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Abstract. We studied, both analytically and numerically, excitable networks in
which connections are time-dependent and some of the nodes remain silent at each
time step, and we show that these two features may induce intriguing functional
complexity. More specifically, we consider (a) a heterogeneous distribution of
connection weights such that, depending on the current degree of order, some
connections are reinforced/weakened with strength ® on short timescales, and
(b) that only a fraction p of nodes are simultaneously active. The resulting
dynamics has attractors which, for a range of ® values and p exceeding a
threshold, become unstable, the instability depending critically on the value of
p. We observe that (i) the activity describes a trajectory in which the close
neighborhood of some of the attractors is constantly visited, (ii) the number
of attractors visited increases with p, and (iii) the trajectory may change from
regular to chaotic and vice versa as p is, even slightly modified. Furthermore,
(iv) time series show a power-law spectra under conditions in which the attractors’
space tends to be most efficiently explored. We argue on the possible qualitative
relevance of this phenomenology to networks in several natural contexts.
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1. Introduction and motivation

The concept of a network—if defined as a sufficiently large set of nodes connected in pairs
by edges—is potentially useful to help our understanding of the cooperative phenomena
which are behind complex behavior in science and technology. As a matter of fact, there
has been a great interest for networks in physics during the last decade or so [1]-[3]. Most
of these studies have focused on the case in which the edge between any two nodes is either
present or not. This relatively simple situation allows one to investigate, in particular,
wiring topology which, for example, has led to the discovery of scale-free and small-world
networks in natural and man-made systems. However, real networks exhibit a number of
relevant qualities besides interesting topological structure [3]-[8]. In this paper, we are
concerned with two features which could be essential to a network demeanor:

(a) Weighted and time-dependent connections.  Very generally, intensities and/or
capacities vary notably from one edge to the other in actual networks. For instance, a
main feature of trophic webs is the complexity of pattern flows along the food chains,
the agents in social and communication (e.g. cell phone) networks exchange assets
or information according to various rules and depending on their partners, transport
connections differ in capacity and actual number of transits and passengers, and
effective ionic interactions constantly vary in condensed matter due to reactions as
well as to diffusion and local rearrangements of ions and impurities. It is to be
stressed that the connection weights in these cases often vary with time. There
are variations of weights on a long timescale. Their main purpose seems to be
determining the nature and degree of heterogeneity the network needs for its intended
function, say, computation, transport, cooperation, etc. In addition, although perhaps
less investigated yet, weights may change on a short timescale to improve actual
functioning. To our knowledge, the best documented cases so far of such fast
fluctuations do not belong to physics but to computational and neural networks.
As a matter of fact, the human brain is the paradigm of a weighted network [9, 10],
and it is also clear-cut that high-level functions in the brain rely on fast synaptic
changes during operation [11]. Consequently, as we have a main interest here on
short-time weight variations, we shall in the following often use the language and
refer to observations on neural and, eventually, computational networks. In any case,
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our setting is rather general and we believe that the main behavior described in this
paper should apply to networks in different contexts (see, for instance, [5,7]).

(b) Partial activation of nodes. In addition to the above—and perhaps also a further
source of fast fluctuations—one may argue that there is no need for a network to
maintain all the nodes fully informed of the activity of all the others at all times.
Relaxing such a situation would both simplify the case and turn operations more
economical. Moreover, there are some indications that certain nodes are more active
than others, and that only a fraction of nodes is actually engaged at each time in
some cooperative tasks. For example, this is the characteristic behavior of excitable
media in which elements, after responding to perturbation, are refractory to further
excitation [12,13]. This is interesting because such behavior could sometimes reveal
to the observer as (relatively) fast time variations of connections as described above.
The possibility of having reticent nodes is also a recent concern in computer science
in relation with parallelism [14, 15], in mathematical physics [16] and in neuroscience,
where it has been associated with working memories [17]-[19], variability of neuron
thresholds [20] and silent neurons [21,22]. On the other hand, there is evidence of
partial synchronization in many different situations [23]. In principle, this is a different
phenomenon but one may argue that some of the observed partial synchronization
processes, in which some elements do not attend to the others’” mode, could be
associated with the existence of silent and /or excitable units, the case of interest here.
In any case, studying the effect of updating only a fraction of nodes will certainly shed
light on the possible consequences of having partial synchronization in the network.

The investigation of feature (a) in physics has only recently been initiated. As
an example we mention the observed aging of nodes, e.g. in the networks of scientific
publications where original papers stop receiving links after a finite time because review
papers are then cited instead [24]; see also, for instance, [4]-[8]. However, studying the
consequences of fast connection changes in biologically inspired models has already a two-
decades history—see [25] and references therein. For example, it has recently been shown
that the susceptibility of a network to outside influence increases dramatically for excitable
nodes [26] and, more specifically, under a competition of processes which tend to increase
and decrease, respectively, the efficiency of synaptic connections at short times [27]. To
the best of our knowledge, investigation of feature (b) is rarer [15, 16, 28, 29], in spite of the
fact that there is some—as mentioned above—specific motivation for it in several fields.

Trying to understand the combined effect of features (a) and (b) is a main objective
in this paper. We show that varying the fraction of nodes that are simultaneously active
induces a variety of qualitatively different behaviors when the system is in a state of
great susceptibility, but not in more general conditions. The susceptibility needed to
observe the most interesting behavior is shown to occur under appropriate tuning of
the connection weights with the network activity. It thus ensues that the effects of
(a) and (b) are correlated with each other—which confirms a suspicion mentioned in the
description of (b) above. Even more, it seems that the concurrence of (a) and (b) could be
needed in some occasions in nature. In fact, we demonstrate below that features (a) and
(b) induce in our model—characterized here by the simplest, fully connected topology—a
complex phenomenology which one could perhaps have expected to require more involved
wiring. As a first application, we describe here how the model unstable dynamics leads
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to itinerancy and chaotic behavior in a way that mimics both general expectations and
some recent biological observations.

2. Definition of a simple dynamic network model

A full description of the network configuration requires both the set of node states
or activities, s = {s;}, and the set of connection weights, w = {w;; € R}, where
1,7 = 1,...,N. From these we define a local field on each node due to the weighted
action of the others, namely, h;(s,w) = Zj 2 Wizsj. At each time unit, one updates the
activity of n nodes, with 1 < n < N. This induces evolution in discrete time, t, of the
configuration probability distribution according to the master equation:

Py (s ZTS—>SPt ", (1)

where the transition probability may be written as

T(s — ¢) an H (s;i — ) H (5515. (2)

{ilzi=1} {ilzi=0}

Here, x is an operational set of binary indexes—fixed to 1 at n sites chosen at each
time according to distribution p,(x), and fixed to zero at the other N — n sites. The
choice (2) simply states that one (only) updates simultaneously the selected n nodes. The
corresponding elementary rate is

To(si — 8)) = o(s; — ) [1 + ((5527_51. — 1) (5n,1} , (3)
where 0 = o(s,3) is a function to be determined, with [ an inverse temperature
parameter.

The above describes parallel updating, as in cellular automata, for n = N or,

macroscopically, p = n/N — 1. However, the model describes sequential updating, as in
kinetic magnetic models, for n = 1 or p — 0. We are interested in changes with p € (0, 1).
In addition to allow for a sensible generalization of familiar cellular automata, this bears
some practical interest, as indicated in the introduction. For example, assuming a neural
network, p may stand for the fraction of neurons that are stimulated each cycle. There is
no input on the other 1—p, so that information from the previous state is maintained. This
induces persistent activity which has been argued to be a basis for working memory [17]-
[19]. Varying p may also be relevant to simulate the observed variability of the neurons’
threshold [20] and the possible existence of silent neurons [21] or dark neuro-matter [22],
for instance. These are just examples of the fact that varying p has a great general interest
to better understanding excitable media.

The equations above may be simulated in a computer for different choices of p,, and
transition details. In order to obtain analytical results, however, we need to simplify
the model somewhat. That is, we shall refer to the case in which the node activities
are binary, s; = 41, the n nodes to be updated are chosen at random, so that one
has p,(x) = (]Z)ilc;(zi x; —n), and o in (3) is an arbitrary function of (only) Bs;h;
which satisfies detailed balance. In spite of the latter, detailed balance is not fulfilled
by the superposition T for n > 1, so that resulting steady states are generally out of
equilibrium, which is known to be realistic [30]. On the other hand, for simplicity, in
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order to be able to obtain some analytical results, we shall assume that the fields are
such that h;(s,w) = h[r(s),&]. Here, & = {&!' = £1;u=1,..., M} stands for M given
realizations of the set of activities, or patterns, and © = {n*(s)}, where

w(s) = NTUY el @

measures the overlap between the current state and pattern u. For N — oo and finite M,
i.e. in the limit « = M/N — 0, the map

Ta(s) = pN~! Z & tanh{Ghilm(s), &} + (1 — p)m(s) ()

follows for any p from the master equation (1) using standard coarse-graining techniques.
With this end, one first writes I, (7) = [ dn’ T(r — m) IL(7"), where I1,(m) = > 0[r—
m(s)|P(s) and T(r' — 7) = > d[r — n(s)]d[x’ — «'(s")|T(s' — s)F(s')/ D2, dln’ —
7'(s")|Py(s"). After writing explicitly the transition probability T(s — §’) in terms of
the overlaps 7 and using the integral representation of the delta function, one obtains
T(r" — 7) < [dkeV ¥(mmk) - The steepest descent method then provides the indicated
solution. We refer to [30]-[33], for instance, for further details.

It may also be noticed that actual applications of equation (5) concern finite values
for both M and N, so that the limit o — 0 is not very interesting in practice. This and
other restrictions are not essential to the model, however; in fact, our simulations below
concern more general situations, as pointed out when necessary.

The model allows for different relations between the fields A; and the other network
properties. The simplest case at hand for specific relations of such kind is Hopfield’s [34]
which follows here for p — 0 and weights fixed according to the Hebb prescription, i.e.
w;j = N1 Zu fﬁ‘fﬁ.‘. The symmetry w;; = w;; then ensures P,_o(s) o exp(8)_, his;).
This corresponds to thermodynamic equilibrium and—using the neural-network argot—
this is a case that exhibits associative memory. This means that, for high enough 3, the
patterns {&;} are attractors of dynamics [35], as if they would have been stored in the
connections and recalled in the course of the system relaxation with time. Equilibrium
is generally impeded for p > 0 [36], and the asymptotic state then strongly depends on
dynamic details [30,37]. We checked that, in agreement with some indications [28], the
Hopfield-Hebb network also exhibits associative memory for p > 0. However, no new
physics emerges as p is varied in this case, and it is likely this occurs rather generally
concerning dynamics for simple weighted networks.

Our model may exhibit a complex dependence on p assuming activity-dependent
weights. This is expected to occur in many cases, e.g. for excitable media [12,13].
However, as far as we know, the only situation with time-dependent connections which
is well documented in the literature concerns the brain. In this case, transmission
of information and computations have repeatedly been reported to be correlated with
activity-induced fast fluctuations of synapses, i.e. rapid variations of our w;;’s [11, 38]. For
example, it has been observed that the efficacy of synaptic transmission can undergo short-
time increasing (sometimes called facilitation) [39]-[41] or decreasing (depression) [42]-
[44], and that these effects depend on the activity of the presynaptic neuron. Furthermore,
it has already been demonstrated that such processes may importantly affect a network’s
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performance [25,27], [45]-[47]. Likewise, it seems sensible to assume that similar short-
time variations may occur in other networks—e.g. reaction—diffusion systems [30] and the
cardiac tissue [13]—associated with some efficacy lost after heavy work or with excitations,
for instance.

Motivated by all these facts, and also trying to maintain a sufficiently simple and
well-defined reference frame, we shall assume that the connection weights are

Wij = €;jW;5 = €W, (6)

where the second equality is introduced for simplicity. Here, w;; stands for some reference
value and ¢; for a random variable. That is, we are assuming some ‘noise’ on top of a
previous preparation of the connections designed so that the network can perform some
specific function. The background just described also suggests to us to assume that the
random variable in (6) is fluctuating very rapidly so that, on the timescale for the activity
changes, it behaves as stationary with distribution given, for example, by

p7(s.g;) = qo(g; — ) + (1 — q)o(g; — 1). (7)

We shall further assume that ¢ depends on the degree of order in the system at time
t, namely, that ¢ = ¢(m;). For the sake of concreteness, our choices here will be that
q(m) = (1+a)~' >, 7 (s)* and that w;; is given by the Hebb prescription. The result is
that each node is acted on by an effective field

h (s, w) = Z wffsj, (])

JFi

with wif = [1 — (1 — ®)g(m)w;;. This amounts, in summary, to assume short-term
variations which change the intensity or capacity of connections by an amount, either
positive or negative, ® on the average. More specifically, one has a decreasing effect for
any ® < 1, and enhancement for ® > 1, as far as ® > 0, while & < 0 induces a change
of sign. For the indicated choices of fields and reference weights, our framework reduces
to the familiar Hopfield—-Hebb case for & = 1. Note that it should not be difficult to
implement the model for choices other than (6) and (7).

3. Description of main results

Assuming (8), it readily ensues from (5) for M = 1 that 7o, = F(7; p, ®) and that local
stability requires that |0F/0r| < 1, where

F(m; p,®) = ptanh{B7[l — (1 — ®)7%]} + (1 — p)7. (9)

Therefore, fixed points are independent of p for any ®, but stability demands that p < p.
with po = 2{367%[(3—®) — (1—P@)7% ] —B-+1}" the value of p at which a period doubling
bifurcation occurs. The resulting situation for any ® # 1 is illustrated in figure 1, where
one observes regular behavior, bifurcations and chaotic windows. This picture cannot
occur for fixed weights, e.g. in the Hopfield case. In order to deepen the possibility of
chaos, we computed the Lyapunov surface from the analytical solution for M = 1. Two
sections of this surface are shown in figure 2. This clearly reveals the existence of chaos
above some degree of synchronization, namely, for p > p. (3, ®) where p. (5, ®) > p.(5, P).
For example, the top graph shows that, for a small positive value of ®, which corresponds
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Figure 1. Evidence of chaos. Bifurcation diagram showing the stationary order
parameter ¢(), as defined in the main text, versus the synchronization parameter
p for M = 20 random patterns, N = 3600 nodes, § = 20 and ® = —1/2. This
behavior is characteristic of any ® = 1, and it follows indistinctly from the
analytical solution (for M = 1) and from Monte Carlo simulations (for larger

to some slight depression of connections which occurs more likely the higher the current
global order is, there is a region for large 3 (relatively small temperature, say 7'~ 0.02 in
our arbitrary units) and 1 > p 2 0.8 for which dynamics may eventually become chaotic.
In the same graph one may notice a tiny chaotic window for p ~ 1 and § & 7; this is the
case identified previously by us [48]. The bottom graph, on the other hand, illustrates
that chaos is typically an exception for positive values of ®; it may only occur then for a
rather large fraction of synchronized nodes (large p) near ® < 0. In contrast, for negative
®, i.e. when the order tends to induce changes of sign of the connection intensities, it is
more likely that the system will behave chaotically. It is also to be remarked that, inside
the first, more exterior curve in each graph, there is a complex pattern of transitions from
regular to irregular behavior as one changes, even very slightly, the values of p, ® and
(. As one may imagine, this situation for very small M gets even more involved as M
increases. Finally, it is noticeable the fact that chaotic switching among different patterns
was recently demonstrated to occur also in the thermodynamic limit [49]. The next
question is whether such complex behavior may have some constructive role in natural
and man-made networks.

Different types of behavior the system may exhibit are illustrated by the stationary
Monte Carlo runs in figure 3. This involves three partially correlated patterns, as explained
in the figure caption, and illustrates, from bottom to top:

(1) For small p, convergence towards one of the attractors, namely, fixed points
corresponding to the patterns provided. This is revealed by the fact that one of
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Figure 2. Lyapunov surface. Sign of the Lyapunov exponent as a function of
B for ® = 0.01 (top), and as a function of ® for 5 = 25 (bottom), as obtained
from the saddle-point map (5). The black regions and curves correspond to
a positive Lyapunov exponent, so that dynamics is then irregular. The white
regions correspond to a negative Lyapunov exponent associated with regular
behavior. Note a small black, chaotic region for p < 1 and low § in the upper
graph.

the overlaps (the red one in this case) is constantly rather large, close to 1, while
the others two are closer to zero (they differ from zero due to the built correlations
between patterns).

(2) Irregular behavior with positive Lyapunov exponent for a larger value of p. Notice that
changes with time indicate that dynamics is now unstable and the system activity is
visiting the different attractors, including the negative of some of them or antipatterns.

(3) A different type of irregular behavior in which, in addition to visiting different
attractors on a large timescale, there are much more rapid irregular transitions
between one pattern and its antipattern.
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Figure 3. Typical Monte Carlo runs. This shows the overlap as a function of
time (in units of n MC trials), during the stationary regime after equilibration,
for N = 1600 nodes, § = 50, & = 0.004 and, from bottom to top, p = 0, 0.60,
0.87, 0.93 and 1.00, respectively. In this case, the onset of period doubling before
irregular behavior is at p = p, ~ 0.5. This is for M = 3 correlated patterns
(identified here with different colors). That is, we generated three patterns
completely at random, and then replaced 20% of the digits in the second and
third patterns with the same number of digits, and flipped digits, respectively,
taken from the first pattern.

(4) Regular oscillation between one attractor and its negative.

(5) Rapid and ordered periodic oscillations between one pattern and its antipattern when
all the nodes are active.

Cases (2) and (3) are examples of instability-induced switching phenomena, namely, the
system describes heteroclinic paths among the attractors, and different time intervals
remain in the neighborhood of each of them, as was previously observed in a related
case [48].

An interesting fact concerning the nature of the phase space trajectory as p is varied
is illustrated in figure 4. This shows time evolution of the mean firing rate defined as

1 N
:ﬁ;(usi). (10)
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m(t+27)

0.9

Figure 4. Monte Carlo runs that one may interpret as states of attention in
the network, which illustrates the possible role of chaos. This shows phase-space
trajectories of the mean firing rate for N = 1600, 8 = 167, ® = —%, and, from
left to right, p = 0.384, 0.39 and 0.4. Here, p, ~ 0.36, and the system stores
three patterns, £#, u = 1,2 and 3, as described in the main text. (These graphs
involve a standard false-neighbor method [50] with embedding dimension de =5
and time delay 7 = 5.)

Three patterns (and their corresponding antipatterns) are involved here which consist of
a string of 1s, a string with the first 50% positions set to 1 and the rest to —1, and a string
with only the first 20% positions set to 1, respectively. In the course of this Monte Carlo
experiment, we observed that the activity remains wandering around one of the patterns
for any p < p.. The choice of pattern depends on the initial condition. For larger values
of p within a chaotic window, as for the three cases shown in figure 4, the system tends to
visit the other patterns as well. In particular, the left-most case in the figure (p = 0.384)
shows visits to the three patterns, and a trajectory which is structured, namely, there are
many jumps between the pairs of more correlated patterns, and only a few between the
most distant ones. Moreover, the number of jumps between the less correlated patterns
tends to increase as p is further increased within the chaotic window. The figure shows
that, for p = 0.39 and 0.40, even the antipatterns are visited; note that we have that
&2 = —€%. Increasing p further, e.g. for p = 0.6 in this specific experiment, the network
surpasses the equiprobability of patterns and, eventually, abandons the chaotic regime to
fall into a limit cycle, where it periodically oscillates between a pattern and its antipattern.

In order to deepen further on the nature of the chaotic switching, we have monitored
the normalized power spectra p(w) of the time series for the mean firing rate m. If one
computes the associated entropy [51], namely, S = — )" p(w)logp(w), it ensues a sharp
minimum at S ~ 0.37 for & = —0.048. The series corresponding to this minimum and, for
comparison purposes, a different one for a much larger entropy are presented in figure 5.
The power spectra for these two series is presented in figure 6. This clearly confirms a
suspicion born while performing experiments such as the ones in figures 3 and 4. That
is, the observed transitions from regular to chaotic behavior (as one varies appropriately
the system parameters) induce other physically relevant changes. In particular, figure 6
reveals that the more efficient, chaotic mechanism (the one corresponding to the minimum
entropy, but not the other case) is characterized by a power-law spectra. We are presently
further analyzing quantitatively this interesting observation. The implications of this
behavior may better be understood by analyzing in more detail the trajectory during
some typical evolutions. A main observation from this analysis is summarized in figure 7.
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Figure 5. Time series for the overlap m in the case p = 0.632, M =1, § =

(zero temperature), N = 3600, and ® = —0.048 (top) and —0.065 (bottom)

showing chaotic transitions between the associated pattern and its antipattern.

This series correspond to entropies S ~ 0.37 and 0.9, respectively. The former

corresponds to the minimum entropy as ® is varied [51].
1 T L | T L L |

p(w)

g

o

=2
T
I

0.0001

1e-06

0.01 0.1 1 10

Figure 6. The power spectra corresponding to the two series in figure 5, i.e. for
® = —0.065 and —0.048, respectively, for the upper (black) and lower (red) sets
of data. Note that only the latter decays as a straight line in this log-log plot
(the blue line is a guide to the eye with the corresponding slope being in this
particular case close to —2).

This illustrates the form of the distribution for the time intervals the network activity
spends wandering in the neighborhood of a particular attractor. That is, this distribution
seems dominated by a power law at the onset of chaos but not more generally.

4. Discussion

We have described in this paper details concerning a model network in which connections
are heterogeneously weighted and time-dependent, namely, correlated to the global
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Figure 7. Distribution of the time intervals the network activity stays near each
pattern during the computer experiment described in figure 4. The dashed lines
are a guide to the eye to show that the distribution is consistent with power-law
behavior at p ~ 0.36 (the onset of chaos) but not in the other cases.

activity. As documented above, these two conditions occur in many natural networks.
Furthermore, only a fraction p of nodes are active at each time, so that the rest maintain
the previous state. This occurs in excitable media, for instance.

A main conclusion is that, although the synchronization parameter p is generally
irrelevant, varying p may greatly modify the system behavior under certain conditions.
The necessary condition is a kind of susceptibility or sensitivity to external stimuli which
greatly favors dynamic instabilities. It may be achieved in our example by appropriate
tuning of two parameters, ® and 3. The latter is an inverse temperature which controls
the stochasticity of the process. The former induces either enhancement (® > 1) or
lowering (¢ < 1) for positive ®, or even change of sign for negative ®, of the intensities of
connections. This process is a very fast one—as compared with the nodes changes—and
it occurs more likely the larger the current degree of order is. The interesting behavior
described in this paper washes out if the connection weights are fixed, even heterogeneously
as, for instance, in a Hopfield-Hebb network, which corresponds here to ® = 1, for different
wiring topologies [52].

Within the most interesting range for its parameters, our model exhibits heteroclinic
trajectories which imply, in particular, a kind of dynamic association. That is, the network
activity either goes to one attractor for p < p,, or else, for larger p, is capable of an
intriguing program of visits to possible attractors. The dynamic path followed during
these visits may abruptly become chaotic, which seems the most relevant regime. Besides
synchronization of a minimum of nodes, this requires careful tuning of p, 3 and ®. That
is, as suggested by figure 2, there is a complex parameter space which makes it difficult to
predict the ensuing behavior for slight changes of parameter values. Note in this respect
that figure 2 is for M = 3 patterns only, and that the corresponding picture greatly
complicates as M is increased.
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The most interesting behavior of the network consists of switching among attractors.
We observe regular switching in some occasions for p > p., but chaos makes such
processes much more efficient. Therefore, our model confirms expectations [53]-[55]
that the instability inherent to chaos facilitates moving to any pattern at any time, and
that chaos and chaotic itinerancy may be the strategy of nature to solve some difficult
problems [56,57]. Consistent with this, we have illustrated above a specific mechanism
which allows for an efficient search of the attractors’ space. More specifically, we observe a
highly structured chaotic itinerancy process in which, as illustrated in figure 4, modifying p
within a chaotic window—which requires also tuning  and ®—one may control the subset
of visited attractors. That is, increasing p within the relevant regime makes the system
to visit more distant (less correlated) attractors. In this way the system may perform,
for instance, family discrimination and classification by tuning p [58]. On the other
hand, the complexity of the parameter space for p > p, suggests that one could devise a
method to control chaos in these cases. It is also suggested that one should pay attention
to these facts when determining efficient computational strategies in artificial machines.
Similar switching phenomena, in which the activity describes a heteroclinic path among
saddle states, has already been incorporated in models which thus simulate experiments on
animal olfactory systems [55], [59]-[63]. Comparable oscillatory activity has been reported
to occur in cultured neural networks [19] and ecology models and food webs [64]-[66]. This
also seems to explain transitions between atmospheric patterns [67,68], and it is believed
it could account for other natural phenomena as well [55].

Finally, an important feature of the model chaotic itinerancy is illustrated in figures 6
and 7. This reveals the existence of power-law distributions within the regimes in which
the network begins to exhibit its most interesting behavior. This is the case for both the
power spectra of time series and the time spent in the neighborhood of each attractor, for
appropriate values of p. This fact suggests that a critical condition which has been called
for to explain some of the brain’s exceptional behavior [69]-[73] could perhaps consist of a
highly susceptible, unstable and chaotic condition similar to the one we have described for
the model. The occurrence of power-law behavior here is consistent with the approaching
to zero of associated Lyapunov exponents, sometimes referred to as edge of chaos.

Summing up, we studied numerically (and, to some extent, also analytically) excitable
networks in which (a) the connection weights depend on the current (global) degree of
order and (b) a fraction of nodes remain silent at each time step. The main result is that
the competition of these two features may induce, for appropriate values of the parameters:
(1) chaotic dynamics in a way that mimics observations in some natural networks and
(2) intriguing functional complexity, in spite of the fact that the network wiring is the
simplest, fully connected one. Concerning the latter fact, it is noticeable that endowing the
same model with a wiring topology that exhibits power-law connectivity, though leading
to some new interesting facts, does not seem to induce any further complex behavior [74].
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