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1 Introduction and Model

Recurrent neural networks are a prominent model for information pro-
cessing and memory in the brain (Hopfield, 1982; Amit, 1989). Tradition-
ally, these models assume synapses that may change on the timescale of
learning but that can be assumed constant during memory retrieval. How-
ever, synapses are reported to exhibit rapid time variations, and it is likely
that this finding has important implications for our understanding of the
way information is processed in the brain (Abbott & Regehr, 2004). For in-
stance, Hopfield-like networks in which synapses undergo rather generic
fluctuations have been shown to significantly improve the associative pro-
cess (Marro, Garrido, & Torres, 1998). In addition, motivated by specific
neurobiological observations and their theoretical interpretation (Tsodyks,
Pawelzik, & Markram, 1998), activity-dependent synaptic changes that
induce depression of the response have been considered (Pantic, Torres,
Kappen, & Gielen, 2002; Bibitchkov, Herrmann, & Geisel, 2002). It was
shown that synaptic depression induces, in addition to memories as stable
attractors, special sensitivity of the network to changing stimuli as well
as rapid switching of the activity among the stored patterns (Pantic et al.,
2002; Cortes, Garrido, Marro, & Torres, 2004; Marro, Torres, & Cortes, 2007;
Torres et al., 2005; Cortes, Torres, Marro, Garrido, & Kappen, 2006). This
behavior has been observed experimentally to occur during the processing
of sensory information (Laurent et al., 2001; Mazor & Laurent, 2005; Marro,
Torres, Cortes, & Wemmenhove, 2006).

In this letter, we present and study networks that are inspired in the ob-
servation of certain more complex synaptic changes. That is, we assume that
repeated presynaptic activation induces at short times not only depression
but also facilitation of the postsynaptic potential (Thomson & Deuchars,
1994; Zucker & Regehr, 2002; Burnashev & Rozov, 2005; Wang et al., 2006).
The question, which has not been quite addressed yet, is how competition
between depression and facilitation will affect network performance. We
here conclude that as for the case of only depression (Pantic et al., 2002;
Cortes et al., 2006), the system may exhibit up to three different phases
or regimes: one with standard associative memory, a disordered phase in
which the network lacks this property, and an oscillatory phase in which
activity switches between different memories. Depending on the balance
between facilitation and depression, novel intriguing behavior results in
the oscillatory regime. In particular, as the degree of facilitation increases,
the sensitivity to external stimuli is enhanced and the frequency of the
oscillations increases. It then follows that facilitation allows recovering of
information with less error, at least during a short interval of time, and
can therefore play an important role in short-term memory processes. We
are concerned here with a network of binary neurons. Previous studies
have shown that the behavior of such a simple network dynamics agrees
qualitatively with the behavior that is observed in more realistic networks,
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such as integrate-and-fire neuron models of pyramidal cells (Pantic et al.,
2002).

Let us consider N binary neurons, si = {1, 0}, i = 1, . . . , N, endowed
with probabilistic dynamics,

Prob{si (t + 1) = 1} = 1
2
{1 + tanh[2βhi (t)]}, (1.1)

which is controlled by a temperature parameter, T ≡ 1/β (see, e.g., Peretto,
1992; Marro & Dickman, 2005), for details. The function hi (t) denotes a time-
dependent local field, that is, the total presynaptic current arriving at the
postsynaptic neuron i. This will be determined in the model following the
phenomenological description of nonlinear synapses reported in Markram,
Wang, and Tsodyks (1998) and Tsodyks et al. (1998), which was shown to
capture well the experimentally observed properties of neocortical connec-
tions. Accordingly, we assume that

hi (t) =
N∑

j=1

ωi jD j (t)F j (t)s j (t) − θi , (1.2)

where θi is a constant threshold associated with the firing of neuron i, and
D j (t) and F j (t) are functions—to be determined—that describe the effect
on the neuron activity of short-term synaptic depression and facilitation,
respectively. We further assume that the weight ωi j of the connection be-
tween the (presynaptic) neuron j and the (postsynaptic) neuron i are static
and store a set of patterns of the network activity, namely, the familiar
covariance rule:

ωi j = 1
Nf (1 − f )

P∑
ν=1

(
ξν

i − f
)(

ξν
j − f

)
. (1.3)

Here, ξν = {ξν
i }, with ν = 1 . . . , P, are different binary patterns of average

activity 〈ξν
i 〉 ≡ f . The standard Hopfield model is recovered for F j = D j =

1, ∀ j = 1, . . . , N.

We next implement a dynamics for F j and D j after the prescription in
Markram et al. (1998) and Tsodyks et al. (1998). A description of varying
synapses requires at least three local variables, say, xj (t), yj (t), and z j (t), to
be associated to the fractions of neurotransmitters in recovered, active, and
inactive states, respectively. A simpler picture consists in dealing with only
the xj (t) variable. This simplification, which seems to describe accurately
both interpyramidal and pyramidal interneuron synapses, corresponds to
the fact that the time in which the postsynaptic current decay is much
shorter than the recovery time for synaptic depression, say, τrec (Markram
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& Tsodyks, 1996) (time intervals are in milliseconds hereafter). Within this
approach, one may write that

xj (t + 1) = xj (t) + 1 − xj (t)
τrec

− D j (t)F j (t)s j (t), (1.4)

where

D j (t) = xj (t) (1.5)

and

F j (t) = U + (1 − U) u j (t). (1.6)

The interpretation of this ansatz is as follows. Concerning any presynaptic
neuron j, the productD jF j stands for the total fraction of neurotransmitters
in the recovered state that are activated by either incoming spikes, Uj xj , or
facilitation mechanisms, (1 − Uj )xj u j ; for simplicity, we are assuming that
Uj = U ∈ [0, 1] ∀ j. The additional variable u j (t) is assumed to satisfy, as in
the quantal model of transmitter release in Markram et al. (1998), that

u j (t + 1) = u j (t) − u j (t)
τfac

+ U[1 − u j (t)]s j (t), (1.7)

which describes an increase with each presynaptic spike and a decay to the
resting value with relaxation time τfac. Consequently, facilitation washes out
(u j → 0, F j → U) as τfac → 0, and each presynaptic spike uses a fraction
U of the available resources xj (t). The effect of facilitation increases with
decreasing U, because this will leave more neurotransmitters available to
be activated by facilitation. Therefore, facilitation is controlled not only by
τfac but also by U.

The Hopfield case with static synapses is recovered after using xj = 1
in equation 1.5 and u j = 0 in equation 1.6 or, equivalently, τrec = τfac = 0 in
equations 1.4 and 1.7. In fact, the latter imply fields hi (t) = ∑

j ωi jUs j (t) −
θi , so that one may simply rescale both β and the threshold.

The above interesting phenomenological description of dynamic
changes has already been implemented in attractor neural networks
(Bibitchkov et al., 2002; Pantic et al., 2002) for pure depressing synapses
between excitatory pyramidal neurons (Tsodyks & Markram, 1997). We are
interested here in the consequences of a competition between depression
and facilitation. Therefore, we shall use T, U, τrec, and τfac in the following
as relevant control parameters.
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2 Mean-Field Solution

Let us consider the mean activities associated, respectively, with active and
inert neurons in a given pattern ν:

mν
+(t) ≡ 1

Nf

∑
j∈Act(ν)

s j (t), mν
−(t) ≡ 1

N(1 − f )

∑
j �∈Act(ν)

s j (t). (2.1)

It follows for the overlap of the network activity with pattern ν that

mν(t) ≡ 1
Nf (1 − f )

∑
i

(
ξν

i − f
)
si (t) = mν

+(t) − mν
−(t), (2.2)

∀ν. One may also define the averages of xi and ui over the sites that are
active and inert, respectively, in a given pattern ν:

xν
+(t) ≡ 1

Nf

∑
j∈Act(ν)

xj (t), xν
−(t) ≡ 1

N(1 − f )

∑
j �∈Act(ν)

xj (t)

uν
+(t) ≡ 1

Nf

∑
j∈Act(ν)

u j (t), uν
−(t) ≡ 1

N(1 − f )

∑
j �∈Act(ν)

u j (t), (2.3)

∀ν, which describe depression (the xs) and facilitation (the us), each con-
cerning a subset of neurons, for examples, N/2 neurons for f = 1/2.

One may solve the model, equations 1.1 to 1.7, in the thermodynamic
limit N → ∞ under the standard mean-field assumption that si ≈ 〈si 〉. This
type of approach has recently been reported to satisfactorily explain the be-
havior of recurrent networks of spiking neurons with short-term depressing
synapses (Romani, Amit, & Mongillo, 2006). Here, within this approxima-
tion, we shall substitute xi (ui ) by the mean-field values xν

± (uν
±) (notice that

one expects, and it will be confirmed below by comparisons with direct sim-
ulation results, that the mean-field approximation is accurate away from
any possible critical point). The local fields then ensue as

hi (t) =
P∑

ν=1

(
ξν

i − f
)
Mν(t), (2.4)

Mν(t) ≡ [
U + (1 − U) uν

+(t)
]

xν
+(t) mν

+(t) − [
U − (1 − U) uν

−(t)
]

xν
−(t) mν

−(t).
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Assuming further that patterns are random with mean activity f = 1/2,

one obtains the set of dynamic equations:

xν
±(t + 1) = xν

±(t) + 1 − xν
±(t)

τrec
− [

U + (1 − U) uν
±(t)

]
xν

±(t) mν
±(t),

uν
±(t + 1) = uν

±(t) − uν
±(t)
τfac

+ U
[
1 − uν

±(t)
]

mν
±(t),

mν
±(t + 1) = 1

N

∑
i


1 ± tanh


β


Mν(t) ±

∑
µ�=ν

ε
µ

i Mµ(t)








 ,

mν(t + 1) = 1
N

∑
i

εν
i tanh

[
β

∑
µ

ε
µ

i Mµ(t)

]
, (2.5)

where ε
µ

i ≡ 2ξ
µ

i − 1. This is a 6P-dimensional coupled map whose analy-
tical treatment is difficult for large P, but it may be integrated numerically,
at least for not too large P. One may also find the fixed-point equations for
the coupled dynamics of neurons and synapses; these are

xν
± = {

1 + [
U + (1 − U) uν

±
]

τrec mν
±
}−1

,

uν
± = U τfac mν

±
(
1 + U τfac mν

±
)−1

,

2mν
± = 1 ± 2

N

∑
i

tanh


β


Mν ±

∑
µ�=ν

ε
µ

i Mµ





 ,

mν = 1
N

∑
i

εν
i tanh

(
β

∑
µ

ε
µ

i Mµ

)
. (2.6)

The numerical solution of these transcendental equations describes the
resulting order as a function of the relevant parameters. Determining
the stability of these solutions for α = P/N �= 0 is a more difficult task, be-
cause it requires linearizing equation 2.5, and the dimensionality diverges in
the thermodynamical limit (see, however, Torres, Pantic, & Kappen, 2002).
In the next section, we therefore deal with the case α → 0.

3 Main Results

Consider a finite number of stored patterns P, that is, α = P/N → 0 in
the thermodynamic limit. In practice, it is sufficient to deal with P = 1 to
illustrate the main results (therefore, we suppress the index ν hereafter).
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Let us define the vectors of order parameters �y ≡ (m+, m−, x+,

x−, u+, u−), its stationary value �yst that is given by the solution equation 2.6,
and �F whose components are the functions on the right-hand side of
equation 2.5. The stability of equation 2.5 around the steady state of equa-
tion 2.6 follows from the first derivative matrix D ≡ (∂ �F /∂�y)�yst . This is

D =




β̄ A+ −β̄ A− β̄B+ −β̄ B− β̄C+ −β̄C−
−β̄ A+ β̄ A− −β̄ B+ β̄ B− −β̄C+ β̄C−
−A+ 0 τ − B+ 0 −C+ 0

0 −A− 0 τ − B− 0 −C−
D+ 0 0 0 τ − E+ 0

0 D− 0 0 0 τ − E−




, (3.1)

where β̄ ≡ 2βm+m−, A± ≡ [U + (1 − U) u±] x±, B± ≡ [U + (1 − U) u±] m±,

C± ≡ (1 − U) x±m±, D± ≡ U(1 − u±), τ ≡ 1 − τ−1
rec , and E± ≡ Um±. After

noticing that m+ + m− = 1, one may numerically diagonalize D and obtain
the eigenvalues λn for a given set of control parameters T, U, τrec, τfac. For
|λn| < 1 (|λn| > 1), system is stable (unstable) close to the fixed point yn. The
maximum of |λn| determines the local stability: for |λn|max < 1, system 2.5
is locally stable, while for |λn|max > 1, there is at least one direction of in-
stability, and the system consequently becomes locally unstable. Therefore,
varying the control parameters, one crosses the line |λ|max = 1 that signals
the bifurcation points.

The resulting situation is summarized in Figure 1 for specific values of
U, T , and τfac. Equations 2.6 have three solutions, two of which are memory
states corresponding to the pattern and antipattern and the other a so-called
paramagnetic state that has no overlap with the memory pattern. The stabil-
ity of the two solutions depends on τrec. The region τrec > τ ∗∗

rec corresponds
to the nonretrieval phase, where the paramagnetic solution is stable and the
memory solutions are unstable. In this phase, the average network behav-
ior has no significant overlap with the stored memory pattern. The region
τrec < τ ∗

rec corresponds to the memory phase, where the paramagnetic solu-
tion is unstable and the memory solutions are stable. The network retrieves
one of the stored memory patterns. For τ ∗

rec < τrec < τ ∗∗
rec (denoted O in the

figure), none of the solutions is stable. The activity of the network in this
regime keeps moving from one to the other fixed points neighborhood
(the pattern and antipattern in this simple example). This rapid switch-
ing behavior is typical for dynamic synapses and does not occur for static
synapses. A similar oscillatory behavior was reported in Pantic et al. (2002)
and Cortes et al. (2004) for the case of only synaptic depression. A main
novelty is that the inclusion of facilitation importantly modifies the phase
diagram, as discussed below (see Figure 2). On the other hand, the phases
for τrec < τ ∗

rec (F) and τrec > τ ∗∗
rec (P) correspond, respectively, to a locally
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Figure 1: The three relevant regions, denoted F, O, and P, respectively, that
are depicted by the absolute value of the maximum eigenvalue |λn|max of the
stability matrix D in equation 3.1 when plotted as a function of the recovering
time τrec for different values of the facilitation time τfac. Here, τfac = 10, 15, 20,
and 25 for different curves from bottom to top, respectively, in the F and P
regions. The stationary solutions lack any local stability for τ ∗

rec < τrec < τ ∗∗
rec (O),

and the network activity then undergoes oscillations. The arrows signal τ ∗
rec and

τ ∗∗
rec for τfac = 10. This graph is for U = 0.1 and T = 0.1.

stable regime with associative memory (m �= 0) and a disordered regime
without memory (m ≡ m1 = 0).

The values τ ∗
rec and τ ∗∗

rec, which, as a function of τfac, U and T, determine
the limits of the oscillatory phase, correspond to the onset of condition
|λn|max > 1. This condition defines lines in the parameter space (τrec, τfac)
that are illustrated in Figure 2. This reveals that for a relatively large de-
gree of facilitation, τ ∗

rec (separation between the F and O regions) in general
decreases with increasing facilitation, which implies a larger oscillatory re-
gion and consequently a reduction of the memory phase. This is due to the
additional depressing effect produced by strong facilitation, which tends to
destabilize the ferromagnetic solutions. On the other hand, τ ∗∗

rec (separation
between O and P regions) in general increases with facilitation, thus broad-
ening further the width of the oscillatory phase δ ≡ τ ∗∗

rec − τ ∗
rec. Moreover, for

relatively small facilitation, the behavior is more complex due to the balance
between depression and facilitation. The width of the oscillatory phase thus
increases when depression is dominant and decreases when facilitation be-
comes more important. At this regime, there is a competition between the
tendency to stabilize ferromagnetic solutions due to facilitation and the op-
posite one due to depression, which results in a nonmonotonic behavior of
δ. The behavior of δ under different conditions is illustrated in the insets
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Figure 2: This illustrates how the different regimes of the network activity de-
pend on the balance between depression and facilitation. (Top graphs) Phase
diagram (τrec, τfac) for α = 0 and U = 0.1 at temperature T = 0.1 (left) and 0.05
(right). The dashed (solid) line is for τ ∗

rec (τ ∗∗
rec), signaling the first-order (second-

order) phase transitions between the O and F(P) phases. The insets show the
resulting width of the oscillatory region, δ ≡ τ ∗∗

rec − τ ∗
rec, as a function of τfac. (Bot-

tom graphs) Phase diagram (τrec, U) for α = 0 and T = 0.1, and γ ≡ τfac/τrec = 1
(left) and 0.25 (right).

of Figure 2. These insets also show that the effects just described are more
evident for low levels of noise (e.g., δ is larger for smaller temperature).

Also interesting is that facilitation induces changes in the phase diagram
as one varies the facilitation parameter U, which measures the fraction
of neurotransmitters not activated by the facilitating mechanism. In order
to discuss this, we define the ratio between the timescales, γ ≡ τfac/τrec,

and monitor the phase diagram (τrec, U) for varying γ. The result is also
in Figure 2; see the bottom graphs for γ = 1 (left) and 0.25 (right), which
correspond, respectively, to a situation in which depression and facilitation
occur in the same timescale and a situation in which facilitation is four
times faster. The two cases exhibit a similar behavior for large U, but they
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Figure 3: For U = T = 0.1 as in Figure 1, these graphs illustrate results from
Monte Carlo simulations (symbols) and mean-field solutions (curves) for the
case of associative memory under competition of depression and facilitation.
This shows m ≡ m1 as a function of τrec (horizontal axis) and τfac (different
curves as indicated) corresponding to regimes in which the limiting value τ ∗

rec
decreases (left graph) or increases (right graph) with increasing τfac, the two
situations discussed in the text.

are qualitatively different for small U. In the case of faster facilitation,
there is a range of U values for which τ ∗

rec increases in such a way that one
passes from the oscillatory to the memory phase by slightly increasing U.

This means that facilitation tries to drive the network activity to one of
the attractors (τfac < τrec), and for weak depression (U small), the activity
will remain there. Decreasing U further then has the effect of increasing
effectively the system temperature, which destabilizes the attractor. This
requires only small U because the dynamics 1.7 rapidly decreases the
second term in F j to zero.

Figure 3 shows the variation with both τrec and τfac of the stationary,
locally stable solution with associative memory, m �= 0, computed this time
in both the mean-field approximation and using Monte Carlo simulation.
The Monte Carlo simulation consists of iterating equations 1.1, 1.4, and
1.7 using parallel dynamics. This shows a perfect agreement between our
mean-field approach above and the simulations as long as one is far from
the transition, a fact that is confirmed below (in Figure 5). This is because,
near τ ∗

rec, the simulations describe hops between positive and negative m
that do not compare well with the mean-field absolute value |m|.

The most interesting behavior is perhaps the one revealed by the phase
diagram (T, τfac) in Figure 4. Here we depict a case with U = 0.1 in order
to clearly visualize the effect of facilitation (facilitation has practically no
effect for any U > 0.5, as shown above) and τrec = 3 ms in order to compare
with the situation of only depression in Pantic et al. (2002). A main result
here is that for appropriate values of the working temperature T , one may
force the system to undergo different types of transitions by simply varying
τfac. First note that the line τfac = 0 corresponds roughly to the case of static
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T

τfac

P

F

O

Figure 4: Phase diagram (T, τfac) for U = 0.1 and τrec = 3 ms. This illustrates
the potential high adaptability of the network to different tasks (e.g., around
T = 0.22) by simply varying its degree of facilitation.

synapses, since τrec is very small. In this limit, the transition between the
retrieval (F) and nonretrieval (P) phases is at T = U = 0.1. At low enough
T, there is a transition between the nonretrieval (P) and retrieval phases
(F) as facilitation is increased. This reveals a positive effect of facilitation
on memory at low temperature and suggests improvement of the network
storage capacity, which is usually measured at T = 0, a prediction that we
have confirmed in preliminary simulations. At intermediate temperatures,
for example, T ≈ 0.22 for U = 0.1, the system shows no memory in the
absence of facilitation, but increasing τfac, one may describe consecutive
transitions to a retrieval phase (F), a disordered phase (P), and then an
oscillatory phase (O). The last is associated with a new instability induced
by a strong depression effect due to the further increase of facilitation. At
higher T, facilitation may drive the system directly from complete disorder
to an oscillatory regime.

In addition to its influence on the onset and width of the oscillatory re-
gion, the competition between depression and facilitation, described by the
relation between τrec and τfac, determines the frequency of the oscillations
of m. In order to study this effect, we computed the average time between
the consecutive minimum and maximum of these oscillations: a half period
as a function of τfac and for different values of τrec. The result is illustrated
in the left graph of Figure 5. This shows that for relatively large facilitation,
the frequency of the oscillations increases with the facilitation time. This
means that the access of the network activity to the attractors is faster with
increasing facilitation, though the system then remains near each attractor
for a shorter time due to the extra depression that follows strong facilitation.
However, for relatively small facilitation (τfac < 10 ms), there is competition
between a tendency to go to the attractors, which is favored by facilitation,
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Figure 5: (Left graph) Half-period of oscillations as a function of τfac, for U =
T = 0.1 and P = 1, as obtained from the mean-field solution for values of τrec =
12, 10, 8 ms (curves) and from simulations (symbols) for τrec = 10 ms. (Right
graph) For the same conditions as in the left graph, this shows the maximum
of the absolute value of m during oscillations. The simulation results in both
graphs corresponding to an average over 103 peaks of the stationary series for
m. The fact that statistical errors are small confirms the mean-field periodic
behavior.

and a tendency to leave the attractor, due to depression. For a relatively
week depression (e.g., τrec = 8 ms), the activity tends to remain longer near
the attractor, while the system takes more time to reach the attractor if fa-
cilitation is not too strong. The competition results in a large half-period
for oscillations. This tendency to increase the half-period finishes when fa-
cilitation becomes very large, and then a depressing effect due to strong
facilitation occurs. As a consequence, the half-period begins to decrease.
This complex behavior of the half-period due to the competition between
depression and facilitation washes out for strong depression, as illustrated
in Figure 5 (left) for τrec = 12 ms. We also computed the maximum of m
during oscillations: |m|max. This, which is depicted in the right graph of
Figure 5, also increases with τfac for strong facilitation. For relatively small
facilitation, again complex behavior due to the competition shows up. In
this case, the effects are more evident for strong depression (see the curve
τrec = 12 ms in Figure 5, right), and there is a small region in which, though
the access to stored information is faster (the half-period decreases), the
error when one retrieves information increases (|m| decreases), which is
due to the fact that depression dominates.

The overall conclusion is that for relatively small facilitation, there is a
nontrivial competition between depression and facilitation that, for partic-
ular values of the depression, results in nonmonotonic behavior of the half-
period and maximum m during oscillations. On the other hand, not only the
access to the stored information is faster under relatively large facilitation,
but increasing it will then help to retrieve information with less error.
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Figure 6: Time series for the overlap function, m, at T = 0.22 (horizontal dotted
line in Figure 4) as one increases the value of τfac in order to visit the different
regimes (separated here by vertical lines). The simulations started with τfac = 1
at t = 1, and τfac was then increased by 10 units every 200 ms. The bottom graph
corresponds to a case in which the system is under the action of an external
stimulus (as described in the text). The middle graph depicts an individual run
when the system is without any stimulus, and the top graph corresponds to the
average of |m| over 100 independent runs of the unperturbed system.

In order to provide more information on some aspects of the system be-
havior, we present in Figures 6 and 7 a detailed study of specific time series.
The middle graph in Figure 6 corresponds to a simulation of the system
evolution for increasing values of τfac as one describes the horizontal line
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Figure 7: Spectral analysis of the cases in Figure 6. On top of each of the small
panels, which show typical time series for τfac = 2, 20, 50, and 100, respectively,
from top to bottom and from left to right, the square panels show the corre-
sponding power spectra. Details of the simulations as in Figure 6.

for T = 0.22 in Figure 4. The system thus visits consecutively the different
regions (separated by vertical lines) over time. That is, the simulation starts
with the system in the stable paramagnetic phase, denoted P1 in the figure,
and then successively moves by varying τfac into the stable ferromagnetic
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phase F, into another paramagnetic phase, P2, and, finally, into the oscilla-
tory phase, O.

We interpret that the observed behavior in P2 as due to competition
between the facilitation mechanism, which tries to bring the system to
the fixed-point attractors, and the depression mechanism, which tends to
destabilize the attractors. The result is a sort of intermittent behavior in
which oscillations and convergence to a fixed-point alternate in a way that
resembles (but is not) chaos. The top graph in Figure 6, which corresponds
to an average over independent runs, illustrates the typical behavior of the
system in these simulations; the middle run depicts an individual run.

Further interesting behavior is shown in the bottom graph of Figure 6.
This corresponds to an individual run in the presence of a very small and
irregular external stimulus, represented by the black line around m = 0. This
consists of an irregular series of positive and negative pulses of intensity
±0.03 ξ 1 and a duration of 20 ms. In addition to a great sensibility to weak
inputs from the environment, this reveals that increasing facilitation tends
to significantly enhance the system response.

Figure 7 shows the power spectra of typical time series such as the ones
in Figure 6: describing the horizontal line for T = 0.22 in Figure 4 to visit
the different regimes. We here plot time series m(t) obtained, respectively,
for τfac = 2, 20, 50, and 100 and, on top of each of them, the corresponding
spectra. This reveals a flat, white-noise spectrum for the P1 phase and for
the stable fixed-point solution in the F regime. However, the case for the
intermittent P2 phase depicts a small peak around 65 Hz. The peak is much
sharper, and it occurs at 70 Hz in the oscillatory case.

4 Conclusion

We have shown that the dynamic properties of synapses have profound
consequences on the behavior, and the possible functional role, of recur-
rent neural networks. Depending on the relative strength of depression,
facilitation, and noise in the network, one observes either attraction toward
one of the stored memory patterns or a nonretrieval situation in which the
neurons fire largely at random in a fashion uncorrelated to the patterns, or
else switching where none of the patterns is stable and the network rapidly
moves between (the neighborhoods of) all of them. These three behaviors
were also observed in our previous work, where we studied the role of de-
pression only. However, the transition between the different possible phases
and their nature importantly depends on the existence of competition be-
tween depression and facilitation and on the balance between these and the
underlying noise.

Our analysis of the possible phases indicates a clear role for facilitation.
The activity goes straight to the attractor when facilitation dominates, so
that it is reached rapidly and with very small error. The system then de-
presses, however, which destabilizes the attractor and expedites the search
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for a different one. Even more interesting is the resulting situation when
facilitation is relatively small. That is, competition between depression and
facilitation may then induce a critical condition in which the activity may
eventually become “frozen”: there is a value of frustration for each degree
of depression at which the time to reach the attractor importantly increases.
This behavior is less marked as depression increases; depression serves to
avoid such frustration induced by intermediate values of facilitation. This
is quantitatively illustrated in Figure 5.

On the other hand, under the action of only depression, we know that
by avoiding too much thermal noise, the system may describe a transition
from the retrieval phase to the oscillating one, and then to the nonretrieval
phase as depression is increased. As shown with detail in Figures 4 and 6,
the presence of facilitation may essentially modify this picture. For instance,
the particular sequence of phases the system will describe depends crucially
on the balance of depression, facilitation, and noise.

In summary, facilitation favors a more rapid and precise access to the
stored information. It also induces a more complex situation in which com-
peting with depression seems to allow for more diverse tasks. Interestingly,
Wang et al. (2006) have recently reported the existence of depressing and
facilitating synapses and their possible competition to form the basis of
working memories.
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