patterns, known as “associative
memory”.

Experiments suggest that this method lacks
essential features, however. One problem is that
connections between neurons do not seem to be

constant but undergo fast time changes — vari-
ously described as fluctuations on the time scale
of milliseconds, short-term plasticity and synaptic
fatigue, for instance. These changes during opera-
tion are expected to influence processing of infor-
mation, and thus memory storage and retrieval, and
simple modeling has in fact shown that they may
induce dynamic instabilities and even chaos [Abbott
et al., 1997; Malenka & Nicoll, 1999; Pantic et al.,
2002; Marro et al., 2008]. This is interesting because
the activity of neural systems in nature does not
permanently stay in a memory. Instead, irregu-
lar wandering among the stored patterns seems to
occur during brain activity, e.g. olfactory processes
in insects have been associated with heteroclinic
paths of activity in the patterns space [Mazor &
Laurent, 2005; Torres et al., 2008]. In summary,
the present situation is consistent with synaptic
fluctuations, on one hand, and with dynamic insta-
bilities leading to irregular behavior [Sompolinsky
et al., 1988; Korn & Faure, 2003; Torres et al., 2008],
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which is probably caused by these fluctuations, and
on the other, none of these features is contained in
the standard neural network.

Recent theoretical work [Marro et al., 2008,
2007; Johnson et al., 2008], whose review, discussion
and extension is the purpose of this paper, suggests
that simple extensions of the standard model —
namely, the Amari–Hopfield network with a Heb-
bian learning rule [Amit, 1989] — inspired along
lines recently indicated by neurobiology should help
our understanding of many other complex situa-
tions as well. That is, some of the main features
in an ideal brain might be common to a number of
excitable systems, including different parts of the
nervous system, forest fires, autocatalytic reactions
in surfaces and food webs, for instance [Lindner
et al., 2004; Arenas et al., 2008; Allesina et al.,
2008]. The most relevant fact to be noted is that
excitability causes a nonequilibrium condition in
any setting of many interacting elements, and this
is what, for example, impedes damping by friction
of signals in certain media. It then follows that a
class of systems should be viewed regarding coop-
eration as large networks of effective “excitable”
nodes — in the sense that each acts in practice
as having a threshold and a time lag between con-
secutive responses — connected by edges of vary-
ing strength. Suitable generalizations of the stan-
dard model should therefore describe the essential
physics in a number of apparently diverse man-
made and natural systems.

As a further step with such a motivation, we
report here on how the dynamics depends on con-
nectivity in a model of excitable media. In particu-
lar, we conclude on a relevant correlation between
wiring topology and network functionality and,
more specifically, on the optimal wiring to which
a complex excitable network could evolve to meet
certain productivity criteria or to improve perfor-
mance. We also describe the nature of both the
irregular wandering of the activity among the stored
patterns and the system critical behavior at the
onset of this irregular behavior in the resulting
nonequilibrium steady states.

The model of interest generalizes the standard
setting along three main lines:

(i) Time dependent connections. Let a set of nodes
σ = {σi = ±1} and the local field at i, or net cur-
rent from other nodes, hi =

∑
j �=i wijxjσj (i, j =

1, . . . , N). Here, wij = N−1
∑

ν ξν
i ξν

j (ν = 1, . . . , P )
is the Hebbian weight, which involves given patterns

of activity {ξν
i } (with ξν

i = ±1) and xi is a stochas-
tic (fatigue, say) variable for the effect of short-
term plasticity. Assuming this varies in a time scale
infinitely smaller than the one for the nodes, we
shall consider a stationary distribution, namely,
either [Johnson et al., 2008]

P (xj |σ) = qδ [xj − Ξj (σ)] + (1 − q)δ(xj − 1), (1)

(where δ(x) is the Dirac delta function) which
amounts to assume that, at each time step, every
connection has a probability q of altering its weight
by a factor Ξj (σ) which is a function of the field at
j, or else [Marro et al., 2008]

P (xj |σ) = ζj (σ) δ (xj − Φ) + [1 − ζj (σ)] δ(xj − 1).
(2)

The noise parameter Φ describes resistance or
depression, e.g. due to heavy local work when 0 <
Φ < 1, while the edge facilitates, i.e. tends to
increase the effect of the signal under the same sit-
uation for Φ > 1, and the action of the edge is
reversed for negative Φ.

The consideration of fast time-dependent vari-
ations of the connections as in examples (1) and
(2) generalizes the standard model in a nontrivial
way. The result may be useful to describe the flow of
food in trophic webs, the exchange of assets or infor-
mation in social and communication networks, the
number of transits and passengers in transport net-
works, and the constant variation of effective ionic
interactions in spin glasses and other condensed sys-
tems due to reactions, diffusion and local rearrange-
ments of ions and impurities [Torres et al., 1998;
Marro et al., 2008], for instance.

(ii) Wiring topology. Let the topology matrix, ε =
{εij = 1, 0} , where the two values indicate the exis-
tence or not of an edge between nodes i, j, and
define the effective field [Marro & Dickman, 1999]
heff

i =
∑

j weff
ij σjεij where, assuming (1), one may

write that weff
ij = [1+(Φ−1)ζ̃j ]wij . Here, ζ̃j denotes

a function of the vector (to be interpreted as a local
overlap) of components mν

j = 〈k〉−1
∑

l ξ
ν
l σlεjl with

〈k〉 the mean node connectivity, i.e. the average of
ki =

∑
j εij . For the sake of concreteness, given that

one may write hj =
∑

ν hν
j with hν

j ≡ N−1〈k〉ξν
j mν

j ,

we are assuming for q �= 0 that Ξj = 1+ ζ̃j(Φ−1)/q,
with ζ̃j = (N/〈k〉)α/(1 + M/N)

∑
ν |hν

j |α, α > 0
[Johnson et al., 2008]. This generalization of the
model allows for the consideration of forbidden links
[Allesina et al., 2008] and, more generally, complex
wiring topologies determined by the matrix ε and



April 8, 2010 16:51 WSPC/S0218-1274 02615

Excitable Networks: Nonequilibrium Criticality and Optimum Topology 871

characterized by ki. Two examples of these are the
bimodal case

p(k) =
1
2
δ(k − k1) +

1
2
δ(k − k2), (3)

and the “scale-free” case

p(k) ∼ k−γ (4)

with k ∈ [k0, km] for finite N which is known to be
particularly relevant in different natural contexts
[Torres et al., 2004; Egúıluz et al., 2005; Boccaletti
et al., 2006].

(iii) Quiet nodes. At each time step, only the state
of a fraction ρ of randomly chosen nodes will be
updated, to describe from parallel (ρ → 1) to
sequential (ρ → 0) updating. This is consistent
with the expectation that certain nodes may be
more active than others and some may even not
be engaged at a given time in a given cooperative
task — there is no need for a network to have all the
nodes fully informed of the activity of all the others
at all times. In fact, it has been observed that the
network activity does not distribute uniformly in
practice [Shoham et al., 2006; Ergorov et al., 2000;
Azouz & Gray, 2000]. The observed fast-variations
of the connections strength with time discussed in
(i) could also be related to the existence of quiet
nodes, which are also a concern in computer science
[Korniss et al., 2003], for instance. The existence
of reticent nodes should probably be considered a
main feature of excitable media in which elements,
after responding to perturbation, are refractory to
further excitation.

2. Some Results

The different model realizations which follow from
the above setting may be handled analytically in
a few cases, particularly, for M = 1 and fully-
connected networks. More general behavior may
be obtained by mean-field and other approxima-
tions, and also by performing direct simulation of
the models in the computer using the Monte Carlo
method. A systematic study of the resulting phe-
nomenology, which is very varied and intriguing, is
on the way. We summarize next, graphically a few
main results.

For a given level Φ of synaptic fatigue, vary-
ing ρ ∈ [0, 1] we observe different regimes, includ-
ing cases in which the system activity moves, even
irregularly or apparently chaotically, between the
Hebbian attractors. This is illustrated in Fig. 1. A
detailed scaling analysis of both the activity and

hi reveals some critical features. We illustrate this
in Fig. 2 which shows relevant power spectra as
the dynamics is changed by varying ρ from a reg-
ular case with the familiar memory retrieval to a
chaotic phase in which the system jumps irregu-
larly between different memory states. That is, the
spectra is — except for expected large frequency
peaks — roughly constant around ρ = 0.35, which
is near the edge of chaos but still in the memory
phase, while it shows power-law behavior and other
signatures of criticality within the chaotic window,
namely, for ρ > 0.35 in this case.

For a better quantification of the varied emer-
gent behavior in the model, we have investigated
further the space of relevant parameters (ρ,Φ).
That is, for a given “temperature” T ≥ 0, and
number of patterns M, we monitored the stand-
ard order parameters which characterize nondy-
namical phases, namely, the steady-state overlaps
〈mν(t)〉t =

∫ t0+∆t
t0

mν(t)dt and the spin-glass order
parameter Q = 〈〈σi(t)〉t)2〉 = (1/N)

∑N
i=1(1/(∆t)

∫ t0+∆t
t0

σi(t)dt)2. The latter is plotted in Fig. 3(a)
for a case which allows for an easy identification
of the different relevant regimes. The fact is that
nondynamical phases, such as those associated with
memory and spin-glass states have Q �= 0, whereas
all dynamical phases, defined as those in which neu-
ral activity is continuously wandering in a regular
or chaotic way the different stored patterns, have
Q ≈ 0. Among the latter, as shown in Fig. 1,
one can distinguish a phase where neural activ-
ity jumps chaotically between the basins of attrac-
tion of stored patterns (say Irregular Switching
among Patterns or ISP phase), a phase with activ-
ity switching irregularly among different pattern–
antipattern oscillations (Irregular Switching among
Pattern Antipattern Oscillation or ISPAO phase),
and a phase with the activity jumping periodically
between pattern and antipattern states (Periodic
Hopping or PH phase). The phase diagram, namely,
the distribution of the different phases in the (ρ,Φ)
space for T = 0 is schematized in Fig. 3(b).

Figure 4, on the other hand, illustrates the
influence of the wiring topology on the resulting
behavior of our model. This shows that the scale-
free topology with γ 
 2 needs very little fatigue,
namely, Φ � 1, to achieve irregular behavior, which
is the most efficient regime. For a practical illus-
tration of the computational advantages of this
result, we monitored the performance of a network
during the pattern recognition process. In practice,
we “showed” the system a pattern, say ν chosen
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Fig. 1. Time evolution of overlaps between the current activity and each of the stored patterns (different colours) for (top
to bottom) ρ = 0.1 (left) and 0.35 (right) showing memory retrieval, ρ = 0.4 and 0.45 with two types of irregular jumping
between patterns, and ρ = 0.55 (irregular) and 0.65 (regular) pattern–antipattern oscillations. This is for (1) with Φ = −0.5,
N = 1600 and M = 5 at low “temperature” (a measure of the level of stochasticity of the time evolution).

Fig. 2. The power spectra of the local field hi(t) for dif-
ferent values of ρ, as indicated, following from Monte Carlo
simulations.

at random from a set of M random patterns previ-
ously stored,a every certain number of time steps.
This was performed by changing the field at each
node for one time step, namely, hi → hi +ςξν where
ς is the amplitude of the stimulus. Ideally, the net-
work should immediately acquire the configuration
of the presented pattern ν and remain there until
it is newly stimulated with a different pattern. The
performance may thus be estimated from a tem-
poral average of the overlap between the current
state and the input pattern, 〈mν(t)〉t. With this
criterion, we found that performance is best when
the system is in the memory phase but close to the
“edge of chaos” (though never exactly at this point,
presumably because chaos is achieved through
bifurcations). This is assumed to be due here to

aPattern ν was also required to be different from whichever pattern was condensed — i.e. displaying the highest overlap — at
the time of stimulation.
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Fig. 3. (a) Behaviour of the spin-glass order parameter Q as defined in the text, as a function of Φ and ρ for a network
of N = 800 neurons, M = 5 stored patterns, and T = 0. (b) Schematized phase diagram with the observed memory and
spin-glass phases and all the other dynamical regimes. The latter, namely, ISP, ISPAO and PH phases (as defined in the text)
which have Q = 0, are localized in the region with Φ < 0 and ρ ∈ (0.3, 0.5).

the fact that the condensed pattern is easily desta-
bilised by the stimulus, while the system is able to
remain in the new pattern after detecting it.

Figure 5 shows typical time series obtained
during this task for a particular realization of a
bimodal network with ∆ = 10 and different val-
ues of the fatique parameter Φ. Each of the three
panels corresponds from top to bottom to Φ = 1
for which the system is in a stable spin-glass state
and there are no synaptic fluctuations, Φ = 0.5,

at which the system is in the memory phase but
close to the edge of chaos, where the network is
shown to respond optimally to the external sig-
nal, and Φ = 0, at which the system is in the
chaotic phase where it is sensitive to stimuli but
not capable of retaining the network activity in
a particular pattern. These results are in quali-
tative agreement with other models in which the
“edge of chaos” is seen to optimize magnitudes
such as computational capacity [Bertschinger &
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Fig. 4. The critical fatigue Φc at which the phase changes from retrieval to jumping (red lines), in the case of a model with (1),
is compared here when the connectivity is given by (3), left, with ∆ = (1/2)(k2 − k1), and (4), right. Blue symbols correspond
to the critical line computed by MC simulations of the network with N = 1600 and mean connectivity 〈k〉 = 20, and black
dots correspond to values of the relevant parameters at which the Lyapunov exponent defining the collective dynamics of the
network becomes positive. Other model parameters are ρ = 1, and α = 2.
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Fig. 5. A pattern recognition process, as described in the main text, performed at different values of fatigue on a network
with a bimodal random distribution with ∆ = 10. The overlaps for each of the M = 4 stored patterns are shown as colored
lines, while the stimuli are represented as appropriately colored ticks. The top panel (Φ = 1, i.e. static synapses) results in a
performance of η = 0.26 (measured as the fraction of time that the network activity follows the stimulus); the middle panel
(Φ = 0.5) yields η = 0.87; and the bottom panel (Φ = 0.0) has η = 0.50. In all cases, updating was ρ = 0.5 and T = 0.08Tc.
Other parameters as in Fig. 4.

Natschläger, 2004] and dynamic range of sensitivity
to stimuli [Assis & Copelli, 2008]. No doubt this
intringuing model behavior merits a more detailed
investigation.

3. Conclusions

In this work, we have analyzed the emergent
properties of an extended version of the stan-
dard Amari–Hopfield neural network model, by
considering realistic assumptions for synapse (the
possibility of short-term plasticity) and neuron
dynamics (the possibility of silent or quiet neurons)

and network topology. Our analysis shows that
these new features induce new phenology in the
dynamical behavior of the network with the appear-
ance of novel phases where the network is able to do
different tasks. For instance, in some region of the
parameter space, the network is able to efficiently
retrieve the stored memories, as in a standard mem-
ory or ferromagnetic phase, and by slightly chang-
ing the relevant network parameters, the network
activity can move to a dynamical phase which can
be either, regular or chaotic, which is a positive fea-
ture. In the chaotic phase, the activity is able to
dynamically retrieve for some period of time each
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one of the stored memories, which is positive for
dynamical memory processing. Moreover, our anal-
ysis has shown that near the so-called “edge of
chaos”, the network activity becomes critical, that
is, some relevant statistical properties of the dynam-
ics show power-law distributions, as those observed
in actual neural systems [Egúıluz et al., 2005]. We
have also explored the effect of network topology
within these new phases. More precisely, we have
shown that the heterogeneity of the network is
important given that it enhances the dynamic per-
formance.
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Lindner, B., Garćıa–Ojalvo, J., Neiman, A.
& Schimansky-Geier, L. [2004] “Effects of noise in
excitable systems,” Phys. Rep. 392, 321–424.

Malenka, R. C. & Nicoll, R. A. [1999] “Long-term poten-
tiation — A decade of progress?” Science 285, 1870–
1874.

Marro, J. & Dickman, R. [1999] Nonequilibrium Phase
Transitions in Lattice Models (Cambridge University
Press, Cambridge).

Marro, J., Torres, J. J. & Cortés, J. M. [2007] “Chaotic
hopping between attractors in neural networks,” Neu-
ral Networks 20, 230–235.

Marro, J., Torres, J. J. & Cortés, J. M. [2008] “Complex
behaviour in a network with time-dependent connec-
tions and silent nodes,” J. Stat. Mech., P02017.

Mazor, O. & Laurent, G. [2005] “Transient dynamics
versus fixed points in odor representations by locust
antennal lobe projection neurons,” Neuron 48, 661–
673.

McCulloch, W. S. & Pitts, W. H. [1943] “A logical calcu-
lus of the ideas immanent in nervous activity,” Bull.
Math. Biophys. 5, 115–133.

Pantic, L., Torres, J. J., Kappen, H. J. & Gielen,
S. C. A. M. [2002] “Associative memory with dynamic
synapses,” Neural Comp. 14, 2903–2923.

Shoham, S., O’Connor, D. H. & Segev, R. [2006] “How
silent is the brain: Is there a dark matter problem in
neuroscience?” J. Compar. Physiol. A 192, 777–784.

Sompolinsky, H., Crisanti, A. & Sommers, H. J. [1988]
“Chaos in random neural networks,” Phys. Rev. Lett.
61, 259–262.

Torres, J. J., Garrido, P. L. & Marro, J. [1998] “Model-
ing ionic diffusion in magnetic systems,” Phys. Rev.
B 58, 11488–11492.
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