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Abstract

We discuss an attractor neural network in which only a fraction ρ of

nodes is simultaneously updated. In addition, the network has a het-

erogenous distribution of connection weights and, depending on the

current degree of order, connections are changed at random by a factor

Φ on short–time scales. The resulting dynamic attractors may become

unstable in a certain range of Φ thus ensuing chaotic itineracy which

highly depends on ρ. For intermediate values of ρ, we observe that the

number of attractors visited increases with ρ, and that the trajectory

may change from regular to chaotic and vice versa as ρ is modified.

Statistical analysis of time series shows a power–law spectra under

conditions in which the attractors’ space is most efficiently explored.

PACS: 05.45.Pq; 05.50.+q; 87.18.Sn; 87.23.Ge; 89.40.-a; 89.65.-s; 89.75.-

k

1 Introduction

There has been a great interest in the study of complex networks in physics
[Barabasi, 2002; Boccaletti et al., 2006] mainly focusing on the wiring topol-
ogy of the network. Natural and man–made networks exhibit a number of
relevant qualities besides interesting topological structure [Boccaletti et al.,

1



2006; Barrat et al., 2004; Serrano et al., 2006; Zhou et al., 2006], however.
We are concerned with two features which could affect the a network perfor-
mance. We consider here networks with weighted and time–dependent con-

nections as in trophic webs and social and communication networks. In these
examples, in addition to long–time scale variations, weights often change on
a short–time scale to improve actual functioning. On the other hand, we
consider partial activation of nodes which can also induce fast fluctuations

in the network. One may argue that maintaining all nodes synchronized and
fully informed of the activity of all the others requires a lot of energy. More-
over, there are indications that certain nodes are more active than others,
and that only a fraction is actually engaged at each time in some cooperative
tasks. For example, this is a characteristic of excitable media [Cartwright,
2000]. The possibility of having temporarily inert or reticent nodes is also
a recent concern in computer science in relation with parallelism [Korniss et

al., 2003; Tosic & Agha, 2005], in mathematical–physics [Evans, 1997], and
in neuroscience [LeBeau et al., 2005; Wagenaar et al., 2006; Azouz & Gray,
2000; Olshausen & Field, 2004; Shoham et al., 2006].

Time-dependent connections in physics have only recently been investi-
gated [Barrat et al., 2004; Serrano et al., 2006; Zhou et al., 2006]. However,
studying the consequences of fast connection changes in biologically inspired
models has a two–decades history [Cortes et al., 2006]. In particular, it has
recently been shown that the susceptibility of a network to outside influ-
ence increases dramatically for excitable nodes [Kinouchi & Copelli, 2006]
and, more specifically, under a competition of processes which tend to in-
crease and decrease, respectively, the efficiency of synaptic connections at
short times [Torres et al., 2007]. On the other hand, investigating the effect
of inert nodes is rare [Tosic & Agha, 2005; Evans, 1997; Herz & Marcus,
1993; Park et al., 2004]. In this paper we report on the combined effect
of these two features in an attractor neural network. We show that vary-
ing the fraction of nodes that are simultaneously active induces a variety of
qualitatively different behaviours in situations of great susceptibility, but not
in more general conditions. The susceptibility needed to observe the most
interesting behaviour is shown to occur under appropriate tuning of the con-
nection weights with the network activity. As an application of this finding,
we describe here unstable dynamics which leads to itinerancy and chaotic
behaviour.
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2 The model

We consider a network with N nodes, and s≡ {si = ±1} and w ≡{wij ∈ R}
(i, j = 1, . . . , N) will represent, respectively, the node states or binary ac-

tivities and the connection weights. From these we define a local field on
each node due to the weighted action of the others, namely, hi (s,w) ≡
∑

j 6=i wijsj . At each time unit, the activity of n nodes is updated according
to a probabilistic master equation with a transition probability T (s → s′) =
∑

x
pn(x)

∏

{i|xi=1} τn (si → s′i)
∏

{i|xi=0} δsi,s
′

i
. Here, x is an operational set

of binary indexes —fixed to 1 at n sites chosen at each time according to

distribution pn (x) =
(

N

n

)−1
δ (

∑

i xi − n) , and fixed to zero at the other
N−n sites. This choice simply states that one (only) updates simultaneously
the selected n nodes. The corresponding elementary rate is τn (si → s′i) =
σ (si → s′i)

[

1 +
(

δs′
i
,−si

− 1
)

δn,1

]

, where σ = σ (s, β) is a function of (only)
βsihi, with β an inverse temperature parameter. The above describes parallel

updating, as in cellular automata, for n = N or, macroscopically, ρ ≡ n/N →
1. However, the model describes sequential updating, as in kinetic magnetic
models, for n = 1 or ρ → 0. We are interested in changes with ρ ∈ (0, 1) .
This amounts a sensible generalization of familiar cellular automata and rep-
resents some real situations, as indicated in the introduction. For example,
assuming a neural network, ρ may stand for the fraction of neurons that are
stimulated each cycle; the rest maintain the information from the previous
state.

This model may be simulated in a computer for different transition details
which imply evolution towards non-equilibrium steady states, which is known
to be realistic [Marro & Dickman, 1999]. We shall assume that fields are
h (s,w) = h [π (s) , ξi] . Here, ξi ≡ {ξµ

i = ±1; µ = 1, . . . , M} stands for M
given realizations of the set of activities, or patterns, and π ≡ {πµ (s)} ,
where πµ (s) = N−1

∑

i ξ
µ
i si measures the overlap between the current state

and pattern µ. For N → ∞ and finite M, i.e., in the limit α ≡ M/N → 0,
the time equation πµ

t+1 (s) = ρN−1
∑

i ξ
µ
i tanh {βhi [πt (s) , ξi]}+(1 − ρ)πµ

t (s)
follows for any µ.

The above allows to monitor the resulting behaviour for different re-
lations between the fields hi and other network properties. The simplest
case of a relation of this kind is Hopfield’s [Hopfield, 1982] which follows
here for ρ → 0 and weights fixed according to the Hebb prescription, i.e.,
wij = N−1

∑

µ ξµ
i ξµ

j . The symmetry wij = wji then assures Pt→∞ (s) ∝
exp (β

∑

i hisi) . This (equilibrium) case exhibits associative memory prop-
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Figure 1: Evidence of chaos. Bifurcation diagram showing the stationary
order parameter q (π) , as defined in the main text, versus the synchronization

parameter ρ for M = 5 random patterns, N = 1600 nodes, β = 100 and
Φ = −1/2. This behaviour is characteristic of any Φ 6= 1, and it follows
indistinctly from the analytical solution and from Monte Carlo simulations.
The dashed line on top corresponds to the Hopfield equilibrium case.

erty. That is, for high enough β, the patterns {ξi} are attractors of dynamics
[Amit, 1989], as if they would have been stored in the connections and re-
called in the course of the system relaxation with time.

Equilibrium is generally impeded for ρ > 0 [Grinstein et al., 1985], and
the asymptotic state then strongly depends on dynamic details [Marro &
Dickman, 1999; Ódor, 2004]. We checked that, in agreement with some
indications [Herz & Marcus, 1993], the Hopfield–Hebb network also exhibits
associative memory for ρ > 0. However, no new physics emerges as ρ is varied
in this case, and it is likely this occurs rather generally concerning dynamics
for simple weighted networks. On the contrary our model exhibits rather
complex behaviour for varying ρ if one assumes activity dependent weights.
This is expected to occur in many excitable media [Cartwright, 2000], and
it has been well documented in the literature concerning the brain. In this
case, transmission of information and computations have repeatedly been re-
ported to be correlated with activity–induced fast fluctuations of synapses,
i.e., our wij’s [Ferster, 1996; Abbott & Regehr, 2004]. For example, it has
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Figure 2: The Lyapunov exponent Λ as a function of the β and Φ for several
values of ρ = 0.25, 0.5, 0.8, 0.99, from bottom to top, respectively. Λ > 0
correspond to an irregular or chaotic dynamics. Left graphs correspond to
Φ = 0.01 and Λas a function of β,and right panels correspond to β = 25 and
Λas a function ofΦ. Note that there is a small chaotic region (Λ > 0) for
ρ . 1 and low β and Φ = 0.01.

been observed that the efficacy of synaptic transmission can undergo short–
time increasing (sometimes called facilitation) [Reyes et al., 1998; Wang et

al., 2006] or decreasing (depression) [Thomson & Deuchars, 1994; Abbott et

al., 1997], and that these effects depend on the activity of the presynaptic
neuron. It has already been demonstrated that such processes may impor-
tantly affect a network performance [Cortes et al., 2006; Torres et al., 2007;
Bibitchkov et al., 2002; Pantic et al., 2002; Romani et al., 2006]. Likewise,
it seems sensible to assume that similar short–time variations may occur
in other networks —e.g., reaction–diffusion systems and the cardiac tissue
[Cartwright, 2000]— associated with some efficacy lost after heavy work or
with excitations, for instance.
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We therefore shall assume that the connection weights are wij = εijwij =
εjwij , where the second equality is introduced for simplicity. Here, wij stands
for some reference value and εj for a random variable. That is, we are assum-
ing some “noise” on top of a previous preparation of the connections designed
so that the network can perform some specific function. This also suggests
us to assume that the random variable ǫj is fluctuating very rapidly so that,
on the time scale for the activity changes, it behaves as stationary with dis-
tribution given, for example, by pst (s, εj) = qδ (εj − Φ) + (1 − q) δ (εj − 1) .
We shall further assume that q depends on the degree of order in the system
at time t, namely, that q = q (πt) . For the sake of concreteness, our choices
here will be that q (π) = (1 + α)−1 ∑

µ πµ (s)2 and that wij is given by the
Hebb prescription. The result is that each node is acted on by an effective
field heff

i (s,w) =
∑

j 6=i w
eff
ij sj with

weff
ij = [1 − (1 − Φ) q (π)]wij. (1)

This amounts to assume short–term variations affecting the intensity of con-
nections by a factor, either positive or negative, Φ on the average. More
specifically, one has a decreasing effect for any Φ < 1, and enhancement for
Φ > 1, as far as Φ > 0, while Φ < 0 allows for the possibility of a change
in the nature of the weights. For the indicated choices of fields and refer-
ence weights, our framework reduces to the familiar Hopfield–Hebb case for
Φ = 1. It should not be difficult to implement the model for different choices
of both pst (s, εj) and weights wij.

3 Results

Assuming the effective weights (1), it readily ensues, from the dynamics of πµ
t

in the case of M = 1, that π∞ = F (π∞; ρ, Φ) . Local stability requires that
|∂F/∂π| < 1, where F (π; ρ, Φ) ≡ ρ tanh {βπ [1 − (1 − Φ) π2]} + (1 − ρ) π.
Therefore, fixed points are independent of ρ for any Φ, but stability de-

mands that ρ < ρc with ρc = 2
{

3βπ2
∞

[(

4
3
−Φ

)

− (1 − Φ) π2
∞

]

− β + 1
}−1

.
The resulting situation for any Φ 6= 1 is illustrated in Fig. 1, where one
observes regular behaviour, bifurcations and chaotic windows. This picture
cannot occur for fixed weights, e.g., in the Hopfield case (dashed line). In
order to deepen on the possibility of chaos, we computed the Lyapunov ex-
ponents for different values of ρ as a function of the relevant parameters,
namely Φ and β, from the analytical solution for M = 1. This is shown in
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Fig. 2. The figure clearly reveals the existence of chaos above some degree
of synchronization, more specifically, for ρ > ρc (β, Φ) which marks the onset
of period doubling before irregular behaviour. For example, the left graphs
show that, for a small positive value of Φ, which corresponds to some slight
depression of connections which occurs more likely the higher the current
system order is, there is a region for large β (relatively small temperature,
say T ≈ 0.02 in our arbitrary units) and 1 > ρ & 0.8 for which dynamics
may eventually become chaotic. In the same graph one may notice a tiny
chaotic window for ρ ≈ 1 and β ≈ 7; this is the case identified previously by
us [Marro et al., 2007]. The right graphs, on the other hand, illustrate that
chaos is typically an exception for positive values of Φ; it may only occur
then for a rather large fraction of synchronized nodes (large ρ) near Φ . 0.
On the contrary, for negative Φ, i.e., when the order tends to induce changes
in the nature of the connection intensities, it is more likely that the system
will behave chaotically. It is also to be remarked that, inside the chaotic
region in each graph, there is a complex pattern of transitions from regular
to irregular behaviour as one changes, even very slightly the values of ρ, Φ
and β. The next question is whether such complex behaviour may have some
constructive role in natural and man–made networks.

The behaviour the system exhibits is illustrated with some stationary

Monte Carlo runs in Fig. 3. One observes: (a) for ρ < ρc, convergence
towards one of the attractors, namely, fixed points corresponding to the
patterns provided, which is revealed by the fact that one of the overlaps
(the red one) is large, close to 1, while the others two are closer to zero; (b)
irregular behaviour with positive Lyapunov exponent for a larger value of ρ
where that dynamics is now unstable and the system activity is visiting the
different attractors, including the negative of some of them or antipatterns;

(c) a different type of irregular behaviour in which, in addition to visiting
different attractors on a large time scale, there are much more rapid irregular
transitions between one pattern and its antipattern; and finally (d) regular
oscillation between one attractor and its negative, which is more rapid as
ρ → 1 (that is, when all the nodes are active). The cases (b) and (c) are
examples of instability–induced switching phenomena, namely, the system
describes in these cases kind of heteroclinic paths among the attractors, and
remains different time intervals in the neighbourhood of each of them, as it
was previously observed in a related case [Marro et al., 2007].

The constant switching of the activity from one pattern to the other seems
to be a rather robust phenomenology. In particular, it also occurs chaotic
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Figure 3: Typical Monte Carlo runs. This shows the overlap as a function
of time (in units of n MC trials), during the stationary regime after equili-
bration, for N = 1600 nodes, β = 50, Φ = 0.0035 and, from bottom to top,
ρ = 0, 0.59, 0.89, and 0.95, respectively. In this case, ρc ≃ 0.5. This is for
M = 3 correlated patterns (identified here with different colours). That is,
we generated three patterns completely at random, and then replaced 20%
of the digits in the second and third patterns with the same number of digits,
and flipped digits, respectively, taken from the first pattern.

hoping for an infinite system and rather arbitrary sets of patterns. In order to
illustrate this fact, consider patterns for which p (ξµ

i ) = 1
2
(1 + a) δ (ξµ

i − 1)+
1
2
(1 − a) δ (ξµ

i + 1), so that 〈ξµ
i 〉 = a. Assuming only two patterns, the dy-

namics for πµ
t (µ = 1, 2) may be worked out explicitly, namely, one has for

the overlaps that

π
(i)
t+1 =

1

2
ρ

(

1 + a2
)

tanh A+ (πt) +
1

2
ρ

(

1 − a2
)

tanh A− (πt) + (1 − ρ) π
(i)
t+1,

(2)
i = 1, 2, where A± (π) ≡ β [1 − (1 − Φ) q (π)]

(

π(1) ± π(2)
)

. The numerical
analysis of these two coupled mean–field equations reveals switching qualita-
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tively similar to the one observed in the simulations for appropriate values of
ρ, β, Φ and a, as shown in figure 4. The parameter region for which chaotic
switching among the two patterns occurs tends to decrease as a → 0, which
generally corresponds to fully orthogonal patterns, a case with little interest
in practice. The phase space graphs at the right confirm the same.
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Figure 4: (Left) Time evolution showing the nature of the hoping among the
two random patterns and their antipatterns, as obtained from equations 2
for Φ = −1

2
, β = 100, ρ = 0.46 and, from top to bottom, a = 0.7, 0.5, 0.2 and

0, respectively. (Right) Phase portraits showing π(2) versus π(1) to deepen
on the same behaviour.
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Figure 5: Mote Carlo runs that one may interpret as states of attention in the
network, which illustrates the possible role of chaos. This shows time-series
of the mean firing rate for N = 1600, β = 167, Φ = −1

2
, and different values

of the paramenter ρ = 0.1,0.3, 0.384, 0.39 and 0.4. Here, ρc = 0.38, and the
system stores three patterns, ξµ, µ = 1, 2 and 3, as described in the main
text. The figure shows how the number of visited attractors increases with ρ
after ρc. Note that although there three stored patterns ξµ, the antipatterns
−ξµ are also attractors of the networks dynamics.

An interesting fact concerning the nature of temporal itineracy among
the stored patters as ρ is varied is illustrated in Fig. 5. This shows time
evolution of the mean firing rate defined as

m =
1

2N

N
∑

i=1

(1 + si) . (3)

Three patterns (and their corresponding antipatterns) are involved here which
consist of a string of 1s, a string with the first 50% positions set to 1 and the
rest to −1, and a string with only the first 20% positions set to 1, respectively.
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In this Monte Carlo experiment, the activity remains wandering around one
of the patterns for any ρ < ρc. The choice of pattern depends on the initial
condition (top graphs in the Fig. 5). For larger values of ρ within a chaotic
window (middle graphs and left-bottom graph in Fig. 5), the system tends
to visit the other patterns as well. In particular, the middle-left graph in the
figure (ρ = 0.384) shows visits to the three patterns, and a trajectory which
is structured, namely, there are many jumps between the pairs of more cor-
related patterns, and only a few between the most distant ones. Moreover,
the number of jumps between the less correlated patterns tends to grow as
ρ is further increased within the chaotic window. The figure shows that, for
ρ = 0.39 and 0.40, even the antipatterns are visited; note that we have that
ξ2 = −ξ2. Increasing ρ further, e.g., for ρ = 0.6 in this specific experiment,
the network surpasses equiprobability of patterns and, eventually, abandons
the chaotic regime to fall into a limit cycle (bottom-right graph), where it
periodically oscillates between a pattern and its antipattern.
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Figure 6: Monte Carlo histograms showing qualitative changes in the distri-
bution of the mean firing rate m, which is a measure of the time the system
is around a particular pattern or antipattern. This is for time series with
patterns defined as in Fig. 5, N = 1600, β = 167 and Φ = 0.05, and it
follows that now ρc ≃ 0.43.
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This interesting behaviour is made more explicit in Fig. 6, where we plot-
ted the distribution probability for the mean firing rate, P(m, ρ) = kN(m),
with k a normalization constant and N(m) the number of occurrences that m
has a value between m and m+dm during a large temporal window ∆t. This
tell us how often the activity of the network is around a particular memory
pattern, and how this is affected when one varies ρ. The figure show that
for ρ small P(m, ρ) is centered around the mean activity of one of the stored
patterns. As ρ increases the variance of the distribution also increases, and
for ρ > ρc P(m, ρ) becomes multimodal with several peaks centered around
the mean-activity associated to all stored patters. Note that the two first
cases in this figure are asymmetric (it can be centered in the pattern or in
its antipattern) while the other two are symmetric around m = 0, due to
the caotic itineracy among all patterns and the particular set of patterns we
used.

In order to deepen further on the nature of the chaotic switching, we have
computed the normalized power spectra p (ω) of the time series for the mean
firing rate m. If one computes the associated entropy [Cortes et al., 2007],
namely, S = −

∑

ω p(ω) log p(ω), it ensues a sharp minimum at S ≃ 0.37 for
Φ = −0.048 (data not shown). The series corresponding to this minimum
and, for comparison purposes, a different one for a much larger entropy are
presented in Fig. 7 (left). The power spectra for these two series is presented
in Fig. 7(right). This reveals a qualitative change of behaviour, namely,
that (only) the series describing a more efficient chaotic mechanism exhibit
a power law distribution. We are presently analyzing in more detail this
interesting phenomenon.

4 Discussion

We have described in this paper details concerning a model network in which
connections are heterogeneously weighted and time–dependent, namely, cor-
related to the global activity. As documented above, these two conditions
occur in many natural networks. Furthermore, only a fraction ρ of nodes are
active at each time, so that the rest maintain the previous state. This would
occur in an excitable media, for instance.

A main conclusion is that, although the synchronization parameter ρ
is generally irrelevant, varying ρ may greatly modify the system behaviour
under certain conditions. The necessary condition is a kind of susceptibility

12



 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0.01  0.1  1  10

p
(ω

)

ω

Φ=-0.048
Φ=-0.065

ω-1.9

-1

 0

 1

 0  20000  40000  60000  80000  100000

π

MCS

Φ=-0.048 

-1

 0

 1

 0  5000  10000  15000  20000

π

MCS

Φ=-0.065

Figure 7: Left: Time series for the overlap π in the case ρ = 0.632, M =
1, β = ∞ (zero temperature), N = 3600, and Φ = –0.048 (top) and –
0.065 (bottom) showing chaotic transitions between the associated pattern
and its antipattern. This series correspond to entropies S ≃ 0.37 and 0.9,
respectively. Left: The power spectra corresponding to the two series in the
left panels. The straight line here has slope 1.9.

or sensitivity to external stimuli which greatly favours dynamic instabilities.
It may be achieved in our example by appropriate tuning of two parameters,
Φ and the inverse temperature β. The former induces either enhancement
(Φ > 1) or lowering (Φ < 1) for positive Φ, or even change of sign for
negative Φ, of the intensities of connections. This process is a fast one —as
compared with the nodes changes—, and it occurs more likely the larger the
current degree of order is.

Within the most interesting range of its parameters, our model exhibits
heteroclinic trajectories which imply, in particular, a kind of dynamic associ-

ation. That is, the network activity either goes to one attractor for ρ < ρc, or
else, for larger ρ, is capable of an intriguing programme of visits to possible
attractors. The dynamics may abruptly become chaotic, which seems the
most relevant regime. Besides synchronization of a minimum of nodes, this
requires careful tuning of ρ, β and Φ. That is, as suggested by Fig. 2, there
is a complex parameter space which makes it difficult to predict the ensuing
behaviour for slight changes of parameter values.

The most interesting behaviour of the network consists of switching among
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attractors, that can either be regular for ρ < ρc, or chaotic which makes
the process much more efficient. More specifically, we observe a highly–
structured chaotic itinerancy process in which, as illustrated in Fig. 5, mod-
ifying ρ within a chaotic window —which requires also tuning β and Φ—
one may control the subset of visited attractors. That is, increasing ρ within
the relevant regime makes the system to visit more distant (less correlated)
attractors. In this way the system may perform, for instance, family dis-
crimination and classification by tuning ρ [Cortes et al., 2005]. On the other
hand, the complexity of the parameter space for ρ > ρc suggest that one
could devise a method to control chaos in these cases, and also that one
should pay attention to these facts when determining efficient computational
strategies in artificial machines. Similar switching phenomena, in which the
activity describes a heteroclinic path among saddle states, has already been
incorporated in models which thus simulate experiments on animal olfactory
systems [Ashwin & Timme, 2005; Rabinovich et al., 2001; Mazor & Lau-
rent, 2005; Huerta & Rabinovich, 2004]. Comparable oscillatory activity has
been reported to occur in cultured neural networks [Wagenaar et al., 2006]
and ecology models and food webs [Hofbauer & Sigmund, 1989; Vandermeer,
2004; Vandermeer et al., 2007], and it is believed it could account for other
natural phenomena as well [Ashwin & Timme, 2005].

Finally, an important feature of the model chaotic itinerancy is illustrated
in Fig. 7. This reveals the existence of power–law distributions within the
regimes in which the network exhibits its most interesting behaviour. This
is the case for the power spectra of time series and for the time spent in the
neighbourhood of each attractor for appropriate values of ρ. This fact sug-
gests that a critical condition which has been called for to explain some of the
brain exceptional behaviour [Eurich et al., 2002; Haldeman & Beggs, 2005;
Chialvo, 2006] could perhaps consists, as in our model here, of a highly sus-
ceptible, unstable and chaotic condition similar to the one we have described
for the model.

Acknowledgements

We acknowledge financial support from FEDER–MEC project FIS2005-00791,
and JA project P06–FQM–01505.

14



References

Abbott, L. F., Varela, J. A., Sen, K. and Nelson, S. B. [1997] “Synaptic
Depression and Cortical Gain Control”, Science 275, 221–224.

Abbott, L. F. and Regehr, W. G. [2004] “Synaptic computation”, Nature

431, 796–803.

Amit, D. J. [1989] “Modeling Brain Function: Attractor Neural Networks”,
Cambridge Univ. Press, Cambridge.

Ashwin, P. and Timme, M. [2005] “Nonlinear dynamics: When instability
makes sense”, Nature 436, 36–37.

Azouz, R. and Gray, C. M. [2000] “Dynamic spike threshold reveals a mecha-
nism for synaptic coincidence detection in cortical neurons in vivo”, Proc.

Natl. Acad. Sci. USA 97, 8110–8115.

Barabási, A. L. [2002] “Statistical mechanics of complex networks”, Rev.

Mod. Phys. 74, 47–97.
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