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Abstract. We present a general theory which allows one to study the
effects on emergent, cooperative behavior of a complex interplay between
different dynamic processes that occur in actual systems at the neuron,
synapse and network levels. We consider synaptic changes at different
time scales from less than the millisecond to the scale of learning, and
the possibility of finding a fraction of silent neurons. For some limits
of interest, the fixed-point solutions or memories then loose stability
and the system shows enhancement of its response to changing external
stimuli for particular network topologies and dynamical memories. We
observe at the edge of chaos that the network activity becomes critical
in the sense that the relevant quantities show non–trivial, power–law
distributions. We also describe the effect of activity–dependent synaptic
processes on the network storage capacity.

1 Introduction

Recent research in neuroscience including both in vivo and in vitro experiments
have demonstrated that synapses are more than simple communication lines
among neurons, and that many different dynamic processes taking place in the
synapses can influence and even determine different type of information pro-
cessing in the brain [1]. Some of these mechanisms can occur on different time
scales. For instance, on a time scale longer than the second (say days or years),
synapses can be modified due to learning. This has been widely studied within
a general theory of learning in attractor neural networks [2]. In addition to this,
it has been described that fast synaptic fluctuations coupled with other mecha-
nisms during the transmission of information seem to determine a large variety
of computations in the brain [3, 4]. These fluctuations occur on very short (less
than the millisecond) temporal scales, and they seem to have different causes.
For instance, the stochasticity of the opening and closing of the neurotransmitter
vesicles, variation in the postsynaptic response along the dendritic tree, which in
turn has several sources (e.g., variations of the glutamate concentration in the
synaptic cleft) and differences in the power released from different locations on
the active zone of the synapses [5]. Together with these fast synaptic changes, it
has been reported that the postsynaptic response is also affected by short-time
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activity-dependent mechanisms which can decrease or increase the amount of
available neurotransmitter and, consequently, the postsynaptic response is ei-
ther depressed or facilitated [1, 6]. This type of synaptic plasticity is believed to
be fundamental for the development and adaptation of the nervous system, and
to be at the base of higher brain functions such as learning and memory.

In this paper we present an attempt towards a theoretical framework to
study systematically the influence of synaptic changes on the collective prop-
erties of a neural network, where the network topology itself is also a variable
to be considered. In particular, of special interest is to understand how these
synaptic mechanisms for different network topologies affect the fixed points of
the neural activity and their stability, which concerns memory, recall processes
and sensibility to external stimuli.

2 Model and results

Let us consider N neurons – for simplicity assumed binary so that configurations
are S ≡ {si = ±1; i = 1, . . . , N} – connected by synapses of intensity wij =

wijzj ∀i, j. Here, wij ≡ 1/N
∑M

µ=1
Ξµ

i Ξµ
j are fixed and determined in a previous

learning process in which the M patterns of neural activity Ξµ ≡ {Ξµ
i = ±1; i =

1, . . . , N}, µ = 1 . . .M, are stored. wij represents the maximal averaged synaptic
conductance between the presynaptic neuron j and the postsynaptic neuron i,
while, zj ∈ R is a stochastic variable that influences these conductances and
accounts for other synaptic dynamics than those associated to learning. For
fixed W ≡{wij}, the network state A = (S,Z ≡ {zi}) follows the probabilistic
dynamics

∂Pt(A)

∂t
=

X

A′

ˆ

Pt(A
′)c(A′ → A) − Pt(A)c(A → A

′)
˜

, (1)

where c(A → A
′) = p cZ(S → S

′) δZ,Z′ + (1 − p) cS(Z → Z
′) δS,S′ [7]. This

amounts to assume that neurons (S) change stochastically in time competing
with a noisy dynamics of synapses (Z), the latter with an a priory relative
weight of (1 − p)/p [8].

For p = 1, the model reduces to the Hopfield case, in which synapses are
quenched, i.e., zi is constant and independent of i, e.g., z = 1. This limit has
been widely studied in the last decades [2]. More interesting is the case of p → 0,
which describes fast synaptic fluctuations. In this limit, one can uncouple the
stochastic dynamics for neurons (S) and the synaptic noise (Z) using standard
techniques [8]. It follows that neurons evolve as in the presence of a steady
distribution for the noise Z: If we write Pt(A) = Pt(Z|S)Pt(S), where Pt(Z|S)
stands for the conditional probability of Z given S, one obtains from (1), after
rescaling time tp → t and summing over Z, that

∂Pt(S)

∂t
=

∑

S′

{Pt(S
′)c̄[S′ → S] − Pt(S)c̄[S → S

′]} . (2)
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Here, c̄[S → S
′] ≡

∑

Z
P st(Z|S) cZ[S → S

′], and the stationary distribution for
the noise is

P st(Z|S) =

∑

Z
cS[Z′ → Z] P st(Z′|S)
∑

Z
cS[Z → Z′]

. (3)

This expression involves an assumption on how synaptic noise depends on the
overall neural activity. An interesting particular situation is to assume activity-
dependent synaptic noise consistent with short-term synaptic depression and/or
facilitation [6, 9]. That is, let us assume that P st(Z|S) =

∏

j P (zj|S) with

P (zj |S) = ζ (m) δ(zj − Φ) + [1 − ζ (m)] δ(zj − 1). (4)

Here, m = m(S) ≡
(

m1(S), . . . , mM (S)
)

is the M -dimensional overlap vector,
mµ = N−1

∑

i Ξisi, and ζ (m) stands for a function of m to be determined.
With this choice, the average over the distribution (4) of the noise variable is
zj ≡

∫

zjP (zj |S)dzj = 1−(1−Φ)ζ (m) and the variance is σ2

z = (1−Φ)2ζ (m) [1−
ζ (m)]. Note that these two quantities depend on time for Φ 6= 1 through the
overlap vector m, which is a measure of the activity of the network. Moreover,
the depression/facilitation effect in (4), namely zj = Φ > 0 (Φ 6= 1), depends
through the probability ζ (m) on the overlap vector, which is related to the net
current arriving to postsynaptic neurons. Consequently, the non–local choice (4)
introduces non–trivial correlations between synaptic noise and neural activity.
One has a depressing (facilitating) effect for Φ < (>)1, and the trivial case Φ = 1
corresponds to the Hopfield model with quenched synapses. It is remarkable that,
although the fast noise dynamics occurs at a very small time scale, the depressing
or facilitating mechanism occurs on the time scale of the neural activity –via the
coupling with the overlap vector through the function ζ (m) .

The general model described by Eqs. (1-4) can be easily generalized to other
cases of interest such as the possibility of having silent nodes in the network
(every time the activity is updated). For instance, one may assume that the
transition probabilities have the form

cZ[S → S
′] =

∑

x

pn(x)
∏

i|xi=1

τn(si → s′i;Z)
∏

i|xi=0

δsi,s
′

i
. (5)

Here, x is an operational set of binary indexes fixed to 1 at n sites chosen
at each time according to distribution pn(x), and fixed to zero at the other
N −n sites. The choice (5) simply states that one (only) updates simultaneously
the selected n nodes. We also assume that the elementary rate τn(si → s′i;Z)
depends on the factor βsihi where β = T−1 is the inverse of the temperature and
hi(S,Z) ≡

∑

j ǫijwijzjsj is the local field or synaptic current a particular neuron
is receiving from its neighbors. Here ǫij = {1, 0} is the adjacency or connectivity
matrix, which describes the existence or not of interaction between i and j. This
allows for the consideration of different network topologies. For any non-trivial
topology, is convenient to consider the local overlap mµ

j = 〈k〉−1
∑

i Ξisi, where
〈k〉 is the mean neuron degree or number of neighbors, which equals the global
one only when all neurons are connected to each other.
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Fig. 1. Two of the different types of dynamic behaviour exhibited by the nonequi-
librium neural network showing chaotic switching from one attractor to the other.
Parameters are N = 1600, M = 5, T = 0.01, Φ = −0.8 and ρ = 0.45(0.5) for the left
(right) simulation.

A main result is that the system shows quite qualitatively different behavior
depending on the value of T and ρ ≡ n/N. In particular, one easily observes
the familiar Hopfield phases of complete disorder and one in which the system
may recover one of the stored patterns. More intriguing are cases such as those
in Fig. 2, namely, dynamic phases in which the network activity chaotically
switches among the stored patterns and antipatterns (i.e., negatives of the stored
patterns).

Concerning topology, a given neuron i in biological networks is seldom or
never connected to the rest, but rather only to a relatively small subset of neigh-
bors – of cardinal ki =

∑

j ǫij , which is i’s degree. Even in the case of the worm
C. elegans, with only about 300 neurons, it turns out that there is great disparity
in the values of k, ranging from just one or two to a large portion of the network.
Although little is yet known about the precise architecture of animal brains, a
first approximation we can consider for neural systems – as is often done in
other networks – is to assume that the synapses are placed randomly between
the neurons, and focus only on the degree distribution, p(k). In this approxi-
mation, known as the configurations ensemble, the expected value of ǫij , given
ki and kj , is ǫij = kikj/(〈k〉N). We will be particularly interested in scale-free

distributions, p(k) ∼ k−γ , which appear to be quite ubiquitous in nature.

Standard mean-field analysis for M = 1 (a single stored pattern and its
antipattern) [10] shows that there is a second order phase transition, from the
memory phase to the chaotic one, with increasing temperature. The critical value
for ρ = 1 is Tc = 〈k2〉/(〈k〉N), where the averages 〈·〉 are over p(k). Setting T = 0,
we find there is also a transition, with decreasing Φ, from the memory phase in
which either of the fixed points m = ±1 is stable, to one in which the system
jumps chaotically between the two. The critical value of Φ at which this occurs is
Φ0 = 1−〈k〉3〈k3〉−1. MC simulations show that, for non-zero T , chaotic windows
open for Φ . Φ0. They also tell us that these results are robust for larger values
of M and qualitatively similar for ρ < 1.
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Fig. 2. (A) Network performance against γ for scale-free random topologies, with Φ =
1.0 (static-synapses limit). Averages over 20 realisations, with stimulation every 50
MCS for 2000 MCS. Other parameters are δ = 5, M = 4, T = 2/N , 〈k〉 = 20, N = 1600,
ρ = 1. Inset: sections of typical time series of mν , with ν = 1, ..., 4 represented as
different colours, for γ = 4 and Φ = 1 (top) and Φ = 0.6 (bottom). (B) Emergence of
criticality in the model near the edge of chaos. Other parameter were N = 800, M =
10, T = 0, Φ = 0.75 and ∆ = 0.1. (C) Critical storage capacity αc as a function of τrec,
for different values of τfac. (D) Critical storage capacity αc as a function of τfac, for
different values of τrec. In both panels, the results from numerical simulations (symbols)
with (N = 3000) are supported by mean field predictions (lines).

This edge of chaos is particularly interesting, since it has been shown that this
kind of transition can be optimal for certain magnitudes such as computational
capacity [11] and dynamic range of sensitivity to stimuli [12]. To illustrate how
this is also the case here, we store a set of M patterns and then show the system
a randomly chosen one every certain number of time steps. This is done by
changing the field at each node for just one MCS: hi → hi + δξν

i , as if a signal
of intensity δ had been received. In general, when in the ordered phase, a high δ
is required to destabilize the current pattern. However, close to the transition to
chaos, the system becomes more sensitive and reacts appropriately. Within the
chaotic regime, however, it does not then retain the pattern shown. We quantify
performance as the temporal average 〈mν〉time, where ν is the pattern last shown.
This is displayed in Fig. 2A. The figure shows that the performance exhibits a
peak corresponding to the optimal scale-free topology, that for the case of low
depression (Φ → 1) occurs around p(k) ∼ k−2. This is a consequence of the
particular dependence of the critical parameters Tc and Φc with the moments of
the degree distribution: the more heterogeneous the network, the more robust



6

the system will be to thermal fluctuations, and yet the less synaptic depression
will be required to place the system at the edge of chaos. This optimization effect
also is reflected by the emergence of power-law distributions of permanence times
around the attractors, when the system in near the edge of chaos, as is depicted
in Fig. 2B. Here, P (∆τ) is the probability that, throughout the time interval
(t′, t′ + ∆τ), a local field hi(t) is fluctuating above a baseline h0 = 0.1 or below
h0 = −0.1, and averaged over all sites in the network. Optimal scale-free network
topologies with exponent −2 could be related to the existence of a functional
scale-free topology of the human brain during cognitive tasks with the same
exponent [13]. It seems plausible, therefore, that the brain may acquire this kind
of distribution – either structurally or functionally – in order to maximize its
performance.

Finally we also report on the effect of synaptic processes coupled with net-
work activity on maximum storage capacity of the network [14] via a phe-
nomenological model of activity-dependent synapses (see [15] for details) which
involves a competition between facilitating and depressing synaptic mechanisms.
This model can be studied using our general theoretical framework assuming
P (zj/S) = δ(zj −Φj(S)) with Φj(S)) = Dj(t, sj)Fj(t, sj) and Dj(t, sj), Fj(t, sj)
representing dynamic variables for the depression and facilitation mechanisms
varying in time-scales τrec and τfac, respectively. Maximum storage capacity is
computed at T = 0 and in the memory phase. In practice, this implies con-
sidering only the steady state of Dj and Fj as a function of sj and including
them in the local field hi. When the number of stored patterns is increased, the
interference between patterns makes the attractors associated with these pat-
terns loose their stability. Then, the maximum number of patterns, relative to
the network size, namely αc = Mc/N, that the network can store and retrieve
without interference is the maximum storage capacity. The behaviour of αc as a
function of the relevant synaptic parameters is depicted in Fig. 2C. In general,
one has a non-monotonic dependence of storage capacity as a consequence of the
competition of different synaptic processes with, a priori, opposite effects on the
stability of attractors (e. g., depression tries to destabilize the memories whereas
facilitation tries to keep the activity of the network in one particular attractor).
This fact implies that activity-dependent synaptic changes are not only conve-
nient for dynamic processing of information in actual neurons, as we have seen
above, but an optimal balance between depression and facilitation effects is also
necessary to have neural networks with good retrieval properties.

Financed by projects JA FQM–01505 and MEC–FEDER FIS2009–08451.
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13. Egúıluz V.M., Chialvo D.R., Cecchi G.A., Baliki M., Apkarian A.V., Scale-free
brain functional networks, Phys. Rev. Lett. 95 (2005) 018102.

14. Torres J.J., Pantic L., Kappen H.J.: Storage capacity of attractor neural networks
with depressing synapses. Phys. Rev. E. 66 (2002) 061910.

15. Mejias J.F., Torres J.J.: Maximum memory capacity on neural networks with short-
term synaptic depression and facilitation. Neural Comput. 21 (2009) 851–871.


