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Abstract. We present several lattice and off-lattice microscopic models in which par-
ticles interact via a local anisotropic rule. The rule, which varies from one model to
the other, induces preferential hopping along one direction, so that a net current sets
in if allowed by boundary conditions. This may be viewed as an oversimplification of
the situation concerning certain traffic and flow problems. The emphasis in our contri-
bution will be on the influence of dynamic details on the resulting (non-equilibrium)
steady state. In particular, we shall discuss on the similarities and differences between
a lattice model and its continuous counterpart, namely, a Lennard–Jones analogue in
which the particles’ coordinates vary continuously. Our study, which involves a large
series of computer simulations, in particular reveals that spatial discretization will of-
ten modify the resulting morphological properties and induce a different phase diagram
(even criticality).

1 Introduction

Many physical systems out of equilibrium show up spatial striped patterns [1,2]
at a macroscopic scale. In most of such systems this patterns are caused by a
transport of matter, charge, or some other quantity induced by the presence
of a drive, which leads the system into the heterogeneous ordering. Examples
where such phenomena may occur include flowing fluids [3], and during phase
separation in colloidal [4], granular [5,6], and liquid–liquid [7] mixtures. Further
examples are wind ripples formed in sand [8] and the trails by animals and pedes-
trians [9]. Similar anisotropies also occur in high temperature superconductors
[10,11], and in two–dimensional electron gases [12,13].

Studies of such instabilities, frequently described as nonequilibrium phase
transitions, have focused on lattice systems [14–20], which are based in discretiza-
tion of space into lattice sites, consider particles interacting via simple rules. Its
simplicity sometimes allows exact calculations and are easier to be implemented
in a computer. Moreover, many techniques has been developed and improved
under its shadow, including nonequilibrium statistical field theory. However, lat-
tice models are, in a sense, an oversimplification of real systems. Therefore the
robustness of its behavior has to be studied carefully.

The present contribution involves Monte Carlo (MC) simulations and field
theory calculations focused on how slight modifications on the dynamics at a
microscopic level may influence on the resulting nonequilibrium steady state
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—with special emphasis in criticality—. For this purpose we study the driven
lattice gas (DLG) [14,15], a kinetic Ising model with conserved dynamic. This,
initially proposed as a model for ionic currents, has become a prototypical model
for anisotropic behavior. Here we compare its transport and critical properties
with analogue lattice and off–lattice models. The literature offers works address-
ing the issue of how minor variations in the dynamics may lead to dramatic
morphological changes in the early time kinetics [21] and in the stationary state
[22,23]. However, this works unfortunatelly do not focus on transport and, to a
lesser extent, critical properties. By concreteness we explore the robustness of
those features of the DLG when extending interactions from nearest–neighbors
(NN) to next–nearest–neighbors (NNN) [22].

Furthermore, we try to answer the question of how the lattice itself may
condition transport, structural, and critical properties. That is, in this work we
also annalize a microscopically off–lattice representation of the DLG in which
the particles’ spatial coordinates vary continuously. The clue is that spatial dis-
cretization changes significantly not only some morphological and early–time
kinetics properties, but also critical properties, which are known to be indepen-
dent of such dynamic details in equilibrium.

2 Driven Lattice Gas

The driven lattice gas (DLG), initially proposed by Katz, Lebowitz, and Spohn
[24], is a nonequilibrium extension of the Ising model with conserved dynam-
ics. The DLG consists of a d -dimensional square lattice gas in which pair par-
ticles interact via an attractive and short–range Ising–like Hamiltonian H =
−4

∑
NN σjσk, where σk = 0(1) is the lattice occupation number at site k if

empty (occupied), and the sum runs over all particles and the NN sites (the
accesible sites are depicted in Fig. 1). The dynamic is induced by a heat bath
at temperature T and by an external driving field E which favors particle hops
along one of the principal lattice directions, say horizontal (x̂), assuming the par-
ticles are positively charged. Consequently, for periodic boundary conditions, a
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Fig. 1. Schematic comparison of the accessible sites a particle (at the center, marked
with a dot) has for nearest–neighbors (NN) and next–nearest–neighbors (NNN) hops
at equilibrium (left) and in the presence of a large horizontal field (right). The particle–
hole exchange between neighbors may be forbidden (×) or allowed (

√
) depending on

the strength of the field E.
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nontrivial nonequilibrium steady state is reached in the system. MC simulations
by using a biased Metropolis rate reveals that, as its equilibrium counterpart,
the DLG undergoes a second order phase transition. At high temperatures the
system is in a disordered state, while below its critical point (at T < TE) it
orders displaying anisotropic phase segregation. That is, a rich particle phase
which is striped then coexists with its gas. It is also found that the critical
temperature TE monotonically increases with E. More specifically, assuming
henceforth a half filled L × L square lattice in the large field limit (in order
to maximize the nonequilibrium effects), T∞ ' 1.4T0, where the equilibrium
value is T0 = TOnsager = 2.269Jk−1

B . This limit corresponds to a nonequilib-
rium critical point. As a matter of fact, it was numerically shown to belong to
a universality class other than the Onsager one, e.g., MC data indicates that
the order parameter critical exponent βDLG ' 1/3 (instead of the Ising value
βIsing = 1/8 in two dimensions) [14,25,26].

Other important feature may concern two particle correlation function C(x, y)
and its Fourier transform S(kx, ky). As is depicted in the left graph of Fig. 2
correlations are favored (inhibited) along (against) the field direction. In fact
the DLG shows a slow decay of the two–point correlations due to the spatial
anisotropy associated with the dynamics [27,28]. This long range behavior trans-
lates into a characteristic discontinuity singularity at the origin (limkx→0 S‖ 6=
limky→0 S⊥,) in the structure factor [15], clearly confirmed in Fig. 2.

How does all these features depend on the number of neighbors? Or in other
words, while the DLG shows these peculiarities, it is natural to ask how robust
is its behavior when extending interactions and accesible sites to the NNN. We
wonder to what extent this slight extension in the microscopic dynamics may
influence, in particular, the transport and critical properties.

Precedent works have shown that this extension in the DLG dynamics may
lead to an inversion of triangular anisotropies during the formation of clusters
which finally condense into strips [21]; and also dramatic changes appear in
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Fig. 2. Parallel (squares) and transverse (triangles) components of the two–point cor-
relation function (left) and the structure factor (right) above criticality with NN (filled
symbols) and NNN (empty symbols) interactions for a 128×128 half filled lattice. The
inset shows the x−2 power law decay in C‖ for both discrete dynamics.
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the steady state, where contrary to the DLG with NN interactions the critical
temperature decreases with increasing E [22]. However, important features as
correlations and criticality remain invariant.

One one hand, analysis of the parallel (C‖) and transverse (C⊥) to the field
component reveals that correlations are quantitatively similar for the DLG and
for the DLG with NNN interactions (henceforth NDLG) —although somehow
weaker for the NDLG. Also persists a slow decay of correlations which lead to
the discontinuity at the origin in S(kx, ky). These facts are also shown in Fig. 2.
On the other hand, recent MC simulations on the NDLG confirm that the order
parameter critical exponent still is βNDLG ≈ 1/3 [29]. The anisotropic diffu-
sive system approach [30], which is a Langevin–type (mesoscopic) description,
corroborates this critical behavior. In both cases the Langevin equations are
derived from a coarse graining of the master equation, and lead to the above–
indicated MC critical exponent. Both equations are similar, except that for the
NNN case appear new entropic terms due to the presence of additional neigh-
bors [29]. Therefore, the fact of extending particle hops and interaction to the
diagonal sites modify neither correlations nor criticality, infering from this that
both systems belong to the same universality class.

In this point we take the problem of robustness a step further. At what
extent DLG behavior depends on the lattice? With this aim, here we present a
description of driven systems with continuous variation of the particles’ spatial
coordinates —instead of the discrete variations in the DLG. We analyze an off–
lattice representation of the DLG, namely, a microscopically continuum with the
same symmetries and short–range interaction.

3 Driven Off-lattice Gas

Consider a fluid comprised by N interacting particles of mass m confined in
a two–dimensional box of size L × L with periodic (toroidal) boundary condi-
tions. The particles interact via a truncated and shifted Lennard–Jones (LJ) pair
potential [32]:

φ(r) ≡
{

φLJ(r)− φLJ (rc), if r < rc

0, if r ≥ rc,
(1)

where φLJ (r) = 4ε
[
(σ/r)12 − (σ/r)6

]
is the LJ potential, r is the interparticle

distance, and rc is the cut-off which we shall set at rc = 2.5σ. The parameters
σ and ε are, respectively, the characteristic length and energy. For simulations
all the quantities were reduced according to ε and σ, and kB and m are taken
as unity. The choice of this potential (the widely used truncated and shifted
LJ potential is one of the multiple possibilities for an attractive short–range
potential) obeys to our strategy to set up the model following as close as possible
the DLG.

The uniform in space and time external driving field E is implemented by
assuming a preferential hopping in the horizontal direction. This favors particle
jumps in the field direction, assuming the particles are positive charged (see
dynamic details in Fig. 3). As defined in its lattice counterpart, we consider the
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large field limit E → ∞. As the stregth of the field is increased one eventually
reaches saturation at E = ∞ and particles cannot jump against the field. This
picture may be formalized in terms of the transition probability per unit time
(rate), which reads

ω(η → η′; E, T ) = s(η → η′; E) ·min {1, exp(−∆Φ/T )} . (2)

Here, a configuration at a given time is specified by η ≡ {r1, ..., rN}, where
ri is the position of the particle i, that can move anywhere in the torus. Φ(η) =∑

i<j φ(|ri − rj|) stands for the energy of a configuration η. The biased hopping
enters in s(E)(η → η′) = 1

2 (1 + tanh(E · δ)), which is asymmetric under η ↔ η′;
and δ = (x′i − xi) is the displacement corresponding to a single MC trial move
along the field direction, which generates the subsequent increment of energy
∆Φ = (Φ(η′)− Φ(η)). This rate in conjunction with the toroidal conditions vio-
lates detailed balance. It is only recovered in the absence of the driving field. In
this limit the rate reduces to the Metropolis one and the system corresponds to
the largely studied truncated and shifted two–dimensional LJ fluid [31,32]. Since
the lattice has been removed altogether, the particle hop has to be defined care-
fully because the resulting steady state may depend qualitatively on this. Then,
a trial move concerning any particle will satisfy that 0 < |r′i− ri| < δmax, where
δmax is the maximum displacement in the radial direction (fixed at δmax = 0.5
in our simulations). The choice of δmax differ substantially from equilibrium
where how the particle move is defined is irrelevant as dictated by the detailed
balance condition. In this point, we also emphasize the difference between our
(nonequilibrium) model and an equilibrium system with anisotropic interactions.

MC simulations using the rate defined in Eq. (2) shows that the system
displays highly anisotropic states below its critical point (T∞, ρ∞). A straight
interface forms between a high density phase and its vapor: a single strip with

Fig. 3. Schematic representation of the accessible (shaded) region for a particle (dots)
trial move at equilibrium (left) and out-of-equilibrium (right) assuming the field point-
ing along the horizontal direction (x̂).
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high density extending along x̂ throughout the system separates from a lower
density phase (vapor). As expected, the phase behavior is much richer (more
complex structures yield to new phases) than its lattice analogue. The local
structure of the anisotropic condensate changes from a strictly hexagonal pack-
ing of particles at low temperature (below T = 0.10), to a polycrystalline–like
structure with groups of defects and vacancies which show a varied morphology
(e.g., at T = 0.12), to a fluid–like structure (e.g., at T = 0.30,) and, finally,
to a disordered state as the temperature is increased further. Then, skipping
the microscopic structural details, the stationary striped state is similar to the
lattice models.

Worthy of comparison between the off–lattice and lattice models are the
transport properties. In the inset of Fig. 4 is shown the net current j upon
the temperature. Saturation is only reached at jmax = 4δmax/3π when T →
∞. The sudden rising of the current as T is increased can be interpreted as a
transition from a poor conductor (low temperature) phase to a rich conductor
(high temperature) phase, which is reminiscent of ionic currents [14]. Revealing
the persistence of correlations the current is nonzero for any low T, though very
small in the solid–like. Additionally from the temperature dependence of j may
be estimated the transitions points between the different phases (not shown), in
particular, when the condensed strip changes from solid to liquid (T ≈ 0.15) and
when finally change to a fully disordered state (T ≈ 0.31). These aspects of the
current are also present in the DLG.

Due to the inhomogeneous ordering that the system exhibits, the current
is sensitive to the anisotropy. The most relevant information is carried by the
transverse to the field current profile j⊥, which show up the differences between
these two coexisting phases. Computing the transverse current profile j⊥ allows
us to characterize the strip state in terms of two coexisting phases (shown in
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Fig. 4. Transverse to the field stationary transport distributions below criticality. The
shaded (full) line corresponds to the current (velocity) profile of the off–lattice model.
For comparison is also shown the current profile of the DLG with NN interactions. The
inset shows the temperature dependence of the current for the driven LJ fluid.
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Fig. 4). That is, a high current (or low mean velocity) phase coexists below the
critical temperature with its mirror phase of low current (or high mean velocity).
Above criticality, where the system is homogeneous the profile is in average flat.

The first order phase separation is clearly depicted in the current profile of
Fig. 4. The current and the density vary in a strongly correlated manner: the
high current phase fits with the high density phase (liquid or solid), whereas the
low current phase phase matches the low density (vapor) phase. This is due to
the fact that there are many carriers in the condensed phase and they yield to a
higher current than in the vapor phase. However, the mobility of the carriers is
much larger in the vapor phase (also depicted in Fig. 4). The maximal current
appears in the interface (identifiable by the peak in Fig. 4), in which there are still
a considerable amount of carriers but they are less bounded than in the particles
well inside the bulk, and, therefore, the field drives easily those particles. This
interfacial effect is more prominent in the lattice models (notice the large peak
in the current profile in Fig. 4). Moreover in the lattice case there is no difference
between the current displayed in the rich and poor particle phases because the
particle–hole symmetry.

A main issue is the (nonequilibrium) liquid–vapor coexistence curve and the
associated critical behavior. The coexistence curve may be determined from the
density profile transverse to the field. This is illustrated in Fig. 5. At high enough
temperature above the critical temperature the local density is roughly constant
around the mean system density (ρ = 0.35 in Fig. 5). As T is lowered, the profile
accurately describes the striped coexisting phases of density ρ+ which coexists
with its vapor of density ρ− (ρ− ≤ ρ+). The interface becomes thinner and less
rough, and ρ+ increases while ρ− decreases, as T is decreased. As in equilibrium,
one may use the difference of coexisting densities ρ+−ρ− as an order parameter.
The result of plotting ρ+ and ρ− at each temperature (thus adapting the method
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Fig. 5. Temperature–density phase diagram. The coexistence curve has been obtained
from the density profile transverse to the field, shown in the inset for N = 7000,
ρ = 0.35, and different temperatures. The circles are the arithmetic mean points useful
to compute the critical parameters. The line is the non–linear fit using the Wegner
expansion and the rectilinear diameter law with the obtained parameters.
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in [33] for coexisting phases in equilibrium) is shown in Fig. 5. All the same
behavior is obtained from the current (Fig. 4). It is worth notice that the estimate
of the coexisting densities ρ± is favored by the existence of a linear interface,
which is simpler here than in equilibrium. This is remarkable because we can
therefore get closer to the critical point than in equilibrium. We also found that
the rectilinear diameter law, 1

2 (ρ++ρ−) = ρ∞+b0(T∞−T ), and the scaling law,
(which is the first term of a Wegner expansion [34]) ρ+−ρ− = a0(T∞−T )β , can
be used here to estimate accurately the critical parameters. This is remarkable
because these fits, which are extensively used in for fluids in equilibrium, have
no justification out of equilibrium. The simulation data in Fig. 5 then yields
T∞ = 0.314 ± 0.001, ρ∞ = 0.321 ± 0.005, and β = 0.10 ± 0.08. These values
are confirmed by the familiar log–log plots. Compared to the equilibrium case
[31], T0/T∞ ≈ 1.46. This confirms the intuitive observation above that the field
acts in this system favoring disorder. On the other hand, our estimate for the
order–parameter critical exponent is fully consistent with both the extremely flat
coexistence curve which characterizes the equilibrium two–dimensional LJ fluids
and the equilibrium Ising value, β = 1/8 (non–mean–field value). Although the
error bar is large, one may discard with confidence the DLG value β ≈ 1/3 as well
as the mean field value. This result is striking because our model seems to have
the symmetries and short–range interactions of the DLG. Further understanding
for this difference will come from the statistical field theories, but the present
state of the theory does not enable us to determine theoretically the critical
exponent for this off–lattice model.

4 Final Comments

The main reason for this disagreement between the lattice and off–lattice limits
may be the particle–hole symmetry violation in the driven LJ fluid. However,
to determine exactly this statement will require further study. Nevertheless, this
important difference between the lattice and the off–lattice cases is a unques-
tionable nonequilibrium effect because, as is well known in equilibrium critical
phenomena, this microscopic detail is irrelevant for determine the universality
class. Therefore, concerning criticality, the modeling of complex systems out of
equilibrium is a more subtle task and will require a carefully study.

In summary, the present non–equilibrium LJ model in which particles are
subject to a constant driving field can be a (very computationally convenient)
prototypical model for anisotropic behavior in nature. This off–lattice model
reduces to the familiar LJ case for zero field. Otherwise, it exhibits some arrest-
ing behavior, including currents and striped patterns as its lattice counterpart.
Surprisingly, its critical behavior is consistent with the Ising one for d = 2 but
not with the critical behavior of the DLG. This is puzzling in the context of
statistical field theory given that symmetries seem to bring our system closer
to the DLG than to the equilibrium Ising model. The additional freedom of the
off–lattice case is likely to matter more than suggested by some naive intuition.
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