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Abstract

A network of stochastic nodes in which connections are heterogeneously weighted and dynamics may by varied from single-node updating to
full synchronization as in familiar cellular automata is studied concerning computational strategies and states of attention in the brain.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Weighted networks; Cellular automata; Hybrid updating

1. Introduction and model

In addition to a varied topological structure of communica-
tion lines, ecological, metabolic and food webs, the Internet and
other social nets, spin–glass and reaction–diffusion systems, the
brain, and the central nervous system exhibit two main features.
On one hand, the intensity of the connections between nodes are
heterogeneously weighted and may change with time [1–14].
That is, fluxes along chains show a broad distribution, agents
may interchange different amounts of information or money,
the transport connections differ in capacity, number of flights
and passengers, diffusion, local rearrangements and reactions
vary the relations between ions, and synapses show complex
patterns of intensities. It also happens rather generally, on the
other hand, that not all the nodes are synchronized when a given
task is performed which, more than a matter of economy, is
probably a must [1,3,6]. For example, it seems that, in some
cases, only a fraction of neurons are activated in a brain region
at a given time so that the rest may act as sort of working mem-
ory [15].

Concluding on general properties of partly-synchronized
weighted networks is a difficult goal, however. A main prob-
lem is that, as it is seldom recognized in the relevant literature,
which is dispersed in different fields, one needs to deal with
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fully nonequilibrium states. That is, time evolution is towards
situations that cannot settle down into an equilibrium state and,
consequently, emergent properties essentially depend on the
system details [2]. This paper is a brief review of a series of
exact and Monte Carlo results concerning a model which is rel-
evant to the purpose [16–19]. As an example, we consider here
a situation in which dynamics shows attractors that are destabi-
lized due to fast activity-dependent synaptic fluctuations. This
induces a great sensibility to external stimuli and, for certain
parameter values, switching and itinerancy which is sometimes
chaotic. The system activity thus describes heteroclinic paths
among attractors in a way that closely resembles some recently
reported experimental observations [20,21].

Let sets of node activities, σ ≡ {σi = ±1}, and communica-
tion-line weights, w ≡ {wij ∈ R}, i, j = 1, . . . ,N . Nodes are
acted on by local fields induced by the weighted action of the
N −1 others, i.e. hi(σ,w) = ∑

j �=i wij σj . Time evolution is ac-
cording to a generalized cellular-automaton strategy: At each
time unit, one simultaneously updates the activity of n vari-
ables, 1 � n � N , and the probability of the network activity
evolves with time, t, according to Pt+1(σ ) = ∑

σ ′ R(σ ′ → σ) ·
Pt (σ

′). The transition rate R(σ → σ ′) is a superposition of
functions ϕ(σi → σ ′

i = −σi) = 1
2 [1 − σi tanh(βhi)], where β

is an inverse “temperature” to control the process stochasticity.
See [19] for details.

This generalizes two familiar cases: Sequential (Glauber)
updating is for n = 1, so that it is obtained approximately in
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the limit ρ ≡ n/N → 0, while parallel (Little) updating is for
n = N , i.e. ρ → 1. One may think of situations whose under-
standing will benefit from studying the crossover between these
two cases. For example, assuming a cell which is exited only in
the presence of a neuromodulator such as dopamine, the pa-
rameter n will correspond to the number of neurons that are
modulated each cycle. That is, the other N − n neurons receive
no input but maintain memory of the previous state, which has
been claimed to be at the basis of working memories [15].

It ensues that time evolution follows the mesoscopic equa-
tion π

μ
t+1(σ ) = ρ

N

∑
i ξ

μ
i tanh[βhi(σ ;πt , ξ)] + (1 − ρ)π

μ
t (σ ),

μ = 1, . . . ,M . Here, ξ ≡ {ξμ} stands for a set of M learned
patterns, ξμ = {ξμ

i = ±1}, and π ≡ {πμ(σ )}, where πμ(σ ) =
N−1 ∑

i ξ
μ
i σi measures the overlap of the current state with

pattern μ.

2. Some results

Concluding on the relevant behavior requires a detailed
study of stability of the steady state for finite N and appropriate
communication-line weights. The Hopfield–Ising case [22] is
often implemented with fixed weights according to the Hebb
prescription, namely, wij = N−1 ∑

μ ξ
μ
i ξ

μ
j . In this case, the

system shows the property of associative memory for ρ → 0
and also, confirming previous partial results [23], for ρ > 0.
That is, for high enough β (which means below certain sto-
chasticity) and not exceeding some critical capacity α ≡ M/N ,
the patterns ξμ are attractors of dynamics. Consequently, an
initial state resembling one of these patterns, e.g., a degraded
picture will converge towards the original one, which mimics
recognition by the brain [22]. Excluding this case, our model
behavior will depend, even dramatically on the value of ρ. More
explicitly, a main general result of our work is that the attractors
stability for finite N is extremely sensible to the distribution of
weights wij and, for appropriate choices of these, to slight vari-
ations of the synchronization parameter ρ.

The communication lines depend on the specific situation
of interest. Concerning different contexts, one may admit that
the weights will change with the nodes activity, and also that
a given connection may loose some efficiency after a time in-
terval of heavy work. In fact, this has been reported to occur
in the brain, where the transmission of information and many
computations are strongly correlated with activity-dependent
synaptic fluctuations which induce synaptic depression [9,16,
24–27]. Motivated by this, we shall assume:

(1)wij = [
1 − (1 − Φ)q(π)

]
N−1

M∑

μ=1

ξ
μ
i ξ

μ
j ,

where q(π) ≡ (1 + α)−1 ∑
μ πμ(σ )2. Therefore, Hopfield–

Hebb is recovered for Φ = 1, while other values of this para-
meter correspond to fast fluctuations with time (around a type
of Hebb prescription) which induce depression of synapses by
a factor Φ on the average. This is also consistent with the ob-
servation of synaptic noise besides the more familiar plasticity
of synapses; see, for instance, [9]. It follows that local stability

Fig. 1. The dependence on the synchronization parameter ρ = n/N of the
Lyapunov exponent, as obtained analytically from the saddle-point solution,
for Φ = −0.2 (solid irregular line) and for the standard Hopfield–Hebb case
(dashed line). The value ρc , as defined in the main text, and the line λ = 0
are also shown for reference purposes. This is for a single (randomly gener-
ated) stored pattern, inverse “temperature” β = 20 and in the (nonrealistic) limit
N → ∞.

Fig. 2. Stationary parts of the evolution with time (in units of n MC trials)
of the overlaps for ρ = 0.08, 0.50, 0.65, 0.92 and 1.00 from top to bottom,
respectively. Here, N = 1600, β = 20, Φ = −0.4, M = 3, and ρc = 0.085.

requires ρ < ρc, ρc = f (Φ,β), a condition that makes no sense
for the Hopfield case [19].

Fig. 1 summarizes a main result, namely, that chaotic be-
havior may occur for ρ > ρc, and that chaos is then eventually
interrupted as one varies, even slightly ρ. Fig. 2 illustrates the
different types of stationary behavior the system may exhibit for
correlated patterns. This shows typical MC runs correspond-
ing, from top to bottom, to: (i) stability after convergence in
the neighborhood of one attractor—in fact, its negative—for
ρ < ρc; (ii) fully irregular behavior (with a positive Lyapunov
exponent) for ρ > ρc; (iii) regular oscillation between one at-
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Fig. 3. Mean firing rates versus time (bottom graphs) and corresponding
phase-space trajectories (top) for indicated values of ρ, for three stored pat-
terns, ξ1, ξ2 and ξ3, N = 1600, Φ = 0.5, and β = 167, for which ρc = 0.38.

tractor and its negative for ρ > ρc; (iv) onset of chaos again as
ρ is increased; and (v) rapid periodic oscillations between one
pattern and its negative when all the nodes are synchronized.
(ii) and (iv) are examples of instability-induced switching: the
activity path visits the neighborhood of all the attractors.

In order to make more explicit this interesting behavior, we
show in Fig. 3 time series and phase-space trajectories of the
mean firing rate, m = 1

2N

∑
i (1 + σi), in a system with three

stored patterns. In the case ρ = 0.15, which is below ρc, the sys-
tem activity only visits one of the patterns; the choice depends
on the initial condition. However, for ρ = 0.433 > ρc in the
second graph of Fig. 3, the three attractors are visited; the prob-
ability of jumping between two specific attractors depends on
their mutual correlation. The third graph illustrates how switch-
ing tends to become homogeneous—all the stored patterns are
visited with equal probability, and the activity stays the same
amount of time in the neighborhood of each attractor—as ρ is
increased, until the system is finally trapped in a simple cycle,
as in the fourth graph of Fig. 3.

3. Conclusion

The attractors stability dramatically depends on both the dis-
tribution of weights wij and the synchronization parameter ρ.
The latter is relevant only for choices of the connecting weights
which induce a special susceptibility of the network to exter-
nal stimuli. This is implemented in our example by means of
fast activity-dependent synaptic fluctuations that induce synap-
tic depression. Otherwise, e.g., if weights are fixed, even het-

erogeneously as in a Hopfield–Hebb network, ρ is irrelevant.
In our case, there is kind of dynamic association, i.e. the net
either goes to one attractor or else, for ρ � ρc, visits possi-
ble attractors. The visits may abruptly become chaotic. Besides
synchronization of a minimum of nodes, this requires careful
tuning of ρ; a complex situation, as illustrated in Fig. 1, makes
it difficult to predict the result for slight changes of ρ. Switching
phenomena, i.e. visiting the attractors, does not require chaos.
However, chaotic itinerancy allows for a more efficient search
of the attractors space in a way that was believed to hold in in-
teresting cases only under a critical condition [21]. Our model
illustrates a mechanism which may make chaos extremely ben-
eficial. The expectation [28–31] that the instability inherent to
chaos facilitates moving to any pattern at any time is confirmed.
In particular, our model behavior reminds one of some observa-
tions concerning the odor response of the (projection) neurons
in the locust antennal lobe [20]. Also interesting is the fact that
the model exhibits states of attention and efficient adaptation
to changing environment and, more importantly, classification
and family discrimination. Finally, we mention that studying
the complex model behavior for ρ > ρc could be relevant to
control chaos in various situations and in determining efficient
(parallel) computational strategies, e.g., using block-dynamics,
block-sequential, and associated algorithms [32,33].
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