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Abstract. We present a theoretical framework which allows one to studyboth theoretically and
numerically the effect of including activity dependent mechanisms in the dynamics of synapses in
simple neural networks. In particular, we study synaptic changes at different time scales from less
than the millisecond (fast synaptic noise) to the scale of learning (say years). For some limits of
interest, as a consequence of such dynamics, the fixed-pointsolutions or attractors loose stability
and the system shows enhancement of his response to changingexternal stimuli. In some conditions,
this results in a novel phase in which the neural activity continously jumps among different activity
patterns.
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INTRODUCTION AND BASIC MODEL

In the last decade or so, synapses have been shown to be more than simple commu-
nication lines, namely, it has been extensively reported that many dynamical processes
taking place in the synapses can influence and even determinethe transmission of in-
formation [1]. The relevant mechanisms can occur at different time scales. In the long
time, synapses modify their intensity as a consequence of learning, which occurs in a
time scale higher than the second, say days or even years. This is now demonstrated
both in vivo and in vitro experiments, and it has received wide theoretical attention,
e.g., the theory of learning in attractor neural networks [2, 3]. On the other hand, it has
been described that fast synaptic fluctuations coupled withother mechanisms during the
transmission of information could determine a large variety of computations in the brain
[4, 5]. These fluctuations occur at very short (less than the millisecond) temporal scales,
and they seem to have different causes. For instance, the stochasticity of the opening
and closing of the neurotransmitter vesicles, the stochasticity of the postsynaptic recep-
tor, which in turn has several sources, e. g., variations of the glutamate concentration in
the synaptic cleft, and differences in the power released from different locations on the
active zone of the synapses [6]. Finally, it has also been reported that actual synapses en-
dure activity-dependent mechanisms, such as short-time depression and/or facilitation,
which occur in the temporal scale of neural activity. That is, it seems that periods of
elevated presynaptic activity may cause either decrease orincrease of the neurotrans-
mitter release and, consequently, that the postsynaptic response is either depressed or
facilitated depending on the presynaptic neural activity [1, 7, 8]. This has been reported



to be necessary to produce a noticeable synaptic plasticity[1], which is fundamental for
the development and adaptation of the nervous system, and itis also believed to be the
basis for higher functions such as learning and memory.

In spite of this rather clear-cut picture, which is been extracted from set of data whose
amount and quality is rapidly increasing these days, a general theory is lacking. That
is, the result of many neurons cooperating through synapsesthat undergo all these
types of mechanisms, which may compete with each other and with other possible
variables, is not fully understood yet. In particular, of special interest is to understand
how these synaptic mechanisms affect the fixed points of the neural activity and their
stability, which concerns memory and recall processes. In this paper we present an
attempt towards a theoretical framework to study the influence of synaptic changes on
the collective properties of different types of neural circuits.

Let us consider a set ofN (binary, for simplicity [9]) neurons with configurations
S ≡ {si = ±1;i = 1, . . . ,N} connected by synapses of intensity

wi j = wi j x j ∀i, j. (1)

Here,wi j = 1/N∑M
µ=1Ξµ

i Ξµ
j are fixed and determined in a previous slowlearningpro-

cess in which the network storesM patterns of neural activity,Ξµ ≡ {Ξµ
i = ±1;i =

1, . . . ,N} (µ = 1. . .M). The weightswi j represent maximal averaged synaptic conduc-
tances between the presynaptic neuronj and the postsynaptic neuroni, while, x j ∈ R is
a stochastic variable that influences these maximal conductances and takes into account
other synaptic dynamics than those due to long-time learning. For fixedW ≡{wi j}, the
network state at timet is determined byA = (S,X ≡ {xi}). This evolves in time accord-
ing to

∂Pt(A)

∂ t
= ∑

A′

[

Pt(A′)c(A′ → A)−Pt(A)c(A → A′)
]

(2)

wherec(A → A′) = pcX(S → S′)δX,X′ +(1− p)cS(X → X′)δS,S′ [11]. This amounts to
assume that neurons(S) change stochastically in time competing with a noisy dynamics
of synapses(X), the latter with ana priory relative weight of(1− p)/p.

For p = 1, the model reduces to the Hopfield case, in which synapses are quenched,
i.e., xi is constant and independent ofi. Without loosing any generality we can assume
x= 1. This limit has been widely studied in the last decades and it is beyond the scope of
the present work. In the next sections we study the more interesting case ofp→ 0, which
describes fast synaptic fluctuations. Afterwards we shall study a particular example of
the general casep < 1, which assumes a coupled dynamics for neurons and synapses in
the same temporal scale.

THE LIMIT OF FAST FLUCTUATIONS AND THE EMERGENCE
OF UNSTABLE MEMORIES

The limit of p→ 0 describes fast synaptic noise affecting the synapses, which can have
different causes as mentioned above. Recordings in real experiments show that these
fluctuations are very fast – of order of the millisecond – compared with the typical mean
inter-spike interval. We can then use in Eq. (2) the limitp→ 0 to take into account these



fluctuations. In this limit, one can uncouple the stochasticdynamics for neurons (S) and
the synaptic noise (X) using standard techniques [12]. It follows that neurons evolve as
in the presence of a steady distribution for the noiseX: If we writePt(A) = Pt(X|S)Pt(S),
wherePt(X|S) stands for the conditional probability ofX givenS, one obtains from (2),
after rescaling timet p→ t and summing overX, that

∂Pt(S)

∂ t
= ∑

S′

{

Pt(S′)c̄[S′ → S]−Pt(S)c̄[S → S′]
}

. (3)

Here,c̄[S → S′] ≡ ∑X Pst(X|S)cX[S → S′], and the stationary distribution for the noise
is

Pst(X|S) =
∑X cS[X′ → X]Pst(X′|S)

∑X cS[X → X′]
. (4)

The expression (4) involves an assumption on how synaptic noise depends on the overall
neural activity. An interesting specific situation is to assume activity-dependent synaptic
noiseconsistent with short-term synaptic depression and/or facilitation [7, 10]. That is,
let us assume thatPst(X|S) = ∏ j P(x j |S) with

P(x j |S) = ζ (~m) δ (x j −Φ)+ [1−ζ (~m)] δ (x j −1). (5)

Here,~m = ~m(S) ≡
(

m1(S), . . . ,mM(S)
)

is theM-dimensional overlap vector, andζ (~m)
stands for a function of~m to be determined. With this choice, the average over the
distribution (5) of the noise variable isx j ≡

∫

x jP(x j |S)dxj = 1− (1−Φ)ζ (~m) and the
variance isσ2

x = (1−Φ)2ζ (~m) [1− ζ (~m)]. Note that these two quantities depend on
time for Φ 6= 1 through the overlap vector~m, which is a measure of the activity of the
network. Moreover, the depression/facilitation effect in(5), namelyx j = Φ > 0 (Φ 6= 1),
depends through the probabilityζ (~m) on the overlap vector, which is related to the
net current arriving to postsynaptic neurons. Consequently, the non–local choice (5)
introduces non–trivial correlations between synaptic noise and neural activity. One has a
depressing (facilitating) effect forΦ < (>)1, and the trivial caseΦ = 1 corresponds
to the static Hopfield model with static synapses. Note that,although the fast noise
dynamics occurs at a very small time scale, the depressing orfacilitating mechanism
occurs at the time scale of the neural activity –via the coupling with the overlap vector
through the functionζ (~m) .

The interest is on the nature of the fixed point solutions of Eqs. (3-5) and their
stability. This can be done in the case of asynchronoussequential spin–flipdynamics
for the neurons, namely, stochastic local inversionssi → −si as induced by a bath at
temperatureT. The elementary rate then reduces tocX[S → S′] = Ψ[u X(S, i)], where
we assumeΨ(u) = exp(−u)Ψ(−u), Ψ(0) = 1, Ψ(∞) = 0 anduX(S, i) ≡ 2T−1sihX

i (S)
[12]. Here hX

i (S) = ∑ j 6=i wi j x jsj is the net presynaptic current or local field on the
(postsynaptic) neuroni. In the following we useΨ(u) = e−u/2. Under the standard mean
field assumptionsi = 〈si〉, the simplest situation occurs for only one stored pattern, that
is M = 1. In this case, one easily obtains the mean-field fixed-pointequation (See [13]
for details),

m= tanh
{

T−1m
[

1− (m)2(1−Φ)
]}

, (6)
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FIGURE 1. Stable steady-state memory solutions of the map (6) as a function of T and from bottom to
top,Φ = 0.5,1,2 corresponding to depression, static and facilitation situations, respectively. Data points
correspond to Monte Carlo simulations forΦ = 0.5,2 showing the accuracy of the mean field results. The
graph in the inset is the phase diagram (T,Φ), where second (solid) and first (dashed) order transition
between the memory (F) and non-memory (P) phases are depicted.

m≡ mν=1, which preserves the symmetry±1. Local stability of the solutions requires
that

|m| > mc(T) =
1√
3

(

Tc−T
Φc−Φ

)
1
2

. (7)

The behavior of (6) is illustrated in Fig. 1 for several values of Φ. This indicates
a transition from aferromagnetic–likephase, i.e., solutionsm 6= 0 with associative
memory, to aparamagnetic–likephase,m= 0. The transition is continuous or second
order only forΦ < Φc = 4/3, and it then follows a critical temperatureTc = 1. The
inset of Fig. 1 shows the tricritical point at(Tc,Φc) and the general dependence of
the transition temperature withΦ. This result differs dramatically from the standard
Hopfield fixed point solutions. For a given temperature, the effect of fast synaptic noise
is to decrease the net current arriving to the postsynaptic neuron (which is proportional
to the overlapm) for Φ < 1, as in actual depressing synapses, and to increase it forΦ > 1,
as in the case of facilitating synapses. Moreover, an additional effect is the increase of
the sensitivity of the network response when an external stimulus is applied in the case
of depressing fast noise (Φ < 1), see Fig. 2.

This inherent instability of the attractors becomes even more clear when one uses a
different type of neuron updating running from asynchronous sequential to totally syn-
chronous parallel updating (see Ref. [14] for a detailed study) resulting in the appearance
of a oscillatory phase in which the neural activity continously jumps among the stored
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FIGURE 2. Sensitivity of a neural network under external stimulationin the presence of noise induced
synaptic depression: Panel A shows, for a single stored pattern, the effect of a weak external stimulus
Iext =−δξ with δ ≪ 1. This stimulus tries to drive the activity of the network fromthe basin of attraction
of the pattern towards the antipattern. The top graph corresponds to the case of static classical synapses
(Φ = 1) and the bottom for the case of noise induced depression (Φ = 0.05). All simulations were
performed at temperatureT = 0.15. Lines in each graph are from above forδ = 0.2,0.25,0.3,0.4. Panel
B shows the sensitivity of the system under repetitive external random stimulus when the network stored
4 overlapping patterns. The top graph shows the Hopfield static case (Φ = 1), and the bottom the noise
induced depressing case withΦ = 0.1. Here, neuron activity is represented at vertical axis, and simulation
parameters areN = 400, T = 0.1 andδ = 0.3

memories orattractors.In some conditions, this dynamics become chaotic which allows
for a more efficient dynamical retrieval of memories (see Fig. 3). Definingn as the num-
ber of neurons that are updated synchronously at the same time step, one can visualize
how the dynamical properties of the network change when one increases the density
ρ ≡ n/N. This is shown in Fig. 3 where we plotted phase trajectories ofthe mean firing
rate defined asf ≡ 1

2N ∑i(1+ si). When one increasesρ from 0 to ρ = 0.443 in the
simulation presented in the figure, the network stable memories become unstable and
transitions between nearest memories occur. If one increasesρ even more, dynamical
transitions between more distant memories begin to occur, and the time during which
the activity of the network is close to a particular memory also decreases (not shown).
Finally, if we increaseρ more (for instance, aroundρ = 0.6 in Fig. 3), there is a tran-
sition to a state in which the activity of the network rapidlyjumps between a memory
pattern and its antipattern.
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FIGURE 3. Chaotic itineracy in a neural network with depressing fast noise under the effect of an
hybrid updating. The graph shows how by increasing the density of neurons that are being synchronously
updated, that isρ , the number of visited attractors is also increased until a value at which a periodic
jumping between a pattern and its antipattern occurs. To build all phase-plane trajectories we used standard
false-neighbours techniques with a time delay of 5n and an embedding dimension of 5.

MODEL OF DYNAMICAL SYNAPSES FOR p > 0 AND ITS
EFFECT ON MEMORY STABILITY

At intermediate value ofp, we may consider synaptic temporal changes in the same
scale that the typical interspike interval of neuron activity, that is, in the range of a
few milliseconds. This is consistent with actual neural media where activity-dependent
mechanisms, such as short-term depression and facilitation, operate at the time scale of
neural activity. In this section, we study the interplay between these synaptic mecha-
nisms and the neural activity within a mean-field approach. Our starting point will be



now the phenomenological model of dynamical synapses introduced in [7]. We conclude
on the implications of a competition between synaptic depression and facilitation on the
performance of a neural network.

As above, we considerN binary neurons and use the formalism introduced previously
for p > 0. The distribution for the synaptic noise is now

P(x j |S) = δ [x j −Φ j(t)], (8)

which in fact impedes any kind of fast synaptic noise. Here,x j = Φ j(t)≡ D j (t)F j (t) ,
that is, the mean is the product of two dynamical variables that evolve in the time scale
of the neural activity, namelyt, and represents the state of the dynamical synapse con-
necting neuronsi and j with depressing (D j (t)) and facilitating (F j (t)) mechanisms.
With the choice (8), the microscopic dynamics describing stochastic neuron changes
is c̄[S → S′] = Ψ[u(S, i)], whereu(S, i) ≡ 2T−1sihi(S). In the following we will con-
sider the rateΨ(u) = 1/2[1− tanh(u)] which also satisfies the required symmetry and
normalization conditions and results most adequate when one considers all the neurons
synchronously updated.

Using parallel synchronous updating, each neuron follows the probabilistic dynamics

Prob{σi (t +1) = 1} =
1
2

{

1+ tanh
[

2T−1hi (t)
]}

, (9)

whereσi ≡ 1
2(1+si), σ ′ = σ(t +1) and we only consider spin-flip changes. The local

fields hi (t) = ∑N
j=1wi j D j (t)F j (t)σ j (t)− θi represents the total presynaptic current

arriving to the postsynaptic neuroni. Here, θi is the threshold of neuroni to fire.
Again,wi j are the static synaptic weights due toM stored patterns, namely,ξ ν ≡ {ξ ν

i =
1,0},ν = 1, . . . ,M. In the present 1,0 code, it turns out convenient to choose the standard
covariance learning rule, namely,wi j = 1

Na(1−a) ∑M
ν=1(ξ ν

i −a)(ξ ν
j −a) with 〈ξ ν

i 〉 = a.

The complete dynamics for depressionD j (t) and facilitationF j (t) was reported
in [7]. Here, we use a simplified version of that model in whichD j (t) ≡ r j (t) and
F j (t) ≡ U +(1−U)u j (t) , beingr j (t) the fraction of neurotransmitters which are in
a recovered state. A fraction of these neurotransmitters, namely,Ur(t), is ready to be
released after the arrival of a presynaptic action potential (σ j = 1). The remaining,
(1−U)r(t), can also be released by facilitating mechanisms whose dynamics is driven
by the variableu j (t) . For simplicity, we assume that the complete dynamics is described
by the discrete system of equations

r j (t +1) = r j (t)+
1− r j (t)

τrec
−Ur j (t)σ j (t)− (1−U)u j (t) r j (t)σ j (t) ,

u j (t +1) = u j (t)−
u j (t)

τfac
+U

[

1−u j (t)
]

σ j (t) ,

(10)

whereτrec andτfac are the time constants for depressing and facilitating mechanisms,
respectively. Again, as in the model of the previous section, the static Hopfield case is
recovered forx j = 1. This can be achieved in the present model forτrec→ 0 andU = 1.
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FIGURE 4. (Left) Behaviour of the maximum absolute value for the eigenvalues driving the
dynamics around the fixed points, forU = T = 0.1 andτfac = 20 ms. Here,τ∗

rec andτ∗∗
rec are,

respectively, the critical points at which the ferromagnetic (F) and oscillatory phases (O) become
unstable. Forτrec> τ∗∗

rec, the paramagnetic states (P) are the only ones that remain stable. (Right)
The emergence of different dynamical behaviours by continously increasingτrec from 4 to 18
during 3 seconds.

The system of equations (9-10) can be solved within the standard mean field approach
σi ≈ 〈σi〉 and in the limit of only one stored patternα ≡ M/N = 0 anda = 1/2. Most
of our conclusions are also valid for many patterns, however, as we will show latter. The
result is a discrete 6-dimensional map,~yt+1 = ~F(~yt), where~y≡{m+,m−, r+, r−,u+,u−}
is a vector whose components are order parameters which measure, respectively, the
overlap with the stored pattern (m = m1), the mean depression level (r) and the mean
facilitation level (u), in the neurons that are active (+) or inactive (−) [15]. The local
stability of the steady state solutions can be studied by analyzing the behavior of the
eigenvalues, namelyλi associated to the local dynamics of this map (see Ref. [15] for
further details). In particular, fixed points become unstable when the maximum absolute
value of all eigenvalues, namely,|λ |max is bigger than one. Fig. 4(left) shows|λ |max
as a function ofτrec for U = T = 0.1 and τfac = 20 ms. Then, the analysis of the
stability of fixed points reveals three different regimes inthe behaviour of the system.
First, a ferromagnetic-like phase associated to standard associative memory appears for
τrec < τ∗rec. Second a paramagnetic-like or non-memory phase occurs forτrec > τ∗∗rec.
Finally, an oscillatory phase in which the network activityis jumping between different
memories appears forτ∗rec< τrec< τ∗∗rec. Fig. 4(right) shows the emergence of these three
phases when one continously variesτrec in the interval[3,18] during three seconds.
Fig. 5 shows phase diagrams obtained by plotting the critical lines at which transitions
between these three phases occur for different values of theparametersτrec,τfac and
U. By inspection of these diagrams and Fig. 5B, one observes that the width of the
oscillatory phase enlarges for increasing values ofτfac and decreases withT.

A detailed analysis of the oscillatory phase shows that the access to the stored mem-
ories and the error in the retrieval of such memories strongly depends on facilitation
and on its competition with depression. This is shown in Fig.6 where the half period of
the oscillations in the overlap with a patternm≡ m+ −m− and its maximum absolute
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FIGURE 5. Phase diagrams forα = 0 and several values of the relevant parameters defining the
dynamics of the synapses, namelyU,τrec,τfac andT. The panel A represents the phase diagram
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to the line of criticalτ∗
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rec, in
the (τrec,τfac) plane for increasing values of the temperature. Panel C corresponds to the phase
diagram in the plane (τrec,U) for T = 0.1 andγ ≡ τfac/τrec= 0.25. Panel D is the phase diagram
in the plane (T,τfac) for U = 0.1 andτrec = 3 ms. In panels A,C and D, solid lines correspond to
second order phase transitions and dashed lines to first-order phase transitions.

value is represented as function ofτfac, for different values ofτrec andU = T = 0.1.
The appearance of the oscillatory phase is the result of the instability of the fixed-point
ferromagnetic solutions, as in the model of the previous section. However, in this case
dynamics is periodic for the case of one pattern.

We have also investigated, for several values of the depressing and facilitating param-
eters and in the limit ofα → 0 (M = 1), the sensitivity of the network under external
stimulation, namelyIext

i = ±δξ 1
i , during a time interval of 20 ms. The pulse is such that

it takes a positive value at timet if m1(t −1) < 0 and a negative value ifm1(t −1) > 0.
Some of the resulting picture is illustrated in Fig. 7, wherethe network is responding to
a periodic external stimulus of amplitudeδ = 0,0.01,0.1,0.4. This shows (left panels)
how the presence of an activity-dependent dynamics on the synapses through the vari-
abler(t) induces instability of the memories, which allows for a better response to the
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FIGURE 6. (Left) Dependence of the half period during the oscillatoryregime as a function
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four different values ofτrec. Both panels illustrate that strong facilitation (large values ofτfac)
produces a more rapid access to stored information and with less error, in particular when
depression is not so high (smaller values ofτrec). The figure also shows the opposite effect due
to depression, that appear for week facilitation (small values ofτfac). Data points correspond
to Monte Carlo simulations forτrec = 10 ms confirming the mean field results. The vertical
dashed line in the left panel marks the critical value ofτfac in which the oscillations disappear
for τrec = 13 ms.

stimulus even if it is very week. On the contrary, for static synapses as in the Hopfield
model (right panels), the system is not sensible to stimulusand only when its amplitude
is very large some tiny level of response appears in the network activity. The figure also
shows that increasing facilitation, that is for larger values ofτfac, the stability of the fer-
romagnetic solution also increases. This is shown in the second left panel of the figure
where increasingτfac from 0 to 80 ms impedes a efficient response to a week stimulus
of δ = 0.01.

The case of many stored memories, can still be studied numerically. Preliminary
studies show that, similarly to the case of only one pattern,there are three main phases.
That is, paramagnetic, ferromagnetic and complex oscillatory phases where, depending
on the relevant parameters, the activity jumps between memory and mixture states. An
example of this behavior is shown in Fig. 8. The figure represents the autonomous
behavior of the network activity in the oscillatory phase for τrec = 40 ms,T = 0.01,
U = 0.1 andM = 10 overlapping patterns, each one withM consecutive neurons in
an active state, namelyξ ν

i = 1, starting at positions 1+ νN/M, with ν = 0. . .M −1.
The top and bottom raster plots correspond, respectively, to τfac = 10 and 200 ms. This
figure shows how an increase of the facilitation effect allows for a faster access to stored
information but during a shorter period of time

We have also investigated the response of the network under external stimuli when it
stores many patterns (α 6= 0). An example of this study is showed in Fig. 9. The figure
shows (left panels) that including realistic dynamic synapses responds more efficient to a
varying external stimulus, even when the stimulus is very week (Note that the amplitude
of the stimulus isδ = 0.1 in this simulation). On the contrary, the static Hopfield network
is unable to respond to the stimulus. Only when its amplitudebecomes large enough
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limit α → 0 (M = 1). Simulation parameters areT = 0.1,U = 0.1,τrec = 3 ms for dynamic
synapses andT = 0.1,U = 1,τrec = 0 ms for static synapses. The increasingτfac protocol from
τfac = 0 ms toτfac = 80 ms plotted in the two bottom graphs was applied in both cases. In the
case of static synapses this protocol has no effect becauseU = 1.

(δ = 0.42) the system begins to have some non-efficient response to the stimulus (See
right panels). These results agree quantitative and qualitatively with those reported in
the previous section for the fast-noise depression model.

DISCUSSION

We have reviewed here a theoretical framework to study different models of activity-
dependent processes which occur at different time scales inneural networks. We have
first introduced a model which includes biologically motivated synaptic noise whose
dynamics is coupled with that of the network activity via thesteady-state noise distri-
bution (5). This aims to mimic synaptic depression and/or facilitation. It follows that
the network exhibits much more varied and intriguing behavior than the standard static
Hopfield model. For instance, the network exhibits forΦ < 1 a high sensitivity to exter-
nal stimuli and, in some conditions, chaotic jumping among the stored memories, which
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FIGURE 8. Raster plots showing the behaviour ofN = 100 binary neurons with dynamic
synapses including facilitating mechanisms. Each black dot corresponds to a neuron firing event.
Top and bottom graphs correspond toτfac = 10 ms and 200 ms, respectively. Other parameters
areτrec = 40 ms,T = 0.01, U = 0.1 andM = 10 overlapping patterns.

allows for better exploring the stored information. The theoretical framework presented
is general enough to allow for investigating more realisticassumptions concerning the
noise distribution; in this way, the presented models can berelated to other models in
the literature.

On the other hand, we have illustrated that networks including phenomenologically-
motivated dynamical synapses which account for short-termfacilitation and depression
show complex behavior which depends on the relative balancebetween depression and
facilitation. For low depression, a memory phase occurs. For very large depression or
facilitation, the phase exhibits no memory. For intermediate facilitation and/or depres-
sion, an oscillatory phase with the activity of the network jumping between the attractors
appears. We also observed that a high facilitation enhancesthe network ability to switch
among the stored patterns, as well as its adaptation to external stimuli [15]. Other inter-
esting new phenomena are, for instance, that the memory phase disappears earlier for
a fixed degree of depression and temperature. Moreover, we observe in the oscillatory
phase that its width in the corresponding phase diagram increases with facilitation, as
shown in Fig. 5. In addition, the frequency of the oscillations also increases with facilita-
tion. As a consequence, it seems one should conclude that facilitation allows to recover
stored information with less error but during a shorter period of time. This supports the
idea that synaptic facilitation influences the processes ofshort-term memory. The facility
to switch could be interesting to code both spatial and temporal information, and could
explain, for instance, the spatio-temporal dynamics in theearly olfactory processes [16].
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FIGURE 9. Response of a neural network ofN = 1000 neurons storingM = 5 random patterns
under a time varying external stimulusIext

i = δξ ν
i , whereν changes randomly during time in

the set[1,M] (see two bottom panels). Left panels shows that the responseof the network to
stimuli is efficient for dynamic synapses even for very smallstimulus amplitude (δ = 0.1).
On the contrary right panels show a non-efficient response for static synapses even for very
large stimulus amplitude (δ = 0.42). The two bottom panels show the pattern that every time is
presented to the network in the stimulus.
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