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Excitable systems are of great theoretical and practical interest in mathematics, physics, chemistry, and
biology. Here, we numerically study models of excitable media, namely, networks whose nodes may occasion-
ally be dormant and the connection weights are allowed to vary with the system activity on a short-time scale,
which is a convenient and realistic representation. The resulting global activity is quite sensitive to stimuli and
eventually becomes unstable also in the absence of any stimuli. Outstanding consequences of such unstable
dynamics are the spontaneous occurrence of various nonequilibrium phases—including associative-memory
phases and one in which the global activity wanders irregularly, e.g., chaotically among all or part of the
dynamic attractors—and 1 / f noise as the system is driven into the phase region corresponding to the most
irregular behavior. A net result is resilience which results in an efficient search in the model attractor space that
can explain the origin of some observed behavior in neural, genetic, and ill–condensed matter systems. By
extensive computer simulation we also address a previously conjectured relation between observed power-law
distributions and the possible occurrence of a “critical state” during functionality of, e.g., cortical networks,
and describe the precise nature of such criticality in the model which may serve to guide future experiments.
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I. INTRODUCTION

A network is said to have attractors when it can autono-
mously change its pattern of overall activity to converge with
time toward one case while being resilient to perturbations.
Following psychological observations �1� and theoretical
work �2,3�, the concept was popular two decades ago as a
mathematical tool to explore the fundamentals of brain tasks
attributed to cooperation between many neurons. According
to the, say, standard model �4�, patterns of information, cor-
responding to sets of values for the nodes activity, are stored
in a way that affects the intensities of the edges, representing
synapses, which induce a heterogeneous distribution of the
edge weights. The global activity may then converge toward
one of the given patterns when starting with a degraded ver-
sion of it. That is, the system exhibits kind of resilience,
often known as associative memory—a property that mimics
the process of recognizing a childhood friend we have not
seen for dozens of years—which, being common to humans,
is difficult to efficiently emulate with computers. Such a re-
markable consequence of cooperation is also relevant to the
understanding of complexity in a variety of systems and to
solve actual optimization problems �2,4–7�.

The systems of interest in nature not only choose eventu-
ally one out of a set of patterns and stay ad infinitum in its
neighborhood but also exhibit an extremely difficult bizarre
dynamic behavior �see �8–10� and references therein�. For
example, signals from the heart and cortical neural activities
have been successfully interpreted using nonlinear dynamic
theory �11–18�, and the standard model has been generalized
along biologically motivated lines that endow it with even
more interesting behavior �19–26�. In particular, it was
shown that one may capture some of the observed shaky
mechanisms and instabilities by taking into account two fea-
tures that seem to characterize generically excitable media
�27�, namely, assuming both rapid activity-dependent fluc-

tuations of the edge weights and the existence of nodes that
are reluctant to a change of state during a time interval after
operation. It is remarkable that incorporating these simple
mechanisms into the standard model has allowed one to rec-
reate �28� the transient dynamics of activity as observed in
experiments concerning the locust odor representation �29�.

Instead of just associative memory, one may readily iden-
tify in this experiment, as in most of the available observa-
tions �e.g., the ones mentioned in the previous paragraph� a
kind of continuous and irregular wandering among attractors,
say, roaming dynamics. The nervous system is definitely not
the only network that exhibits both varying edge weights and
silent nodes at a basic level of observation and, as a reflec-
tion of this at a higher level, this sort of roaming dynamics.
This occurs in ill–condensed matter, for instance, whose
emerging properties are determined by “microscopic disor-
der.” In fact, it is sensible to imagine such a disorder is more
involved than assumed in familiar spin-glass models. That is,
the effective interactions between ions should certainly be
expected to have short-time variations—associated with ion
diffusion, basic chemical reactions, and other local changes
concerning impurities, misfits, fields, rearrangements,
strains, etc.—which would, in general, induce nonequilib-
rium patterns of activity as, for example, observed in
reaction-diffusion systems �30,31�. It is likely that the behav-
ior of genetic networks during biological evolution is another
case of microscopically induced roaming dynamics �32–34�.
Furthermore, though to our knowledge the relevance of
roaming has not yet been described for other excitable sys-
tems, it is noticeable that variability of connections and oc-
casional lack of individual activity are features that typically
characterize friendship, social, professional, and business
contacts �35�, as well as the case of the interrelated metabolic
reactions that run the cell, food webs, and transport and com-
munication networked systems, for instance.

In this paper, we describe in detail model phenomenology
bearing relevance to situations with spontaneously unstable
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dynamics associated with excitability as described in the two
previous paragraphs. By extensive computer simulations, we
show both first- and second-order phase transitions, charac-
terize the nature of different nonequilibrium phases �30� that
occur as one modifies the system parameters, study the de-
tails of the network activity dynamics, and determine the
conditions in which long-range correlations and non-
Gaussian noise emerge. This results in a systematic study
that adds up to recent efforts trying to understand the origin
of the observed relation between certain statistical criticality
and dynamically critical functionality in neuroscience
�9,10,36–42�. Our study in this paper complements analyti-
cal study of the simplest limits of the same model in Ref.
�27� and related exploratory numerical studies therein.

II. DEFINITION OF MODEL

Consider a network in which the consequences of the ac-
tivity changes of each node above threshold may be sketched
by means of a binary variable: �i= �1, i=1, . . . ,N. This is
known to suffice in practice to investigate main effects of
cooperation in different contexts �43�. Each node receives a
signal—alternatively, endures a local field—hi���
=� j�i wij� j, where �= ��i� stands for the global activity and
wij is the weight of the connection between nodes i and j. In
the problems of interest, one may typically single out P pat-
terns of activity, namely, ��i

�= �1� with �=1, . . . P, which
have some special relevance. The weights then follow ac-
cordingly, e.g., by means of the superposition rule wij

= 1
N��=1

P �i
�� j

�. This is one of the simplest conditions that
transforms the special P patterns into attractors of dynamics
�1,4�.

Short-time variability of connections will be introduced
by assuming that their weights are given by w̄ij =� jwij, where
� j is a stochastic variable. In order to mimic the cases of
interest, this variable should change very rapidly compared
with the network characteristic time scale. Therefore, we
shall assume that it can be described by a stationary distri-
bution. This is taken here as Pst�� j ���=����	�� j −
�+ �1
−�����	�� j −1�. That is, with probability ����, which in gen-
eral depends on the global network activity, the weights are
changed by a factor 
 but remain unchanged otherwise. De-
pending on the value of 
, this may simulate node excitabil-
ity, potentiation, or fatigue of the connections as a function
of the degree of order in the system. The standard model
corresponds to 
=1. Other choices for Pst�� j ��� have been
investigated �44�, including one in which the weights change
depending on the degree of local order, and it seems that
these details do not modify essentially the system behavior.
We shall assume here for simplicity that the relevant prob-
ability in Pst is the order parameter,

���� = ��m� 	
1

1 + P/N �
�=1

P

�m�����2. �1�

Here, m= �m1��� , . . . ,mP���� is a vector whose components
are the P overlaps of the current state � with each of the
singularized patterns, namely, m����= 1

N�i=1
N �i�i

�.
Time evolution is a consequence of transitions �i→ ��i

that we performed with probability 1
2 �1−�i tanh�hi���T−1��.

Here, T is a parameter that measures the degree of stochas-
ticity driving the evolution—the so-called network tempera-
ture. Another main parameter is the fraction, �, of nodes
which is updated at each unit of time or MCS—the Monte
Carlo step �per node�. For simplicity, we shall assume here
these nodes chosen at random from the whole set of N. In
this way, the result is a situation in between the limits �
→0 �sequential or Glauber updating� and �→1 �parallel or
Little updating�. The case of intermediate � better corre-
sponds to those situations in which due to excitability or
other causes, e.g., power economy, not all the elements are
active at all times.

For simplicity, we shall be concerned only with mutually
orthogonal patterns. This is achieved in practice setting every
node in �i

� for all � equal to +1 or −1 independently with the
same probability, so that �� ·��
0 for any ��� in a large
system. �Assuming specific sets of P correlated patterns,
which is of great practical interest, is beyond the scope of
this paper that intentionally understates this model detail.�
Then, under some restrictions which strictly require also the
limit �→0 �see �45� for technical details�, the conditions so
far stated may be taken into account by assuming effective
weights,

w̄ij = �1 −
1 − 


2
���m� + ��mi���wij , �2�

where the components of mi are m����−2�i�i
�N−1. We shall

consider in the following this simplified version of our model
which coincides with the general case for any �0 after
averaging w̄ij =� jwij over the stationary noise distribution
Pst�� j ���. As a matter of fact, Eq. �2� may formally be
viewed as any learning prescription, wij, which is affected by
a multiplicative noise—with correlations built due to the de-
pendence on m. Incidentally, connections that are roughly of
this type were recently shown to induce sort of criticality in
�neural� population dynamics �46�.

III. PHASES AND DIAGRAMS

A main observation concerns the nature of the phases ex-
hibited as one varies the noise parameter 
, the fraction of
active nodes �, the temperature T, and the load parameter
�= P /N. It turns out convenient to monitor the time evolu-
tion of various order parameters �47,48�, in particular,

M = �m��� =
1

N���i

�i
��i�� , �3�

where the asterisk is the value of � that identifies the pattern
having the largest squared overlap, �m��2, and �¯ � and ¯ �
stand for averages over time and over independent realiza-
tions of the experiment, respectively �i.e., changing both the
initial conditions and the set of the special stored patterns�.
The set of the other overlaps, m� with ���, may be char-
acterized by
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R =
1

1 + �� �
���

�m��2� , �4�

where the sum is over all patterns excluding the one in Eq.
�3�. We also monitored the global activity by means of

Q =
1

N��
i

�i
2� . �5�

Our values for M, R, and Q in the following involve suffi-
cient averages of independent values to obtain smooth typi-
cal behavior, namely, from 200 to 1000 MCS and 50–100
systems for static values and from 10 000 to 50 000 MCS
and 10 systems for time-dependent values, unless indicated
otherwise.

In the standard case 
=1, for uncorrelated patterns, the
system shows three phases �4,47�:

�Ph1� Memory phase, in which the system evolves toward
one of the given patterns—often known as pure or Mattis
states. The stationary state corresponds to maximum overlap
with the particular pattern, so that M is large while R is small
in the stationary state, namely, R�O��P−1� / �N+ P��. One
also has that Q
1 near T=0. �This case is illustrated by the
two top graphs in Fig. 1.�

�Ph2� Mixture phase, in which a large system converges
to a mixture of pure states, so that it exhibits some order but
not associative memory. Therefore, one may have several
relatively large overlaps, which induce that 0�M �1 with a
lower bound—due to finite size—on the order of 1 /�N,
while 0�R� �P−1� / �1+�� with a lower bound on the order
of �P−1� / �N+ P�. Also, Q
1 near T=0.

�Ph3� Disordered phase, in which the system remains

completely disordered as dominated by thermal noise. Then,
all the overlaps oscillate around zero, so that M �O�1 /�N�
and R is on the order of �P−1� / �N+ P� and Q
0 in the
stationary state.

These cases correspond, respectively, to the familiar fer-
romagnetic, spin-glass and paramagnetic phases that are well
characterized in studies of equilibrium magnetic models.

The behavior of our system is more complex than sug-
gested by this picture, however. A main novelty for 
�1 is
that, as illustrated in Fig. 1, the system exhibits different
types of dynamic behavior that cannot be fitted to the above.
That is, one observes that dynamics may eventually destabi-
lize in such a way that quite irregular jumping—among at-
tractors as well as from one pattern to its negative
�antipattern�—occurs. The observed behavior suggests one
to define the following dynamic scenarios, say, nonequilib-
rium phases that do not occur in the standard model.

�Ph4� Irregular roaming, in which the activity keeps ran-
domly visiting the basins of attraction corresponding to dif-
ferent patterns. �This is the case in Figs. 1�c� and 1�d�, i.e.,
the two middle graphs in Fig. 1.�

�Ph5� Irregular roaming as for Ph4 but eventually inter-
rupted at random during some time by oscillations between a
pattern and its antipattern. �This occurs in Fig. 1�e�.�

�Ph6� Pure pattern-antipattern oscillations. �As in Fig.
1�f�.�

These three genuine nonequilibrium cases correspond to
Q
0 and M 
0 �due to orthogonality�. Case Ph6 also has
R
0 �revealing the symmetry of oscillations�, while both
Ph4 and Ph5 have R�0. In order to properly characterize
these dynamic cases, we shall monitor latter the statistics of
the itinerant trajectory.

The different behaviors are better observed and inter-
preted at very low temperature. As shown in Fig. 2, the dis-
ordered phase Ph3 is not observed at the chosen �low� tem-
perature, while the ordered, ferromagnetic, and spin-glass
phases then occur for any 
 as far as � is not too large. That
is, one may have familiar order as in equilibrium—
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FIG. 1. �Color online� The overlap functions m��t� showing
typical different behaviors for N=1600 nodes, P=5 patterns, noise
parameter 
=−0.5, temperature T=0.01, and, from top to bottom,
associative memory as in Ph1 at �a� �=0.10 �left� and �b� �=0.30
�right�; irregular roaming among patterns at �c� �=0.375 �left� and
�d� �=0.40 �right� as in Ph4; eventual jumping between patterns
after a set of oscillations between a pattern and its negative �anti-
pattern� as in Ph5 at �e� �=0.50 �left�; and pure pattern-antipattern
oscillations as in Ph6 at �f� �=0.60. �Different colors or gray inten-
sities correspond to different values of �.�
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FIG. 2. �Color online� Nonequilibrium phase diagram �
 ,�� at
low temperature. This was obtained for N=1600, P=5, and T
=0.1 from detailed analysis of all the order-parameter functions.
The top �blue� line is for M =0.8. This leaves the equilibrium phases
above, where Ph1 occurs with probability 0.87 and Ph2 otherwise.
To the bottom, the next �violet� line—leaving also Ph1� above—is
for M =0.5. The next �green� lines comprise an inverted U-shaped
region in which R0.18. The inset shows the roaming region in
more detail.
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practically independently �over a wide range� of the noise
affecting the connections—as far as only a relatively small
fraction of nodes are simultaneously active �45�. However,
one observes small fluctuations or dispersion with time
around the mean value M and that the amplitude of this kind
of “error” increases as one lowers 
 and increases �. This
effect, which is evident when one compares the two top pan-
els in Fig. 1, led us to indicate a zone Ph1� around the region
for 
�0 and ��0.5. It is worth distinguishing this zone
which reveals how the ferromagnetic phase Ph1 has resil-
ience, i.e., a remarkable stability of the attractor to large
fluctuations. These increase monotonously with increasing �
and/or decreasing further 
, and it finally results in jumping
to other attractors �as in the two middle graphs in Fig. 1�
when more than one half of the nodes are simultaneously
active or, say, synchronized. This is the origin of the genuine
nonequilibrium cases Ph4, Ph5, and Ph6. In fact, as shown in
Fig. 2, one observes the onset of irregular roaming with R
�0 and M =0 for 
�0 and � between 0.4 and 0.6.

The above picture and Fig. 2 follow from a detailed com-
bined analysis of functions M�
 ,��, R�
 ,��, and Q�
 ,��,
as illustrated in Fig. 3. This also shows that two main types
of phase transitions between equilibrium and nonequilibrium
phases occur �see Fig. 4�. There is a second-order or continu-
ous transition, as one maintains 
�0 at a constant value
from the memory phase with large error, i.e., Ph1�, to the

irregular roaming phase Ph4. Then, at least near T=0, one
also observes a first-order or discontinuous transition �Fig.
4�, as � is maintained constant, from the memory phase to
the irregular roaming with pattern-antipattern oscillations,
namely, Ph5. Furthermore, it is noticeable here that, as illus-
trated in Fig. 5, the transition region depends on the value of
�= P /N, that is, the critical value of � increases somewhat
with decreasing � for finite N, and it seems to go to �

0.5 as N→� for finite �.

The rare shape of the roaming region in plane �
 ,�� for
P=5, which shows in detail the inset of Fig. 2, is roughly the
same as the one obtained analytically when P=1 for the
change of sign of the Lyapunov exponent in a closely related
model �Fig. 2 in Ref. �27��. This confirms the general obser-
vation during our MC experiments of kind of chaos within
the inverted-U region which is delimited in Fig. 2 by green
lines. That is, one should endow a chaotic character to the
roaming region. That similarity also reinforces the reliability
of our measures of order, and it shows how robust the model
here is in relation to the dynamically irregular behavior. It
also follows, in particular, that the model parameter P is
irrelevant to this qualitative behavior at least as long as not
too many patterns are stored.

The “phases” Ph4 and Ph5, e.g., cases �d� and �e� in Fig.
1, cannot be discriminated on the basis of M, R, and Q only.
The top panel in Fig. 6 illustrates how these functions change
with � for fixed 
 at low temperature. The bottom panel
illustrates the dynamic transition from irregular roaming in
Ph4 to the more regular behavior in Ph5 as a consequence of
increasing the amplitude of fluctuations around the attractor
as the fraction � of active nodes is increased during time
evolution. As indicated in Fig. 2, the separation between the
memory phase Ph1 or Ph1� and the nonequilibrium cases is
clear cut, while again it results more difficult to discriminate
numerically the region Ph6 of pure pattern-antipattern oscil-
lations �where M =R=0� out of the Ph4−Ph5 chaotic region
�where M =Q=0 with R�0�. In any case, however, our find-
ing concerning this agrees with the analytical result in a re-
lated case �27�.
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FIG. 3. �Color online� M�
 ,�� �left� and R�
 ,�� �right� for N
=1600, P=5, and T=0.1. There is coexistence of Ph1 and Ph2 for

0, while the latter phase does not show up for 
�0 and
memory then occurs but as Ph1� �see the main text� at sufficiently
low �.
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FIG. 4. �Color online� Left: Second-order phase transition be-
tween Ph1� and Ph4 around �
0.37 when 
=−0.8. Right: first-
order phase transition between Ph1 and Ph5 around 

−0.1 when
�=0.8. Both plots are for N=1600, P=5, and T=0.01. Note that
different realizations using a different seed produce here different
values corresponding to the different symbols; the mean of all the
realizations is represented by a solid curve.
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FIG. 5. �Color online� The second-order phase transition on the
left of Fig. 4. For the same system as in this figure, the main graph
here shows data for P=5 and N=1600, 3200, and 6400, respec-
tively from left to right in the middle of the Q value. The inset is for
the same values of N but P=5, 10, and 20, respectively, i.e., same
value of �.
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IV. ONSET OF IRREGULARITY

The above shows that the most intriguing behavior is
when the system activity becomes irregular, e.g., as one
crosses the second-order transition from the memory phase
region to the nonequilibrium behavior—either at Ph4 with
irregular roaming among attractors or at Ph5 where this may
be randomly interrupted by series of pattern-antipattern os-
cillations. Figure 7 illustrates an aspect of this transition. In
addition to the time evolution of some of the overlaps �right
panels�, which indicates where the activity is at each mo-
ment, this shows �left panels� the signal hi�t� that can some-
times be monitored in actual experiments. As a matter of

fact, experimentalists might find this information interesting
because it is likely the data here may be compared, for in-
stance, with electrical signals measured in single
neurons—as well as more delocalized local fields—in the
cortex and hippocampus of rats �49� and with magnetoen-
cephalogram signals and recordings for single neuron action
potentials �50,51�.

It thus seems that it would be most interesting to charac-
terize more quantitatively how the model signal transforms
while performing the relevant transitions, that is, when mov-
ing from the case of random fluctuations around a constant
value in the memory phase to the case in which the ampli-
tude of the fluctuations increases, eventually switches to the
negative of the original value, and finally reaches the case in
which the frequency of switching and all the other variables
become fully irregular in Ph4 and Ph5. With this aim, we
studied in detail the distribution of times of permanence in
an interval around significative values of h. More specifi-
cally, in order to extract the relevant information in the case
of quite different signals such as those in Fig. 7, it turned out
convenient to compute the distribution of time intervals, say
��, in which the signal continuously stays in any of two
ranges either h�t�h0 or h�t��−h0. The cutoff h0 intends to
suppress the smallest fluctuations, which correspond to non-
significative noise; this is achieved here in practice for h0
� �0.05,0.1�. We thus observe, after averaging over the net-
work, time, and different experiments that the interesting be-
havior requires relatively large systems, so that it does not
occur for, say, N=400 and P=5 while it already becomes
evident for, e.g., N=6400 and P=40. The most interesting
fact from this study is that the exponent � in a power-law fit
��−� monotonously increases with size from �
1 for N
=800 and P=10 in a way that might indicate a tendency of �
to 1.5–2 �though our data that never reached this regime�.
These facts are illustrated in the following figures.

The left panel in Fig. 8 shows a changeover from a gen-
eral exponential behavior to a power-law behavior near the
interesting second-order phase transition. Analysis of the
Fourier spectra reveals a similar situation, i.e., changeover
from exponential to power-law behavior, concerning both the
signal h�t� �right panel in Fig. 8� and the overlap function
m�t�. Figure 8 is a definite evidence for statistical criticality
as one approaches the relevant transition. On the other hand,
Fig. 9 shows how the system activity close to the transition
between the memory equilibrium phase Ph1 and the irregular
behavior in Ph4 tends to follow the power-law distribution
over a larger range as one increases the size N for fixed P,
which decreases �. However, we observed �not shown� that
� does not depend on N, namely, the same value �=1.4 is
obtained when P=20 for N=1600, 3200, and 6400.

V. FINAL DISCUSSION

Chemical reactions diffusing on a surface, forest fires with
constant ignition of trees, parts of the nervous system vigor-
ously reacting to weak stimuli, and the heart enduring tachy-
cardia are paradigms of excitable systems—out of many
cases in mathematics, physics, chemistry, and biology �see
�52,53�, for instance�. Despite obvious differences, these sys-
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=−0.7, T=0.1, N=1600, and P=5. �Different colors or
gray intensities are here for M, R, and Q, respectively, as indicated.�
Bottom panel: time series for the overlap functions m��t� in the
same case. The value of � is increased here during time evolution as
indicated by the horizontal axis in the upper panel. �Different colors
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tems share some characteristics. They comprise spatially dis-
tributed “excitable” units connected to each other and coop-
erating to allow for the propagation of signals without being
gradually damped by friction. The simplest realization of the
relevant excitability consists in assuming that each element
has a threshold and a refractory time between consecutive
responses. In order to deal with a setting which is both real-
istic and mathematically convenient, one may suppose that
the system is networked with occasionally quiet nodes and

connection weights that vary with activity on short-time
scales. As a matter of fact, experimental observations reveal
rest states stable against small perturbations, which corre-
spond to the silent nodes here, and rapid varying strength of
connections, either facilitating or impeding transmission,
which temporarily affect thresholds and may also induce
time lags during response. Furthermore, it is known that such
nonequilibrium setting induces dynamic instabilities and at-
tractors �27,44�. On the other hand, we believe that it is
likely that this modeling of excitable media may, in fact, be
related to the one by means of partial differential equations
such as when the simple FitzHugh-Nagumo model �54� is
used to represent each unit.

With this motivation, we have studied excitable media by
extensive computer simulations of a discrete time model
with an updated rule which generalizes the Hopfield-like
standard case. The resulting phenomenology as described
here is expected to describe the basic behavior in a number
of apparently diverse man-made and natural excitable sys-
tems. In particular, we explicitly show how the model exhib-
its in the absence of stimuli highly unstable dynamics when
a sufficiently large fraction � of nodes are “synchronized,”
i.e., having their states updated, and for certain values of a
noise parameter 
 that controls the noise within the connec-
tion strength. We also illustrate how these instabilities induce
the occurrence of novel, first-, and second-order nonequilib-
rium phases. One of these happens to be most interesting as
it describes the global activity wandering irregularly among
a number of attractors, details strongly depending on the val-
ues of � and 
. In particular, one may tune an efficient
search in the model attractor space which is sensible to as-
sume that it may be at the origin of phenomenology previ-
ously described for neural, genetic, and ill–condensed matter
systems. There is also definite evidence of non-Gaussian 1 / f
noise when the system is tuned into this irregular behavior,
which may explain recent experimental observations of criti-
cality and power-law distributions in cortical networks.

Finally, we remark how the mechanism behind the irregu-
lar jumping from one pattern to the other is well understood
in the model. That is, the relevant instabilities are to be di-
rectly associated to the effective local fields that one may be
written as

hi
eff � �1 − �1 − 
���m���

j�i

�ij� j �6�

for large N, i.e., neglecting terms of order N−1. After some
manipulation, one may write this more explicitly as

hi
eff = hi

Hebb − ��
�

�i
��m��3 − � �

�����
�i

�m��m��2. �7�

Here, hi
Hebb stands for the energy per neuron in the standard

model, �= �1−
� / �1+��, and the last sum is over all pairs
of different indices � and �. As discussed above, hi

Hebb tends
to drive the system activity near the attractor associated to
one of the stored patterns. Together with the second term in
Eq. �7�, this sums up to ���i

�m��1−��m��2� which, depend-
ing on the value of �, induces instabilities and irregular be-
havior of the overlap dynamics similar to those in a cubic
map �55�. The third term in Eq. �7�, on the other hand, may
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FIG. 8. �Color online� Logarithmic plots. Left: distribution of
time intervals in which the signal continuously stays in any of the
two ranges either h�t�h0 or h�t��−h0, with h0=0.1 when N
=1600, P=20, 
=−0.8, and T=0.01 for the subcritical cases ��a�
�=0.225—a practically horizontal signal in the Ph1 phase—and �b�
0.3�, supercritical cases ��d� �=0.35 and �e� 0.425—an exponential
behavior in the Ph4 phase�, and the near-critical case ��c� �
=0.325�. The latter near-critical case approximately follows the dot-
ted line ��−� with �=1.4 for a large time interval. Each case cor-
responds to an average over 50 neurons and 20 independent systems
running for 105 MCS. Right: power spectra of h�t� for the same
cases as in the left panel using runs with 4�105 MCS. The power
law is illustrated with a dotted line.
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FIG. 9. �Color online� The same as in Fig. 8 to show the effect
of varying the size N at fixed �= P /N=0.003 125 and �=0.375.
From bottom to top, the data—corresponding to an average over 50
neurons and 10 independent systems—are for N=1600 and 3.5
�106 MCS �red�, N=3200 and 6�105 MCS �green�, and N
=6400 and 8�104 MCS �blue�. �For clarity purposes, there is a
vertical translation of the data points, and it was set h0=0.05 here.�
Both the exponent � in ��−� as well as the cutoff at which this
power law fails clearly increase as N is increased.
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be written as −���m�hi
� with hi

�=����m��i
�m�. Given that �

differs from � here, this only includes asymmetric terms
�i

�m� similar to those that characterize the local fields for

asymmetric learning rules, namely, ĥi=���i
�m�+1, which are

often used to stored and retrieve ordered sequences of pat-
terns �48,56�. It is sensible to assume, therefore, that this
term is most efficient in the present case in inducing transi-
tions among patterns. Unlike for asymmetric learning �56�,

however, the destabilization here does not induce any order
or predictability in the sequence of visited patterns.
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