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Abstract – We study the effect of varying wiring in excitable random networks in which
connection weights change with activity to mold local resistance or facilitation due to fatigue.
Dynamic attractors, corresponding to patterns of activity, are then easily destabilized according to
three main modes, including one in which the activity shows chaotic hopping among the patterns.
We describe phase transitions to this regime, and show a monotonous dependence of critical
parameters on the heterogeneity of the wiring distribution. Such correlation between topology
and functionality implies, in particular, that tasks which require unstable behavior —such as
pattern recognition, family discrimination and categorization— can be most efficiently performed
on highly heterogeneous networks. It also follows a possible explanation for the abundance in
nature of scale-free network topologies.

Copyright c© EPLA, 2008

Excitable systems allow for the regeneration of waves
propagating through them, and may thus respond vigor-
ously to weak stimulus. The brain and other parts of the
nervous system are well-studied paradigms, and forest fires
with constant ignition of trees and autocatalytic reactions
in surfaces, for instance, also share some of the basics [1–5].
The fact that signals are not gradually damped by friction
in these cases is a consequence of cooperativeness between
many elements in a nonequilibrium setting. In fact, the
systems of interest may be viewed as large networks whose
nodes are “excitable”. This, which admits various realiza-
tions, typically means that each element has a threshold
and a refractory time between consecutive responses, a
behavior that impedes thermal equilibrium.
Brain tasks may ideally be reproduced in mathemat-

ical neural networks. These consist of neurons —often
simplified as binary variables which in practice suffices
to dig out the main effects of cooperation1— connected
by edges representing synapses [7–9]. Assuming edges
weighted according to a prescription (e.g., [10]) which in
a sense saves information from a set of given patterns of
activity, these patterns become attractors of the phase-
space dynamics. Therefore, one may interpret that the
system shows retrieval of the stored patterns, known as

1Several studies have already shown that binary neurons may
capture the essence of cooperation in many more complex settings.
See, for instance, [6] in the case of integrate and fire neuron models
of pyramidal cells.

associative memory. Actual neural systems do much more
than just recalling a memory and staying there, however.
That is, one should expect dynamic instabilities or other
destabilizing mechanism. This expectation is reinforced
by recent experiments suggesting that synapses undergo
rapid changes with time which may both determine brain
tasks [6,11–13] and induce irregular and perhaps chaotic
activity [14,15].
One may argue that the observed rapid changes

(which have been described [6,12,13] as causing “synaptic
depression” and/or “facilitation” on the time scale of
milliseconds —i.e., much faster than the plasticity process
in which synapses store patterns) may simply correspond
to the characteristic behavior of single excitable elements.
Furthermore, a fully connected network which describes
cooperation between such excitable elements has recently
been shown to exhibit both attractors and chaotic insta-
bilities [16]. Here, we extend and generalize this study
to conclude on the influence of the excitable network
topology on dynamic behavior. We show, in particular,
an interesting correlation between certain wiring topology
and optimal functionality.
Consider N binary nodes (si =±1) —we expect our

main result to occur also for more complex nodes—
and the adjacency matrix, ǫij = 1, 0, which indi-
cates the existence or not of an edge between nodes
i, j = 1, 2, . . . , N . Let a set of M patterns, ξνi =±1,
ν = 1, . . .M (which we generate here at random), and
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assume that they are “stored” by giving each edge a base
weight ωij =N−1

∑

ν ξ
ν
i ξ
ν
j . Actual weights are dynamic,

however, namely, ωij = ωijxj , where xj is a stochastic
variable. Assuming the limit in which this varies in
a time scale infinitely smaller than the one for node
dynamics, we may consider a stationary distribution such
as P (xj |S) = qδ(xj −Ξj)+ (1− q)δ(xj − 1), S = {sj}, for
instance. This amounts to assume that, at each time step,
every connection has a probability q of altering its weight
by a factor Ξj which is a function (to be determined) of
the local field at j, defined as the net current arriving to
j from other nodes. This choice differs essentially from
the one in ref. [16], where q depends on the global degree
of order and Ξj is a constant independent of j.
Assume independence of the noise at different edges,

and that the transition rate for the stochastic changes is

c̄(S→ Si)

c̄(Si→ S)
=
∏

j/ǫij=1

∫

dxjP (xj |S)Ψ(uij)
∫

dxjP (xj |Si)Ψ(−uij)
,

where uij ≡ sisjxjωijT
−1, Ψ(u) = exp

(

− 1
2
u
)

to have
proper contour conditions, T is a “temperature” or
stochasticity parameter, and Si stands for S after the
change si→−si. (For a description of this formalism and
its interpretation, see [17].) We define the effective local
fields heffi = heffi (S, T, q) via

∏

j ϕ
−

ij/ϕ
+
ij = exp(−heffi si/T ),

where ϕ±ij ≡ q exp(±Ξjvij)+ (1− q)exp(±vij), with vij =
1

2
ǫijuij . Effective weights ωeffij then follow from

heffi =
∑

j ω
eff
ij sjǫij . To obtain an analytical expres-

sion, we linearize around ωij = 0 (a good approximation
when M ≪N), which yields

ωeffij = [1+ q(Ξj − 1)]ωij .

In order to fix Ξj here, we first introduce the overlap
vector −→m = (m1, · · ·mM ), with mν ≡N−1

∑

i ξ
ν
i si, which

measures the correlation between the current configura-
tion and each of the stored patterns, and the local one
−→mj of components m

ν
j ≡ 〈k〉

−1
∑

l ξ
ν
l slǫjl, where 〈k〉 is the

mean node connectivity, i.e., the average of ki =
∑

j ǫij .
We then assume, for any q �= 0, that the relevant factor is
Ξj = 1+ ζ(hνj )(Φ− 1)/q, with

ζ(hνj ) = χα/(1+M/N)
∑

ν

|hνj |
α,

where χ≡N/〈k〉 and α> 0 is a parameter. This comes
from the fact that the field at node j may be written
as a sum of components from each pattern, namely,
hj =

∑M
ν hνj , where

hνj = ξνjN
−1
∑

i

ǫijξ
ν
i si = χ−1ξνjm

ν
j .

Our choice for Ξj , which amounts to assume that the
“fatigue” at a given edge increases with the field at the

preceding node j (and allows to recover the fully connected
limit in [16] if α= 2), finally leads to

ωeffij = [1+ (Φ− 1)ζj(
−→mj)]ωij .

Varying Φ one sets the nature of the weights. That
is, 0<Φ< 1 corresponds to resistance (depression) due
to heavy local work, while the edge facilitates, i.e.,
tends to increase the effect of the signal under the same
situation for Φ> 1. (The action of the edge is reversed
for negative Φ). We performed Monte Carlo simulations
using standard parallel updating with the effective rates
c̄(S→ Si) computed using the latter effective weights.
It is possible to solve the single pattern case (M = 1)

under a mean-field assumption, which is a good approx-
imation for large enough connectivity. That is, we may
substitute the matrix ǫij by its mean value over network
realizations to obtain analytical results that are indepen-
dent of the underlying disorder. Imagine that each node
hosts ki half-edges according to a distribution p(k), the
total number of half-edges in the network being 〈k〉N .
Choose a node i at random and randomly join one of
its half-edges to an available free half-edge. The proba-
bility that this half-edge ends at node j is kj/(〈k〉N).
Once all the nodes have been linked up, the expected
value (as a quenched average over network realizations)
for the number of edges joining nodes i and j is ǫij =
kikj/(〈k〉N) (see footnote

2). Using the notation ηi ≡ ξisi,
we have mj = χ〈ηiǫij〉i =

χ
N

∑

i ηiǫij . Because node activ-
ity is not statistically independent of connectivity [20],
we must define a new set of overlap parameters, analo-
gous to m and mj . That is, µn ≡ 〈k

n
i ηi〉i/〈k

n〉 and the
local versions µjn ≡ χ〈kni ηiǫij〉i/〈k

n〉. After using ǫij = ǫij ,
one obtains the relation µin = 〈k

n+1〉kiµn+1/(〈k
n〉〈k〉2).

Inserting this expression into the definition of µn, and
substituting 〈si〉= tanh[T

−1heffi (S)] (for very large N),
standard mean-field analysis yields

µn(t+1) =
1

〈kn〉
〈kn tanhMT,Φ(k, t)〉k,

where the last quantity is defined as

MT,Φ =
k

TN

[

µ1(t)+ (Φ− 1)
〈kα+1〉

〈k〉α+1
|µ1(t)|

αµα+1(t)

]

.

This is a two-dimensional map which is valid for any
random topology of distribution p(k). Note that the
macroscopic magnitude of interest is µ0 =m≡ |−→m|.
A main consequence of this is the existence of a critical

temperature, Tc, under very general conditions, e.g., for
many different network connectivities. More specifically,
as T is decreased, the overlap m describes a second-order

2Assuming one edge at most between any two nodes, ǫij = 0, 1,
the value will be slightly smaller, but it is easy to prove that this is
also a good approximation for ki, kj≪N . If more than one edge is
permitted, which is more realistic, this result is exact for any random
network, and it agrees (for a power law distribution with γ = 3) with
the one obtained in [18] for an evolving network [19].
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phase transition from a disordered or, say, “paramag-
netic” phase to an ordered (“ferromagnetic”) phase which
exhibits associative memory. The mean-field temperature
signaling this transition is

Tc = 〈k
2〉(〈k〉N)−1.

On the other hand, the map reduces to µn(t+1) =
sign{µn(t)[1+ (Φ− 1)〈k

α+1〉/〈k〉α+1]} for T = 0. This
implies the existence at Φ=Φ0, where

Φ0 = 1−〈k〉
α+1/〈kα+1〉,

of a transition as Φ is decreased from the ferromagnetic
phase to a new phase in which periodic hopping between
the attractor and its negative occurs. This is confirmed
by the Monte Carlo simulations for M > 1, namely, the
hopping is also among different attractors for finite T . The
simulations also indicate that this transition washes out
at low enough finite temperature. Instead, Monte Carlo
evolutions show that, for a certain range of Φ values, the
system activity then exhibits chaotic behavior.
The transition from ferromagnetic to chaotic states is a

main concern hereafter. Our interest in this regime follows
from several recent observations concerning the relevance
of chaotic activity in a network. In particular, it has been
shown that chaos might be responsible for certain states
of attention during brain activity [21,22], and that some
network properties such as the computational capacity [23]
and the dynamic range of sensitivity to stimuli [24] may
become optimal at the “edge of chaos” in a variety of
settings.
We next notice that the critical values Tc and Φ0 only

depend on the moments of the generic distribution p(k),
and that the ratio 〈ka〉/〈k〉a, a> 1, is a convenient way
of characterizing heterogeneity. We studied in detail two
particular types of connectivity distributions with easily
tunable heterogeneity, namely, networks with 〈k〉N/2
edges randomly distributed with p(k) such that the hetero-
geneity depends on a single parameter. Our first case is
the bimodal distribution, p(k) = 1

2
δ(k− k1)+

1

2
δ(k− k2)

with parameter ∆= (k2− k1)/2 = 〈k〉− k1 = k2−〈k〉.
Our second case is the scale-free distribution, p(k)∼ k−γ ,
which does not have any characteristic size but k is

confined to the limits, k0 and km �min(k0N
1

γ−1 , N − 1)
for finite N (see footnote 3). Notice that the network in
this case gets more homogeneous as γ is increased4, and
that this kind of distribution seems to be most relevant in
nature [19,20,25,26]. In particular, it seems important to
mention that the functional topology of the human brain,
as defined by correlated activity between small clusters
of neurons, has been shown to correspond to this case
with exponent γ ≃ 2 [27]. (It has not yet been possible to

3Though the minimum connectivity is 1, we shall assume k0 � 2,
which reduces the probability of disconnection.
4The distribution is truncated and therefore not strictly scale free

for γ < 2. However, nature shows examples for which γ is slightly
larger than 1, so that we consider the whole range here.
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Fig. 1: The temperature dependence of the difference between
the values for the fatigue at which the ferromagnetic-periodic
transition occurs, as obtained analytically for T = 0 (Φ0) and
from MC simulations at finite T (Φc). The critical temperature
is calculated as Tc = 〈k

2〉(〈k〉N)−1 for each topology. Data
are for bimodal distributions with varying ∆ and for scale-
free topologies with varying γ, as indicated. Here, 〈k〉= 20,
N = 1600 and α= 2. Standard deviations, represented as bars
in this graph, were shown to drop with N−1/2 (not depicted).

ascertain the brain’s structural topology experimentally,
but there is some evidence that function reflects structure
at least to some extent [28]. Furthermore, it has been
suggested, based on indirect methods, that the structural
connectivity of cat and macaque brains, at the level of
brain areas, may indeed be scale free [29] —and in any
case displays significantly higher heterogeneity than that
of, say, Erdős-Rényi random graphs.)
We obtained the critical value of the fatigue, Φc(T ),

from Monte Carlo simulations at finite temperature T .
These indicate that chaos never occurs for T � 0.35Tc. On
the other hand, a detailed comparison of the value Φc with
Φ0 —as obtained analytically for T = 0— indicates that
Φc ≃Φ0. Figure 1 illustrates the “error” Φ0−Φc(T ) for
different topologies. This shows that the approximation
Φc ≃Φ0 is quite good at low T for any of the cases exam-
ined. Therefore, assuming the critical values for the main
parameters, Tc and Φ0, as given by our map, we conclude
that the more heterogeneous the distribution of connectiv-
ities of a network is, the lower the amount of fatigue, and
the higher the critical temperature, needed to destabilize
the dynamics. As an example of this interesting behav-
ior, consider a network with 〈k〉= ln(N), and dynamics
according to α= 2. If the distribution were regular, the
critical values would be Tc = ln(N)/N (which goes to zero
in the thermodynamic limit) and Φ0 = 0. However, a scale-
free topology with the same number of edges and γ = 2
would yield Tc = 1 and Φ0 = 1− 2(lnN)

3/N2 (which goes
to 1 as N →∞).
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Fig. 2: The critical fatigue values Φ0 (solid lines) and Φc
from MC averages over 10 networks (symbols) with T = 2/N ,
〈k〉= 20, N = 1600, α= 2. The dots below the lines correspond
to changes of sign of the Lyapunov exponent as given by the
iterated map, which qualitatively agree with the other results.
This is for bimodal and scale-free topologies, as indicated.

Figure 2 illustrates, for two topologies, the phase
diagram of the ferromagnetic-chaotic transition. Most
remarkable is the plateau observed in the edge-of-chaos or
transition curve for scale-free topologies around γ ≃ 2, for
which very little fatigue, namely, Φ� 1 which corresponds
to slight depression, is required to achieve chaos. The
limit γ→∞ corresponds to 〈k〉-regular graphs (equivalent
to ∆= 0). If γ is reduced, km increases and k0 decreases.
The network is truncated when km =N . It follows that a
value of γ exits at which k0 cannot be smaller, so that km
must drop to preserve 〈k〉. This explains the fall in Φc as
γ→ 1.
Assuming that the “ferromagnetic phase” here corre-

sponds to a synchronous state, our results are in qual-
itative agreement with the ones obtained recently for
coupled oscillators [30,31]. As a matter of fact, the range
of coupling strengths which allow for stability of synchro-
nous states in these systems has been shown to depend
on the spectral gap of the Laplacian matrix [32], imply-
ing that the more heterogeneous a topology is, the more
easily activity can become unstable. It should be empha-
sized, however, that the dynamics we are considering here
does not come within the scope of the formalism used to
derive these results, since activity at node i depends on
the local field at node j.
As a further illustration of our findings, we monitored

the performance as a function of topology during a
simulation of pattern recognition. That is, we “showed”
the system a pattern, say ν chosen at random from the
set of M previously stored, every certain number of time
steps. This was performed in practice by changing the
field at each node for one time step, namely, hi→ hi+ δξν ,
where δ measures the intensity of the input signal. Ideally,
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Fig. 3: Network “performance” (see the main text) against
γ for scale-free topology with Φ= 1, as an average over 20
network realizations with stimulation every 50 MC steps for
2000 MC steps, δ= 5 and M = 4; other parameters as in fig. 2.
Inset shows sections of typical time series of mν for γ = 4; the
corresponding stimulus for pattern ν is shown below.

the network should remain in this configuration until
it is newly stimulated. The performance may thus be
estimated from a temporal average of the overlap between
the current state and the input pattern, 〈mν〉time. This is
observed to simply increase monotonically with ∆ for the
bimodal case. The scale-free case, however, as illustrated
in fig. 3, shows how the task is better performed the closer
to the edge of chaos the network is. This is because the
system is then easily destabilized by the stimulus while
being able to retrieve a pattern with accuracy. Figure 3
also shows that the best performance for the scale-free
topology when Φ= 1, i.e., in the absence of any fatigue,
definitely occurs around γ = 2.
The model network above is one of the simplest relevant

situations one may conceive. In particular, as emphasized
above, we are oversimplifying actual nodes as binary vari-
ables. However, our assumption of dynamic connections
which depend on the local fields in such a simple scenario
happens to show that a close relation may exist between
topological heterogeneity and function, thus suggesting
this may indeed be a relevant property for a realistic
network to perform efficiently certain high-level functions.
In a similar way to networks shown previously to be useful
for pattern recognition and family identification [33], our
system retrieves memory patterns with accuracy in spite
of noise, and yet it may easily destabilize itself to change
state in response to an input signal —without requiring
an excessive fatigue for the purpose. There is a correla-
tion between the amount Φ of fatigue and the value of γ
for which performance is maximized. One may argue that
the plateau of “good” behavior shown around γ ≃ 2 for
scale-free networks with Φ� 1 (fig. 2) is a possible justi-
fication for the supposed tendency of certain systems in
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nature to evolve towards this topology. It may also serve
as a hint when implementing artificial networks.
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