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Abstract. We present an evolving neural network model in which
synapses appear and disappear stochastically according to bio-inspired
probabilities. These are in general nonlinear functions of the local fields
felt by neurons—akin to electrical stimulation—and of the global average
field—representing total energy consumption. We find that initial de-
gree distributions then evolve towards stationary states which can either
be fairly homogeneous or highly heterogeneous, depending on parame-
ters. The critical cases—which can result in scale-free distributions—are
shown to correspond, under a mean-field approximation, to nonlinear
drift-diffusion equations. We show how appropriate choices of param-
eters yield good quantitative agreement with published experimental
data concerning synaptic densities during brain development (synaptic
pruning).
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1 Introduction

Neural systems, whether natural or artificial, are paradigmatic cases of com-
plex systems consisting of many interacting dynamical elements [1,2]. The phe-
nomenology that ensues depends not only on the nature of the neurons and
synapses [3], but also on the topology of the underlying network, with the result
that structure influences function [4]. In the case of biological neural networks,
the inverse also appears to be true: topology is dynamic and related to neural
activity. This relation is probably very complex; however, we will try to account
for the some of main mechanisms described in the biological literature that lead
to the forming or elimination of synapses.

One of the most striking features of brain development is the systematic and
relatively rapid net reduction in the density of synapses undergone as of a very
early age—resulting, in humans, in adult brains with about half the synaptic
density of newborns [5]. Another interesting feature is synaptogenesis, which
has been related to various interacting local influences such as the concentration
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of different neurotransmitters and electrical stimulation [6,7]. On the other hand,
synapses can suffer atrophy and die, probably if not potentiated enough by use.

Chechik et al. have proposed a model for synaptic pruning based on Hebbian
learning in which the weakest synapses are systematically removed [8,9], and
show how this scheme allows for a reduction in synaptic density while preserving
near-optimal properties. However, this research is not concerned with topological
aspects of network evolution. Meanwhile, in the field of complex networks, many
authors have studied a variety of evolving network models (for a review, see for
example Boccaletti et al. [10]), in which nodes and/or edges appear or disappear
according to local rules such as preferential attachment. In line with this, we here
endeavour to show how a rather general evolving network model which mimics
biological mechanisms can result in topological features which are in good accord
with experimental data.

2 The Model

We consider a neural network with N neurons. The adjacency matrix εij =
{1, 0} defines whether there is some form of synaptic interaction between neurons
i and j (if εij = 1, we say i and j are neighbours). Each neuron can then
be characterised by its degree, ki =

∑
j εij . The strength of the interaction is

determined by the weights ωij which typically will store information via the
application of some learning rule [11,12]. The state of neuron i is described at
each time t by its activity si, which for concreteness we will consider to be a
binary variable as in a Hopfield model [1]. The dynamics for the activity of
neuron i responds to the total incoming field hi ≡

∑
j εijωijsj it receives at each

time from its neighbours. One can then assume particular transition rates for
the activities, si, as functions of the fields, hi. However, for the purposes of this
study we need not assume any particular form for this dependence, since the
conclusions are valid independently of the rates used.

The adjacency matrix also has a dynamics, based on a combination of local
and global rules for the emergence and disappearance of edges—representing,
for example, growth and death of synapses. Initially, we will have a random
network where the degrees ki follow some distribution p(k, t = 0)—i.e., edges are
placed randomly among the nodes until this distribution is achieved, implying
a total of 〈k〉N/2 edges, where 〈·〉 ≡ N−1

∑
i(·) stands for an average over

neurons. Every time step, each neuron has a probability, to be defined, of gaining
a new synapse, P

gain
i , to a random neuron. It also has a probability of loosing

a (randomly chosen) synapse, P lose
i . To define these probabilities, we will take

into account the two mechanisms which are widely thought to define synaptic
growth and death in biological neural networks. Firstly, Chechik et al. [8,9] have
proposed that the phenomenon known as synaptic pruning, whereby the mean
synaptic density in the brain during development drops considerably, could be
related to energy conservation requirements. In our model, the total energy E
(or total current) can be identified with the mean value of the field, E =

∑
i hi.

The second mechanism is that by which synaptic growth is stimulated by local
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electrical activity [6,7]. This would correspond here, for a given neuron i, to the
field it feels, hi. Taking both these consiedrations into account, we will assume
that the probabilities factorise as follows:

P
gain
i = u(E)π(hi)

and
P lose

i = d(E)σ(hi),

where both E and hi are time-dependent, although for clarity this is not explici-
tated. The functions π(hi) and σ(hi) can be any (in general, nonlinear) functions
of the field of neuron i. The terms u(E) and d(E) can also be arbitrary functions.

In a mean-field approximation, we can treat the dynamics for the synapses
independently of the activity, and therefore render our results very general, sim-
ply by assuming that the field of a node is proportional to its degree. This can
be derived formally as follows. The expected value of the adjacency matrix for
a network in the configuration ensemble1 is [εij ] = kikj/(〈k〉N), where the ex-
pected value operator [·] can be interpreted as an average over all configurations
in the ensemble. Inserting this value in the definition of hi yields hi = kiμi,
where for large networks the term μi ≡ (〈k〉N)−1

∑
j ωijkjsj can be considered

independent of i as long as the weights ωij are statistically independent of ki

and kj [4]. By the same reasoning, the total energy is proportional to the mean
degree of the network, E ∝ 〈k〉 (though see note2).

Under this approximation, we can now write the probabilities for growth and
death as

P
gain
i = u(〈k〉)π(ki)

and
P lose

i = d(〈k〉)σ(ki),
The local probabilities π(k) and σ(k) correspond to preferential attachment and
detachment, similar to those used by Barabási and Albert for their evolving
network model [13] and later implemented in many models. For example, we
have already studied the case of nonlinear preferential rewiring of one edge at
a time [14] while maintaining the number of nodes and edges in the network
fixed (equivalent, over large enough times, to keeping P

gain
i = P lose

i = 1). Here
we report on the main results concerning this more general scenario. A more
detailed and extensive analysis is underway [15].

3 General Results

The probabilities P
gain
i and P lose

i a given neuron i has, at each time step, of
increasing or decreasing its degree can be interpreted as transition probabili-
ties between states. Furthermore, for each synapse that is withdrawn form the
1 This is the collection of all possible network configurations which respect a given

degree sequence {k1, ...kN} but are otherwise randomly wired.
2 Note that this is possible because we are considering N to remain constant. It is

known that in reality neurons can die and also be replenished. However, in this
simplified model we are neglecting this effect.
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network, two neurons decrease in degree. One is neuron i chosen according to
σ(ki), the other, say neuron j, is a random neighbour of i’s; therefore, there is an
added effective probability of loss kj/(〈k〉N). Similarly, for each synapse placed
in the network, not only neuron l chosen according to π(kl) increases its degree;
a random neuron m will also gain, with the consequent effective probability of
(approximately) N−1. Thus, by summing over all these probabilities, we can
obtain an equation for the expected value of the increment in a given p(k, t) at
each time step, Δp(k, t), which we will equate with a temporal partial derivative:

∂p(k, t)
∂t

=

u(〈k〉)
[

π(k − 1) +
1
N

]

p(k − 1, t) + d(〈k〉)
[

σ(k + 1) +
k + 1
〈k〉N

]

p(k + 1, t) −

−
{

u(〈k〉)
[

π(k) +
1
N

]

+ d(〈k〉)
[

σ(k) +
k

〈k〉N
]}

p(k, t)(1)

Assuming that p(k, t) evolves towards a stationary distribution, pst(k), we can
set Eq. (1) equal to zero and, after again substituting a difference for a partial
derivative, obtain a condition for stationarity:

∂pst(k)
∂k

=
u(〈k〉)
d(〈k〉)

[
π(k) + 1

N

σ(k + 1) + k+1
〈k〉N

− 1

]

pst(k). (2)

In fact, pst(k) must also be such that u(〈k〉) = d(〈k〉) (since the total number of
synapses must then be conserved) with 〈k〉 =

∑
k kpst(k). From Eq. (2) we can

see that pst(k) will have an extremum at some value ke if it satisfies π(ke)+ 1
N =

σ(ke +1)+ ke+1
〈k〉N . Assuming, for example, that there is one and only one such ke,

then, depending on the concavity of pst(k) at this point, it will correspond to a
maximum (implying a relatively homogeneous distribution) or a minimum (with
the result that pst(k) will be split in two, and therefore highly heterogeneous).
The critical case separating these two regimes occurs when π(k) and σ(k) are
such that π(k) + N−1 = σ(k) + k/(〈k〉N), ∀k. For this critical choice, Eq. (1)
can be shown [15] to reduce to a nonlinear drift-diffusion equation, with a non-
uniform velocity c = u(〈k〉) − d(〈k〉) in the increasing k direction.

To the best of our knowledge, this is the first dynamic network model to
be proposed and studied in which the rewiring actions respond to completely
general nonlinear functions of local degrees and the global mean degree.

4 The Effects of Drift: Application to Synaptic Pruning

Let us define 〈k〉 ≡ κ(t) and assume the following linear forms for u(〈k〉) and
d(〈k〉):

u(t) =
n

N

(

1 − κ(t)
κm

)

, (3)
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Fig. 1. Synaptic pruning in cortical layer 2 of the human auditory cortex. Experimental
data from Huttenlocher and Dabholkar [5]. The line follows the best fit to Eq. (6),
where parameters are ρ(0) = 81.93 and ν = 0.0107, measured in synapses/μm3 and
synapses/μm3/day, respectively. Correlation was r2 = 0.906. Data pertaining to the
rapid overgrowth of the first year after conception were omitted from the fit, as were
those measured at days 4700, 5000 7300—which, for unknown reasons, fall abnormally
far below the line marking the general tendency. These data points are plotted with
smaller squares than the rest.

d(t) =
n

N

κ(t)
κm

, (4)

where the parameter n can be interpreted as the expected value of the number
of additions and deletions of synapses per MCS and κm is the maximum value
the mean degree can have. This choice describes a situation in which the higher
the density of synapses, the less likely new synapses are to “sprout” and the
more likely existing synapses are to “atrophy“. The increment in κ(t) is

dκ(t)
dt

= 2[u(t) − d(t)] =
2n

N

[

1 − 2κ(t)
κm

]

, (5)

where the factor 2 after the first equality appears because for each addition
or deletion of a synapse, the degrees of two neurons are modified. We have,
therefore, that temporal evolution of the mean degree will increase or decrease
exponentially from κ(0) to κm/2. Defining the mean synaptic density in some
volume V , ρ(t) ≡ κ(t)N/(2V ) (which is the magnitude usually measured ex-
perimentally), and assuming for simplicity that κ(0) = κm (or ρ(0) = ρm), the
solution of Eq. (5) is
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ρ(t) =
1
2
ρ(0)

[

1 + exp
(

− 2ν

ρ(0)
t

)]

. (6)

where ν ≡ n/V (the only parameter) is the number of synapses modified (added
plus deleted) per unit volume per unit time.

This equation is fitted to experimental data on layer 2 of the human auditory
cortex, obtained by Huttenlocher and Dabholkar [5], and shown in Fig. 1. Time is
measured in days since conception and synaptic density is in synapses per cubic
micron. We assume that the initial overgrowth is governed by other factors and
use Eq. (6) only as of the onset of synaptic pruning. In this way we can estimate
a value of ν � 0.01 synapses per μ3 per day. The data for three particular days
does not seem to fit the general tendency very well. We do not know what the
source of these deviations is, but it is unlikely that densities actually fluctuate
to that extent within one individual. Rather, it seems more probable that they
correspond to data from subjects with inherently lower synaptic density (it is
important to note that data points corresponding to different times were taken
from different subjects).

5 The Effects of Diffusion: Heterogeneous Topologies

Figure 2 shows typical stationary degree distributions obtained in the three
regimes that emerge: in the subcritical regime, the distribution remains rela-
tively homogeneous; in the supercritical regime, a phenomenon akin to gelation
in polymers occurs, in which a small number of neurons is connected to most of
the network. In the critical case, p(k) is seen to evolve towards a scale-free sta-
tionary state, pst(k) ∼ k−2, as is characteristic of second order phase transitions.
Interestingly, the functional topology, as defined by correlated activity between
clusters of neurons, in the human cortex during cognitive tasks has also been
found to acquire a scale-free distribution with exponent γ � −2 [16]. The same
authors have argued that the reason for this is that the brain maximises its per-
formance in a complex world by becoming critical. Recent theoretical work [4]
also suggests that random topologies with distribution pst(k) ∼ k−2 can result
in optimal performance for neural networks executing dynamical tasks.

It is still not clear what kind of degree distribution the structural topology of
the brain follows. However, it seems that function reflects structure at least to
some extent [17]. Furthermore, it has been suggested, based on indirect methods,
that the structural connectivity of cat and macaque brains, at the level of brain
areas, may indeed be scale free [18] — and in any case displays significantly
higher heterogeneity than that of, say, Erdős-Rényi random graphs.

6 Discussion

We have presented a very general evolving neural network model in which local
and global rules for synaptic growth and death are coupled to the local fields and
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Fig. 2. Stationary distributions pst(k) obtained from MC simulations of the model
after 105 MCS. The networks all started as regular random graphs with κ(0) = 20.
Local probabilities were σ(k) = k/(〈k〉N) in all cases and π(k) = σ(k), π(k) = 2σ(k)−
N−1 and π(k) = k1.5/(〈k1.5〉N) for the subcritical (triangles), critical (circles) and
supercritical (squares) cases, respectively. Global probabilities u(〈k〉) and d(〈k〉) were
as in the example in the main text, with n = 10 and κm = 20. N = 1000.

total energy consumption, respectively. Under a mean-field approximation, the
situation can be reduced to a nonlinear preferential rewiring model, similar to
the one studied in Ref. [14] but more general. We derive analytical expressions
which can be compared to experimental data. In particular, our results are in
good quantitative agreement with results for synaptic pruning. Furthermore,
they show how scale-free stationary degree distributions can be obtained with
biologically inspired mechanisms. To the best of our knowledge, this is the first
attempt to model emergent topological properties of the brain from this kind of
microscopic considerations.
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ing the experimental data and S. de Franciscis for technical advice. This work
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