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We describe short-time kinetic and steady-state properties of the nonequilibrium phases, namely, solid,
liquid, and gas anisotropic phases in a driven Lennard-Jones fluid. This is a computationally convenient
two-dimensional model which exhibits a net current and striped structures at low temperature, thus resembling
many situations in nature. We here focus on both critical behavior and details of the nucleation process. In spite
of the anisotropy of the late-time “spinodal decomposition” process, earlier nucleation seems to proceed by
Smoluchowski coagulation and Ostwald ripening, which are known to account for nucleation in equilibrium,
isotropic lattice systems, and actual fluids. On the other hand, a detailed analysis of the system critical behavior
raises some intriguing questions on the role of symmetries; this concerns the computer and field-theoretical

modeling of nonequilibrium fluids.
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I. INTRODUCTION

Steady states in nonequilibrium many-particle systems
typically involve a constant flux of matter, charge, or some
other quantity and, consequently, stripes or other spatial ani-
sotropies show up at appropriate scales.'"* This occurs dur-
ing segregation in driven sheared systems,’” flowing fluids,®
shaken granular matter,”'” and nonequilibrium liquid-liquid
binary mixtures,!" and it has been reproduced in computer
simulations of driven colloidal'?> and fluid*'® systems, for
instance. Further examples are the anisotropies observed in
both high-temperature superconductors'*!> and electron
gases.'®!7 The ripples shaped by the wind in sand deserts'$!"
and the lanes and trails formed by living organisms and ve-
hicle traffic?®?! also share some of the essential physics.

Lacking theory for the “thermodynamic” instabilities
causing the observed striped structures, one tries to link them
to the microscopic dynamics of suitable model systems. For
two decades, the driven lattice gas (DLG),?* namely, a com-
putationally convenient model system in which particles dif-
fuse under an external driving “field,” has been a theoretical
prototype of anisotropic behavior.*?*?* This model was re-
cently shown to be unrealistic in some essential sense,
however.?’ Particle moves in the DLG are along the principal
lattice directions, and any site can hold one particle at most,
so that a particle impedes the one behind to jump freely
along the direction which is favored to model the action of
the field. Consequently, the lattice geometry acts more effi-
ciently in the DLG as an ordering agent than the field itself,
which occurs rarely—never so dramatically—in actual coop-
erative transport. In fact, actual situations may in principle be
more closely modeled by means of continuum models, and
this peculiarity of the DLG implies that it lacks a natural
off-lattice extension.?

Here we present, and analyze numerically a nonequilib-
rium off-lattice, Lennard-Jones (LJ) system which is a can-
didate to portray some of the anisotropic behavior in nature.
The model, which involves a driving field of intensity E,
reduces to the celebrated (equilibrium) LJ fluid®®?’ as E
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— 0. For any E>0, however, it exhibits currents and aniso-
tropic phases as in many observations out of equilibrium. In
particular, as the DLG, our model in two dimensions shows
striped steady states below a critical point. We also observe
critical behavior consistent with the equilibrium universality
class. This is rather unexpected in view of the criticality
reported both for the DLG and in a related experiment.> On
the other hand, concerning the early time relaxation before
well-defined stripes form by spinodal decomposition, we first
observe—as in previous studies of relaxation towards
equilibrium—effective diffusion of small droplets, which is
followed by monatomic diffusion probably competing with
more complex processes. It is very likely that our observa-
tions here concerning nucleation, coexistence, criticality, and
phases morphology hold also in a number of actual systems.

The paper is organized as follows. In Sec. II we define the
model, and Sec. III is devoted to the main results as follows.
Section III A describes the early time segregation process as
monitored by the excess energy, which measures the droplets
surface. Section III B describes some structural properties of
the steady state, namely, the radial and azimuthal distribution
functions, and the degree of anisotropy. Section III C, which
depicts some transport properties, is devoted to an accurate
estimate of the liquid-vapor coexistence curve and the asso-
ciated critical indexes. Section IV contains a brief conclu-
sion.

II. THE MODEL

Consider N particles of equal mass (set henceforth to
unity) in a d-dimensional box, L? with periodic boundary
conditions. Interactions are via the truncated and shifted pair
potential,?’

¢(r) - ¢LJ(V) - ¢LJ(VL.) ifr< T'es (1)

0 ifr=r,,
where
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FIG. 1. Schematic representation of the region (gray) which is
accessible to a given particle as a consequence of a trial move for
E=0 (left-hand side) and E=c° (right-hand side), assuming the “in-
finite” field points X, horizontally.

buLi(r) = 4el (01 = (01r)°] 2)

is the LJ potential, r stands for the interparticle distance, and
r. is a cut off that we set r.=2.50. The parameters o and €
are, respectively, the characteristic length and energy—that
we use in the following to reduce units as usual.

Time evolution is by microscopic dynamics according to
the transition probability per unit time (rate),

(x)(E)(’I?—> ) = X(E) X min{l,e"AcDi/T}. (3)

Here,
@ _ 1 0. s
X = 5[1 + tanh(EX - 8))], (4)

E is the intensity of a uniform external field along a principal
lattice direction, say £, n={r,...,7y} stands for any con-
figuration of energy

D(n) =2 o7 -7

i<j

), (5)

where 7; is the position of particle i that can be anywhere in
the d torus, 7; equals 7 except for the displacement of a
single particle by &=r;-r;, and AD;=®d(7,)-P(7) is the
cost of such displacement.

It is to be remarked that ¥, as defined in (4), contains a
drive bias (see Fig. 1) such that the rate (3) lacks invariance
under the elementary transitions 7 7;. Consequently, un-
like in equilibrium, there is no detailed balance for toroidal
boundary conditions if £>0.

We report here on the results from a series of Monte Carlo
(MC) simulations using a neighbor-list algorithm.?’ Simula-
tions concern fixed values of N, with N=<10%, particle den-
sity p=N/L“ within the range p € [0.2,0.6], and temperature
Te[1072,10°]. Following the fact that most studies of
striped structures, e.g., many of the ones mentioned in the
first paragraph of Sec. I, concern two dimensions—in par-
ticular, the DLG critical behavior is only known with some
confidence for d=2 (Refs. 4, 28, and 29)—we restricted our-
selves to a two-dimensional torus. The maximum particle
displacement is J,,,,=0.5 in our simulations. We report be-
low on steady-state averages over 10° configurations, and
kinetic or time averages over 40 or more independent runs.
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FIG. 2. Typical steady-state configurations for E=0 (top row)
and E—o (bottom row) at 7= 0.10, 0.15, 0.30, and 0.35, respec-
tively, from left to right. This is for N=1000 and p=0.30.

The distribution of displacements J; is uniform, except
that the new particle position 7/ is (most often in our simu-
lations) sampled only from within the half-forward semi-
circle of radius &, centered at 7;, as illustrated on the right-
hand graph of Fig. 1. This is because the infinite-field limit,
E— oo, turns out to be most relevant, and this means, in
practice, that any displacement contrary to the field is forbid-
den. This choice eliminates from the analysis one parameter
and, more importantly, it happens to match a physically rel-
evant case. As a matter of fact, simulations reveal that
any external field £>0 induces a flux of particles along
X—which crosses the system with toroidal boundary
conditions—that monotonically increases with E, and even-
tually saturates to a maximum. This is a realistic stationary
condition in which the thermal bath absorbs the excess of
energy dissipated by the drive.

II1. MAIN RESULTS

Figure 2 illustrates late-time configurations, i.e., the ones
that typically characterize the steady state, as the temperature
T is varied. These graphs already suggest that the system
undergoes an order-disorder phase transition at some tem-
perature T. This happens to be of second order for any E
>0, as in the equilibrium case E=0. We also observe that T
decreases monotonically with increasing E, and that it
reaches a well-defined minimum, 7., as E— oo,

Figure 2 also shows that, at low enough temperature, an
anisotropic interface forms between the condensed phase and
its vapor; this extends along x throughout the system at in-
termediate densities.

A. Phase segregation Kinetics

Skipping microscopic details, the kinetics of phase segre-
gation at late times looks qualitatively similar to the one in
other nonequilibrium cases, including driven lattice sys-
tems'® and both molecular-dynamic*® and Cahn-Hilliard?!
representations of sheared fluids, while it essentially differs
from the one in the corresponding equilibrium system. This
is illustrated in Fig. 3. One observes, in particular, conden-
sation of many stripes—as in the graph for r=10° in Fig.
3—into a single one—as in the first three graphs at the bot-
tom row in Fig. 2. This process corresponds to an anisotropic
version of the so-called spinodal decomposition,>® which is
mainly characterized by a tendency towards minimizing the
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FIG. 3. Typical configurations for E=0 (top row) and E—
(bottom row) as time proceeds during relaxation from a disordered
state (as for T— ) at t=0. The graphs are, respectively, from left to
right, for times r=102, 10*, 10%, and 10® MC steps. This is for N
=7500, p=0.35, and T=0.275, below the corresponding transition
temperature.

interface surface as well as by the existence of a unique
relevant length, e.g., the stripe width.!3 A detailed analysis of
this late regime, which has already been studied for both
equilibrium®*** and nonequilibrium cases, including the
DLG,"3> will be the subject of a separate report.

Detailed descriptions of early nonequilibrium nucleation
are rare as compared to studies of the segregation process
near completion. Following an instantaneous quench from a
disordered state into 7<<T,(p), one observes in our case that
small clusters form, and then some grow at the expenses of
the smaller ones but rather independently of the growth of
other clusters of comparable size. This corresponds to times
<10’ in Fig. 3, i.e., before many well-defined stripes form.
We monitored in this regime the excess energy or enthalpy,
H(z), measured as the difference between the averaged inter-
nal energy at time >0 and its stationary value. This reflects
more accurately the growth of the condensed droplets than
its size or radius, which are difficult to be estimated during
the early stages.>*3” Furthermore, H(f) may be determined in
microcalorimetric experiments.?®

The time development of the enthalpy density h(r)
=H(t)/N is depicted in Fig. 4. This reveals some well-
defined regimes at early times.

The first regime, (a) in the inset of Fig. 4, follows a power
law ¢ with §~0.165—which corresponds to the line shown
in the graph—independently of the temperature investigated.
This is the behavior predicted by the Smoluchowski coagu-
lation or effective cluster diffusion.’® The same behavior was
observed in computer simulations for E=0 and also reported
to hold in actual experiments on binary mixtures.’®3® This
suggests the early dominance of a rather stochastic mecha-
nism, in which the small clusters rapidly nucleate, which is
practically independent of the field, i.e., it is not affected in
practice by the drive. The indication of some temperature
dependence in equilibrium,37 which is not evident here,
might correspond to the distinction between deep and shal-
low quenches made in Ref. 36 that we have not investigated
out of equilibrium.

At later times, there is a second regime, (b) in Fig. 4, in
which the anisotropic clusters merge into filaments and, fi-
nally, stripes. We observe in this regime that 6 varies be-
tween 0.3 and 0.6 with increasing 7. Ostwald ripening,*’
consisting of monomers diffusion, predicts #=1/3. It is
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FIG. 4. Time evolution of the enthalpy per particle for N
=7500, p=0.35 and, from top to bottom, 7=0.200, 0.225, 0.250,
and 0.275. Straight lines are a guide to the eye; the slope of each
line is indicated. The inset shows the detail at early times. (For
clarity of presentation, the main graph includes a rescaling of the
time corresponding to the data for 7=0.250, 0.225 and 0.200 by
factors 2, 3, and 3, respectively.)

likely that regime (b) describes a crossover from a situation
which is dominated by monomers at low enough temperature
to the emergence of other mechanisms***! which might be
competing as T is increased.

Finally, one observes a regime, (c) in Fig. 4, which cor-
responds to the beginning of spinodal decomposition.

B. Structure of the steady state

For any E> 0, the anisotropic condensate changes from a
solidlike hexagonal packing of particles at low temperature
(e.g., T=0.10 in Fig. 2), to a polycrystalline or perhaps glass-
like structure with domains which show a varied morphology
at, e.g., T7=0.12. The latter phase further transforms, with
increasing temperature, into a fluidlike structure at, e.g., T
=0.30 and, finally, into a disordered, gaseous state.

More specifically, the typical situation we observe at low
temperature is illustrated in Fig. 5. At sufficiently low tem-
perature, 7=0.05 in the example, the whole condensed phase
orders according to a perfect hexagon with one of its main
directions along the field direction X. This is observed in
approximately 90% of the configurations that we generated
at 7=0.05, while all the hexagon axes are slanted with re-
spect to X in the other 10% cases. As the system is heated up,
the stripe looks still solid at 7=0.12 but, as illustrated by the
second graph in Fig. 5, one observes in this case several
coexisting hexagonal domains with different orientations.

FIG. 5. Details of the structure in the low-7, solid phase as
obtained by zooming into configurations such as the ones in Fig. 2.
This is for 7=0.05, 0.12, and 0.25, from left to right, respectively.
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0.35

FIG. 6. Data from simulations for N=7000 and p=0.35. The
main graph shows the degree of anisotropy, as defined in the main
text, versus temperature. The vertical dotted line denotes the tran-
sition temperature. The lower (upper) inset shows the radial (azi-
muthal) distribution at 7=0.20, full line, and 7=0.30, dashed line.

The separation between domains is by line defects and/or
vacancies. Interesting enough, as it will be shown later on,
both the system energy and the particle current are practi-
cally independent of temperature up to, say 7=0.12. The
hexagonal ordering finally disappears in the third graph of
Fig. 5, which is for T=0.25; this case corresponds to a fluid
phase according to the criterion below.

A close look to the structure is provided by the radial
distribution (RD),

g(r)= P_2<2 or;— l'j)> ) (6)

i<j

i.e., the probability of finding a pair of particles a distance r
apart, relative to the case of a random spatial distribution at
same density. This is shown in the lower inset of Fig. 6. At
fixed T, the driven fluid is less structured than its equilibrium
counterpart, suggesting that the field favors disorder. This is
already evident in Fig. 2, and it also follows from the fact
that the critical temperature decreases with increasing E.

The essential anisotropy of the problem is revealed by the
azimuthal distribution (AD) defined

a(0) =N-2<2 80— eij)>, (7)

i<j

where 6;; € [0,277) is the angle between the line connecting
particles i and j and the field direction X. Except at equilib-
rium, where this is uniform, the AD is m/2-periodic with
maxima at k7 and minima at k7/2, where k is an integer.
The AD is depicted in the upper inset of Fig. 6.

We also monitored the degree of anisotropy, defined as the

distance
2
D=J la—1], (8)
0

which measures the deviation from the equilibrium, isotropic
case, for which a(#)=1, independent of 6. The function (8),
which is depicted in the main graph of Fig. 6, reveals the
existence of anisotropy even above the transition tempera-
ture. This shows the persistence of nontrivial two-point cor-
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FIG. 7. Temperature dependence of the mean energy (squares;
the scale is on the right axis) and normalized net current (circles;
scale at the left) for N=5000 and p=0.30 under “infinite” field. The
inset shows the 7" dependence of the current over a wider range.

relations at high temperatures which has been demonstrated
for other nonequilibrium models.*?

C. Coexistence curve

The transition points may be estimated from the tempera-
ture dependence of the mean potential energy per particle,

f=N"YD(n), )

and from the net current j, defined as the mean displacement
per MC step per particle. Figure 7 shows well-defined
changes of slope in both magnitudes when the phase trans-
forms from solid to liquid (7=0.12) and then to disorder
(T=0.30). The persistence of correlations is again revealed
by the fact that the current is nonzero for any, even low T,
though it is small, and roughly independent of 7, in the solid
phase. The energy (9) behaves linearly with temperature for
T €(0.12,0.3), as expected for a fluid phase. The maximum
value of the current, j.,=40m./37, is only reached for T’
— 0, The way this limit is approached is illustrated in the
inset of Fig. 7 where the growth is shown to be slower than
exponential.

A main issue concerning the steady state is the liquid-
vapor coexistence curve and the associated critical behavior.
The (nonequilibrium) coexistence curve may be determined
from the density profile transverse to the field. This is illus-
trated in Fig. 8.

At high enough temperature—in fact, already at 7=0.35
in this case for which the transition temperature is slightly
above 0.3—the local density is roughly constant around the
mean system density, p=0.35 in Fig. 8. As T is lowered, the
profile accurately describes the existence of a single stripe of
condensed phase of density p, which coexists with its vapor
of density p_. The interface becomes thinner and smoother,
and p, increases while p_ decreases, as T is decreased.

As in equilibrium, one may use p,—p_ as an order param-
eter. The result of plotting p, and p_ at each temperature
results in the nonsymmetric liquid-vapor coexistence curve
shown in Fig. 9. The same result follows from the current,
which in fact varies strongly correlated with the local den-
sity. Notice that the accuracy of our estimate of p, is favored
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FIG. 8. Density profiles transverse to the field for N=7000, p
=0.35, and different temperature, as indicated. The coexisting den-
sities, p., are indicated.

by the existence of a linear interface. This is remarkable
because we can therefore get closer to the critical point than
in equilibrium. Furthermore, we found that the rectilinear
diameter law,

1
5(p++p_)=pm+bo(Too—T), (10)

and the scaling law (the first term of a Wegner-type expan-
sion*?),

p,—p_=ay(T,—T)P, (11)

can be used here to estimate the critical parameters with
higher accuracy than in the equilibrium case.***> The simu-
lation data in Fig. 9 then yields the values in Table I, which
are confirmed by the familiar log-log plots. Compared to the
equilibrium critical temperature reported by Smit and
Frenkel,”® one has that T,/ T.,~ 1.46, i.e., the change is op-
posite to the one for the DLG.* This confirms the observation
above that the field acts in the nonequilibrium LJ system
favoring disorder.

035—/—m————1————1—————
Jluid phase
0.3 .
o A o
o A o
F o A 0
025 o a o 4
a liquid - vapor o
D coexistence region o
o A =}
02+ o A o o
L 1 1 1 It L It 1
0 0.2 04 0.6 0.8
p

FIG. 9. Coexistence curve (squares) for the LJ nonequilibrium
model obtained from the density profiles in Fig. 8. The fluid phase
and the coexistence region are indicated. The triangles are the arith-
metic mean points, which serve to compute the critical parameters.
The large circle at the top of the curve locates the critical point, and
the solid line is a fit using the Wegner expansion and the rectilinear
diameter law with the critical parameters given in Table I.
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TABLE 1. Critical indexes.

Pos Ty B

0.321(5) 0.314(1) 0.10(8)

The fact that the order-parameter critical exponent is rela-
tively small may already be guessed by noticing the ex-
tremely flat coexistence curve in Fig. 9. This is similar to the
corresponding curve for the equilibrium two-dimensional LJ
fluids,?04%47 and it is fully consistent with the equilibrium
Onsager value, S=1/8. We therefore believe that our model
belongs to the Ising universality class. In any case, one may
discard with confidence both the DLG value 8= 1/3 as well
as the mean field value S=1/2 which was reported for fluids
under shear>—both cases would produce a hump visible to
the naked eye in a plot such as the one in Fig. 9. One may
argue that this result is counterintuitive, as our model appar-
ently has the short-range interactions and symmetries that are
believed to characterize the DLG.

IV. CONCLUSION

In summary, the present (nonequilibrium) two-dimen-
sional Lennard-Jones system, in which particles are subject
to a constant driving field, has two main general features. On
the one hand, this case is more convenient for computational
purposes, than others such as, for instance, standard
molecular-dynamics realizations of driven fluid systems. On
the other hand, it seems to contain the necessary essential
physics to be useful as a prototypical model for anisotropic
behavior in nature.

This model reduces to the familiar LJ case for zero field.
Otherwise, it exhibits some arresting behavior, including cur-
rents and striped patterns. We have identified two processes
which seem to dominate early nucleation before anisotropic
spinodal decomposition sets in. Interesting enough, they
seem to be identical to the ones characterizing a similar situ-
ation in equilibrium.

We have also concluded that the model critical behavior is
consistent with the Ising one for d=2 but not with the critical
behavior of the driven lattice gas. This is puzzling. For in-
stance, using the language of statistical field theory, symme-
tries seem to bring our system closer to the nonequilibrium
lattice model than to the corresponding equilibrium case. The
additional freedom of the present, off-lattice system, which
in particular implies that the particle-hole symmetry is
violated—which induces the coexistence-curve asymmetry
in Fig. 9 in accordance with actual systems—are likely to
matter more than suggested by some naive intuition.

Further study of the present nonequilibrium LJ system
and its possible variations is suggested. A principal issue to
be investigated is the apparent fact that the full nonequilib-
rium situations of interest can be described by some rather
straightforward extension of equilibrium theory. We here re-
port on some indications of this concerning early nucleation
and properties of the coexistence curve. No doubt it would
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be interesting to compare more systematically the behavior
of models against the varied phenomenology which was al-
ready reported for anisotropic fluids. This should also help a
better understanding of nonequilibrium critical phenomena.
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