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Control of neural chaos by synaptic noise
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Abstract

We study neural automata – or neurobiologically inspired cellular automata – which exhibits chaotic itinerancy among the different
stored patterns or memories. This is a consequence of activity-dependent synaptic fluctuations, which continuously destabilize the
attractor and induce irregular hopping to other possible attractors. The nature of these irregularities depends on the dynamic details,
namely, on the intensity of the synaptic noise and the number of sites of the network, which are synchronously updated at each
time step. Varying these factors, different regimes occur, ranging from regular to chaotic dynamics. As a result, and in absence of

external agents, the chaotic behavior may turn regular after tuning the noise intensity. It is argued that a similar mechanism might
be on the basis of self-controlling chaos in natural systems.
© 2006 Elsevier Ireland Ltd. All rights reserved.
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1. Motivation and model

We report on the complex dynamics and possible ap-
plications of a very simple neural automata, which is
a neurobioinspired cellular automata (Wolfram, 1984).
Although this is a crude representation of reality, neu-
ral automata exhibits dynamic associative memory, or
switching behavior, which has been previously shown in
neural networks with dynamic synapses (Cortes et al.,
2006, 2004; Pantic et al., 2002). Our neural automata is
formulated by incorporating a kind of fast stochastic fluc-

tuations, which are activity-dependent processes, and op-
erate on synaptic intensities (Cortes et al., 2006). This
fast noise produces a kind of instabilities in the recalling
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dynamics, which allow to solve efficiently some com-
plex tasks in brain, as for instance the rapid response to
highly changing stimuli which can play a functional role
in attention, working memory or sequential processing
of parallel sensory information. Instead of sequentially
updating a small neighborhood at each temporal step,
when the dynamics concern the whole, which means
synchronously updated, fast noise produces, even in ab-
sence of external stimulation, chaotic switching among
the different memories (Marro et al., 2006a). In this new
variant, fast noise can control temporal oscillations of
neural activity and other details of the dynamics, as for
instance the complexity or chaoticity of these oscilla-
tions. Against another alternatives (Garfinkel et al., 1992;
Schiff et al., 1994; Freeman et al., 1997; Molgedey et al.,
1992), we suggest the possibility to design a mechanism

in which noise intensity varies autonomously, which
could be useful to self-control chaos in neural systems.

Our neural automata consists of N cooperative and,
for simplicity, fully-connected neurons with stochastic

ed.
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ynamics.1 A main feature is that, at each time step t, the
ndividual states of N of its neurons are simultaneously
pdated. This is performed according to a modification
f the Hopfield prescription (Amari, 1972; Hopfield,
982; Amit, 1989), namely, we shall assume that each
euron si, endures a current – or is acted on by a local
eld – which has the form (Gardiner, 2004; Bibitchkov
t al., 2002):

i(S) ≡
∫

X
hi(S, X)P̃(X|S) dX, (1)

here S = {si; i = 1, . . . , N} stands for a neuron config-
ration. This equation involves a set of random variables,
= {xi}, each affecting a postsynaptic neuron, of distri-

ution P̃(X|S). This amounts to assume short-time, rapid
ynaptic fluctuations which, in fact, are known to influ-
nce and often determine the neuron activity in many
atural processes—see, for instance (Marro and Dick-
an, 1999) for a technical justification of (1); see also

Abbott and Regehr, 2004) for a recent discussion on the
ole of synaptic “noise”.

This model has already been analyzed both analyti-
ally and numerically for certain choices of parameters.
n particular, the case n = 1 of “sequential updating” was
hown to exhibit complex hopping between the attractors
n some cases (Cortes et al., 2006), and we demonstrated
ecently (Marro et al., 2006a) that the hopping may be-
ome chaotic for Little dynamics, namely, n = N. We
llustrate here a typical situation between these two lim-
ts by developing some computer simulations. The case
ith 1 < n < N for which we present some results here
appens to be relevant to understand the possibility of
ynaptic noise controlling chaotic neural activity.

In order to deal with model simulations that remain
ersatile enough, we need to introduce some simplifi-
ations in the following; notice, however, that some of
hem may turn irrelevant to the resulting emergent be-
avior. Most convenient is to restrict ourselves to binary
eurons, i.e., si = ±1, which are known to capture the
ssentials of cooperative phenomena (Abbott and Ke-
ler, 1990; Pantic et al., 2002). Concerning the stochas-
ic variable, we need to determine both its nature and its
istribution. A simple choice is to assume that synaptic
ntensities are of the form wij = wL

ijxj , where wL
ij are

verage weights which, also for the sake of simplicity,
e shall consider to be of the Hebbian type. That is,

L
ij = N−1∑

μ ξ
μ
i ξ

μ
j , where ξ

μ
i (with μ = 1, . . . , M)

tands for M (binary) patterns that are assumed here-
fter to be stored in the system. It then naturally follows

1 Some consequences of other network topologies have been studied
n (Torres et al., 2004), for instance.
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stochasticity of the presynaptic currents in (1) which
are given by hi(S, X) =∑j �=i w

L
ijxjsj . This is consis-

tent with actual features of natural systems such as, for
example, variations of the glutamate concentration in
the synaptic cleft, and differences in the potency re-
leased from different locations on the active zone of
the synapses (Franks et al., 2003). These and similar
“noises” which cause synaptic fluctuations are typically
very fast compared to the time relaxation of the whole
neuron system. Therefore, it seems sensible to assume
that, in the time scale for the neuron activity, neurons
behave as in the presence of a steady distribution for
the synaptic fluctuations. This is taken into account by
means of the distribution P̃(X|S) in (1), a situation which
is discussed with further detail in (Marro and Dickman,
1999).

2. Synaptic noise

Recent neurobiological findings (Abbott and Regehr,
2004), concerning activity-dependent processes may
help in determining P̃(X|S). In particular, it has been
reported short-time synaptic depression (Tsodyks et al.,
1998), i.e., that synaptic weights tend to decrease under
repeated presynaptic activation. A simple way of imple-
menting this in (1) is by taking:

P̃(X|S) =
∏

i

{p( �m)δ(xj + Φ) + [1 − p( �m)]δ(xj − 1)},

(2)

where the factorization is for simplicity and �m = �m(S)
is the M-dimensional overlap vector of components
mμ(S) = N−1∑

i ξ
μ
i si. In accordance with the men-

tioned observation, (2) implies that increasing the mean
firing rate, which will increase the probability function
p( �m), will make more likely that synaptic intensities de-
crease by a factor of Φ. The Hopfield model, for which
such depressing noise is absent, corresponds here to the
limit Φ → −1. Finally, in order to fully determine the
model, one may use the choice (Cortes et al., 2006)
p( �m) = (1 + α)−1∑

ν[mν(S)]2, where α = M/N is the
network load parameter (Hertz et al., 1991). After some
straightforward algebra, one obtains the effective cur-
rents as:

hi(S)=
(

1−1 + Φ

1 + α

∑
μ

[mμ(S)]2

)∑
μ

ξ
μ
i mμ(S). (3)
In addition to the discussed synaptic stochasticity, that
we represent here by means of the variable x, there are
independent causes for assuming an stochastic dynamics
of the neuron system. That is, a neuron may sometimes
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Fig. 1. Time variation of the overlap m ≡ m1(S) between the current
neural activity, S, and a single pattern stored in the synaptic weights,

Fig. 2 illustrates a main result, namely, that the fre-
quency and other details of the hopping strongly de-
pend on the value of the parameter Φ which modu-
lates the fast synaptic noise. An appropriate measure
188 J.M. Cortes et al. / Bi

remain silent even if it endures a large current. This is
naturally modelled by introducing a “temperature” pa-
rameter T. In practice, one usually assigns a probability
which depends on (hi − θi)/T , where θi is a threshold,
to the change according to sig(hi) = si at time t. This
mechanism is equivalent to assume the existence of a
hypothetical “thermal bath” which induces stochasticity
of the neuron activity by means of a master equation. In
general, this equation implies a tendency towards equi-
librium. However, in the present case, the canonical ten-
dency competes with the stochastic changes of hi, which
impedes equilibrium, and the system goes asymptoti-
cally to a non-equilibrium steady state (Marro and Dick-
man, 1999). This complex, non-equilibrium situation is
at the origin of the intriguing behavior we describe next.

3. Computer simulations

The above programme was implemented in the com-
puter by iterating the following Monte Carlo algorithm:

(1) Store M different patterns ξ
μ
i as the average weights

wL
ij according to the chosen, e.g., Hebb’s learning

rule.
(2) Set any state S = {si} at random.
(3) Compute the N local fields hi(S) as defined in (3).
(4) Choose a site (neuron) at random, repeat the choice

N times and keep only the n < N sites which dif-
fer from each other (this procedure lets you with
n ≈ (2/3)N sites—for the values of N of interest
here).2

(5) Perform the changes si → −si at the chosen N
sites using the standard rate ω(s′i → si) = (1/2){1 −
s′i tanh[βhi(S′)]}, being β = 1/T .

(6) Increase time in one unit, and go to step (3).

Fig. 1 illustrates the resulting behavior for a single pat-
tern, i.e., it corresponds to the limit α → 0. This shows
a complex hopping process between the pattern, ξ1, and
the anti-pattern, −ξ1. The figure compares the evolu-
tion at finite temperature with that in absence of thermal
fluctuations to demonstrate that hopping is not a conse-
quence of the latter. Consequently, in order to avoid the
short-length oscillations shown in the bottom graph of

Fig. 1, which are induced by the thermal noise, we are
concerned in the following with simulations at T = 0.

2 Both Monte Carlo simulations and analytical results (Marro et al.,
2006b) are in full-agreement and, in the thermodynamic limit, they
satisfy that n/N = 1 − (1/e).
i.e., M = 1, as obtained in a Monte Carlo simulation with N = 3600
neurons and a depressing factor Φ = 0.043. The top graph is for T = 0,
i.e., in absence of thermal fluctuations, while the bottom graph is for
T = 0.51.
Fig. 2. Monte Carlo simulations show the effect of varying the synap-
tic noise parameter Φ. The graph is depicted in absence of thermal
fluctuations, T = 0, for a single stored pattern, M = 1, and N = 3600
neurons. The resulting hopping shows dramatic variations of temporal
scale and degree of complexity as one varies Φ.
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Fig. 3. The entropy function, as defined in the main text, for differ-
ent time series obtained during Monte Carlo simulations of neural
automata for different values of the synaptic noise parameter Φ. De-
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reasing values of the entropy indicate a tendency towards regulariza-
ion for complexity at time series. The graph reveals different regimes
f chaoticity.

f the associated entropy will provide a quantitative
escription of the complexity of such hopping. Using
tandard fast Fourier transform algorithms, we com-
uted the power spectra P(η). The normalized proba-
ility pη = P(η)/

∑
η P(η) then allows one to define a

egular entropy as S ≡ −∑η pη log2 pη. This quantity
as been used before to detect regularity out of chaotic
ctivity in actual neurons (Varona et al., 2001). As a mat-
er of fact, S > 0 is to be associated with chaotic behavior
hile S = 0 would correspond to periodic dynamics.
Fig. 3 depicts the entropy which results in our case as

function of Φ. This shows a minimum, which corre-
ponds to the smallest degeneration in the time series of
ig. 2 (second graph from the top). Decreasing S indi-
ates a tendency to regularization or smaller chaoticity,
hile higher chaos and irregularity in the time series

orresponds to larger values of S.

. Conclusions

We have introduced a class of hybrid neural automata
ith two main features. On one hand, these models pro-
ide a convenient arena to analyze the influence of fast
ynaptic noise on the retrieval process. On the other hand,
hey may describe a continuous transition from sequen-
ial, single-neuron updating to the case of Little dynam-
cs or parallel updating as one varies the model parameter
. The synaptic noise is modelled in the automata trying
o mimic recent observations, namely, the noise occurs in

short-time scale and conveniently couples to the neuron
ctivity to induce synaptic depression. Depending on the
ntensity of this depression, the model exhibits a varied
mergent behavior, including chaotic hopping between
s 87 (2007) 186–190 189

the attractors. This results in a rather complex pattern of
neural activity. Monitoring the entropy suggests how a
fast noise might provide a mechanism to control chaos
in living systems. The design of a mechanism in which
noise intensity varies autonomously could be useful to
the self-control of chaos. Notice in this respect that ma-
nipulating N in the model might be convenient for that
purpose (Marro et al., 2006b). That is, two main cases
follow together from the present analysis and some pre-
vious work (Cortes et al., 2006; Marro et al., 2006a):
(1) n = 1, for which the system is sensible to an exter-
nal stimulus, which may destabilize the attractor, but it
does not exhibit autonomous hopping between attractors
and (2) n > 1, for which hopping occurs autonomously,
without the need for any external stimulus. In the lat-
ter case, as far as n < N, the parameter Φ allows for a
control of the hopping, while this always occurs at high
frequency for n = N. For n ≈ (2/3)N, the case for which
we report some results here, the time the neuron activity
stays at or nearby each attractor may be varied by tuning
Φ, as illustrated in Fig. 2.
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