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Abstract. We present a theoretical framework which allows one to stuoly theoretically and
numerically the effect of including activity dependent magisms in the dynamics of synapses in
simple neural networks. In particular, we study synaptiarges at different time scales from less
than the millisecond (fast synaptic noise) to the scale afrlmg (say years). For some limits of
interest, as a consequence of such dynamics, the fixed-gulirttons or attractors loose stability
and the system shows enhancement of his response to chamggngal stimuli. In some conditions,
this results in a novel phase in which the neural activityticmusly jumps among different activity
patterns.
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INTRODUCTION AND BASIC MODEL

In the last decade or so, synapses have been shown to be raarsithple commu-
nication lines, namely, it has been extensively reportad tiiany dynamical processes
taking place in the synapses can influence and even deteth@rteansmission of in-
formation [1]. The relevant mechanisms can occur at diffetene scales. In the long
time, synapses modify their intensity as a consequenceaatfileg, which occurs in a
time scale higher than the second, say days or even yearsisThow demonstrated
both in vivo and in vitro experiments, and it has receivedendeoretical attention,
e.g., the theory of learning in attractor neural networks3[20n the other hand, it has
been described that fast synaptic fluctuations coupledatiter mechanisms during the
transmission of information could determine a large vgrigtcomputations in the brain
[4, 5]. These fluctuations occur at very short (less than titlesecond) temporal scales,
and they seem to have different causes. For instance, thkasitiicity of the opening
and closing of the neurotransmitter vesicles, the stoadigsof the postsynaptic recep-
tor, which in turn has several sources, e. g., variatione@fglutamate concentration in
the synaptic cleft, and differences in the power releasen flifferent locations on the
active zone of the synapses [6]. Finally, it has also beeorteg that actual synapses en-
dure activity-dependent mechanisms, such as short-tippeeggion and/or facilitation,
which occur in the temporal scale of neural activity. Thatiiseems that periods of
elevated presynaptic activity may cause either decreagsewase of the neurotrans-
mitter release and, consequently, that the postsynaponse is either depressed or
facilitated depending on the presynaptic neural activity7] 8]. This has been reported



to be necessary to produce a noticeable synaptic plagtiitwhich is fundamental for
the development and adaptation of the nervous system, andlgo believed to be the
basis for higher functions such as learning and memory.

In spite of this rather clear-cut picture, which is beenastied from set of data whose
amount and quality is rapidly increasing these days, a gétleeory is lacking. That
is, the result of many neurons cooperating through synatiegsundergo all these
types of mechanisms, which may compete with each other attd ather possible
variables, is not fully understood yet. In particular, oésal interest is to understand
how these synaptic mechanisms affect the fixed points of ¢ueah activity and their
stability, which concerns memory and recall processeshis ppaper we present an
attempt towards a theoretical framework to study the infteenf synaptic changes on
the collective properties of different types of neural gits.

Let us consider a set dfl (binary, for simplicity [9]) neurons with configurations
S={s =4+1;i=1,...,N} connected by synapses of intensity

Wij = WijXj Vi, . (1)

Here,m;j = 1/N5 ), =F'=" are fixed and determined in a previous sl¢sarningpro-

cess in which the network stord4 patterns of neural activityzH = {Ei“ =41;i =
1,...,N} (u=1...M). The weightsw;; represent maximal averaged synaptic conduc-
tances between the presynaptic neur@md the postsynaptic neurarwhile, xj € R is

a stochastic variable that influences these maximal coadoes and takes into account
other synaptic dynamics than those due to long-time legrritor fixedW ={w; }, the
network state at timeis determined byA = (S, X = {x}). This evolves in time accord-

ing to
oR(A)
ot

=3 [RA)(A ~A) ~R(AJG(A — A')] @)
A
wherec(A — A') = pcX(S— S) 8¢ x' + (1— p) c3(X — X') 8s g [11]. This amounts to
assume that neurotiS) change stochastically in time competing with a noisy dyreami
of synapses$X), the latter with ara priory relative weight of(1 — p)/p.

For p =1, the model reduces to the Hopfield case, in which synapsesuarehed,
i.e., X is constant and independentioiVithout loosing any generality we can assume
x= 1. This limit has been widely studied in the last decades arsdiéyond the scope of
the present work. In the next sections we study the moredastieig case op — 0, which
describes fast synaptic fluctuations. Afterwards we shiatlysa particular example of
the general casp < 1, which assumes a coupled dynamics for neurons and synapses in
the same temporal scale.

THE LIMIT OF FAST FLUCTUATIONSAND THE EMERGENCE
OF UNSTABLE MEMORIES

The limit of p — 0 describes fast synaptic noise affecting the synapseshwain have

different causes as mentioned above. Recordings in re&riexgnts show that these
fluctuations are very fast — of order of the millisecond — canepl with the typical mean
inter-spike interval. We can then use in Eqg. (2) the lipyt: O to take into account these



fluctuations. In this limit, one can uncouple the stochasfitamics for neuronsSj and
the synaptic noiseX) using standard techniques [12]. It follows that neuror@\evas
in the presence of a steady distribution for the ndist# we write R (A) = R(X|S)R(S),
whereR (X|S) stands for the conditional probability &f givenS, one obtains from (2),
after rescaling timép — t and summing oveX, that

Z{H )C[S — S| —R(S)c[S— S]}. (3)

Here,c[S— S| = Yx PS(X|S) cX[S— S, and the stationary distribution for the noise
is
>x X' — X]P¥(X'|S)
, (4)
Yx CS[X — X]

The expression (4) involves an assumption on how synapisemtepends on the overall
neural activity. An interesting specific situation is tows® activity-dependent synaptic
noiseconsistent with short-term synaptic depression and/dlititwn [7, 10]. That is,
let us assume th&*(X|S) = ; P(x;|S) with

P(xj[S) = ¢ (M) 6(xj — ) +[1—-{(M)] 6(x —1). ()

Here,m =m(S) = (m'(S),...,m"(S)) is theM-dimensional overlap vector, agdm)
stands for a function ofh to be determined. With this choice, the average over the
distribution (5) of the noise variable i§ = [ xjP(x;|S)dx; = 1— (1—®) (M) and the
variance iso? = (1 — ®)?Z (M) [1— ¢ (M)]. Note that these two quantities depend on
time for @ # 1 through the overlap vecton, which is a measure of the activity of the
network. Moreover, the depression/facilitation effec{3j, namelyx; = ® > 0 (P # 1),
depends through the probabiliy(m) on the overlap vector, which is related to the
net current arriving to postsynaptic neurons. Conseqyetiitt non—local choice (5)
introduces non-trivial correlations between synapticeaind neural activity. One has a
depressing (facilitating) effect fob < (>)1, and the trivial case&P = 1 corresponds
to the static Hopfield model with static synapses. Note takihough the fast noise
dynamics occurs at a very small time scale, the depressifigcitating mechanism
occurs at the time scale of the neural activity —via the cogplvith the overlap vector
through the functiord (m).

The interest is on the nature of the fixed point solutions 0$.H8-5) and their
stability. This can be done in the case of asynchrorsmegiential spin—fliglynamics
for the neurons, namely, stochastic local inversigns> —s as induced by a bath at
temperaturel. The elementary rate then reducesctdS — S| = W[u X(S,i)l, where
we assuméb(u) = exp(—u)W(—u), W(0) = 1, W(w) = 0 anduX(S,i) = 2T ~1sh*(9)
[12]. Here h¥(S) = 5. Wjx;s; is the net presynaptic current or local field on the
(postsynaptic) neuroin In the following we uséP(u) = e~/2. Under the standard mean
field assumptiors = (s), the simplest situation occurs for only one stored pattéat, t
is M = 1. In this case, one easily obtains the mean-field fixed-pamnation (See [13]
for details),

PY(X[S) =

m=tanh{T'm[1— (m)?(1-®)]}, (6)



FIGURE 1. Stable steady-state memory solutions of the map (6) as gidaraf T and from bottom to
top, ® = 0.5,1,2 corresponding to depression, static and facilitatiomasions, respectively. Data points
correspond to Monte Carlo simulations fbr= 0.5, 2 showing the accuracy of the mean field results. The
graph in the inset is the phase diagramd), where second (solid) and first (dashed) order transition
between the memory (F) and non-memory (P) phases are depicte

m= m"=1, which preserves the symmettyl. Local stability of the solutions requires

that .
1 (T-T)\?
ml > muT) = - (o) )

The behavior of (6) is illustrated in Fig. 1 for several vauaf ®. This indicates
a transition from aferromagnetic—likephase, i.e., solutionm # 0 with associative
memory, to gparamagnetic—likgphasem = 0. The transition is continuous or second
order only for® < ®; = 4/3, and it then follows a critical temperatufig = 1. The
inset of Fig. 1 shows the tricritical point &f., ®.) and the general dependence of
the transition temperature wit®. This result differs dramatically from the standard
Hopfield fixed point solutions. For a given temperature, tifece of fast synaptic noise
is to decrease the net current arriving to the postsynapticam (which is proportional
to the overlapm) for ® < 1, as in actual depressing synapses, and to increaseiitfot,
as in the case of facilitating synapses. Moreover, an anditieffect is the increase of
the sensitivity of the network response when an externalutis is applied in the case
of depressing fast nois@(< 1), see Fig. 2.

This inherent instability of the attractors becomes evemenotear when one uses a
different type of neuron updating running from asynchransequential to totally syn-
chronous parallel updating (see Ref. [14] for a detailedytresulting in the appearance
of a oscillatory phase in which the neural activity contislyyumps among the stored
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FIGURE 2. Sensitivity of a neural network under external stimulafiothe presence of noise induced
synaptic depression: Panel A shows, for a single storeénpatthe effect of a weak external stimulus
I1#t= _5¢& with & <« 1. This stimulus tries to drive the activity of the network frdhe basin of attraction

of the pattern towards the antipattern. The top graph cporeds to the case of static classical synapses
(® = 1) and the bottom for the case of noise induced depressbos 0.05). All simulations were
performed at temperatufie= 0.15. Lines in each graph are from above & 0.2,0.25,0.3,0.4. Panel

B shows the sensitivity of the system under repetitive exterandom stimulus when the network stored
4 overlapping patterns. The top graph shows the Hopfielitstate ¢ = 1), and the bottom the noise
induced depressing case with=0.1. Here, neuron activity is represented at vertical axid,saamulation
parameters ald =400 T = 0.1 andd = 0.3

memories oattractors.In some conditions, this dynamics become chaotic whiclnallo
for a more efficient dynamical retrieval of memories (see BjgDefiningn as the num-
ber of neurons that are updated synchronously at the samestap, one can visualize
how the dynamical properties of the network change when poeases the density
p =n/N. This is shown in Fig. 3 where we plotted phase trajectorige@mmean firing
rate defined ag = % Si(1+s). When one increasgs from 0 to p = 0.443 in the
simulation presented in the figure, the network stable meadrecome unstable and
transitions between nearest memories occur. If one inesgagven more, dynamical
transitions between more distant memories begin to ocaouar tlae time during which
the activity of the network is close to a particular memorgoatiecreases (not shown).
Finally, if we increasep more (for instance, aroung = 0.6 in Fig. 3), there is a tran-
sition to a state in which the activity of the network rapigliynps between a memory
pattern and its antipattern.
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FIGURE 3. Chaotic itineracy in a neural network with depressing fast@ under the effect of an
hybrid updating. The graph shows how by increasing the tieaneurons that are being synchronously
updated, that ip, the number of visited attractors is also increased untillaevat which a periodic
jumping between a pattern and its antipattern occurs. Td hiliphase-plane trajectories we used standard
false-neighbours techniques with a time delay m&fd an embedding dimension of 5

MODEL OF DYNAMICAL SYNAPSESFOR p>0ANDITS
EFFECT ON MEMORY STABILITY

At intermediate value op, we may consider synaptic temporal changes in the same
scale that the typical interspike interval of neuron atgjvihat is, in the range of a
few milliseconds. This is consistent with actual neural raedhere activity-dependent
mechanisms, such as short-term depression and factifatperate at the time scale of
neural activity. In this section, we study the interplayvibetn these synaptic mecha-
nisms and the neural activity within a mean-field approaalr. §€arting point will be



now the phenomenological model of dynamical synapsesdoted in [7]. We conclude
on the implications of a competition between synaptic degpom and facilitation on the
performance of a neural network.

As above, we considét binary neurons and use the formalism introduced previously
for p > 0. The distribution for the synaptic noise is now

P(xj|S) = d[x; — ®j(t)], (8)

which in fact impedes any kind of fast synaptic noise. HgJes ®j(t) = Z; (t) .7 (1),
that is, the mean is the product of two dynamical variables ¢iolve in the time scale
of the neural activity, namely, and represents the state of the dynamical synapse con-
necting neurons and j with depressing % (t)) and facilitating (#j (t)) mechanisms.
With the choice (8), the microscopic dynamics describiragisastic neuron changes
is C[S — S| = W[u(S,i)], whereu(S,i) = 2T 1shi(S). In the following we will con-
sider the ratéP(u) = 1/2[1 — tanhu)] which also satisfies the required symmetry and
normalization conditions and results most adequate wherconsiders all the neurons
synchronously updated.

Using parallel synchronous updating, each neuron folldw@gtrobabilistic dynamics

Prob{g; (t+1) =1} = % {1+tanh[2T *hi (t)]}, (9)

whereg; = %(1+s—), o’ = o(t+1) and we only consider spin-flip changes. The local
fields h; (t) = z’j\':lv_vij.@j (t) Zj (t) oj (t) — 6 represents the total presynaptic current
arriving to the postsynaptic neuran Here, 6; is the threshold of neuronto fire.
Again,W;; are the static synaptic weights dueMostored patterns, namel§y, = {&" =
1,0},v=1,...,M. Inthe present 0 code, it turns out convenient to choose the standard
covariance learning rule, nameiy,j = m SVvii(&Y —a)(E) —a) with (&) =a.

The complete dynamics for depressign (t) and facilitation.#; (t) was reported
in [7]. Here, we use a simplified version of that model in whigh(t) = r;(t) and
Zj(t)=U +(1-U)u;(t), beingr; (t) the fraction of neurotransmitters which are in
a recovered state. A fraction of these neurotransmittensiety,Ur (), is ready to be
released after the arrival of a presynaptic action potetia= 1). The remaining,
(1—U)r(t), can also be released by facilitating mechanisms whose dgesasdriven
by the variableu; (t) . For simplicity, we assume that the complete dynamics isrdsst
by the discrete system of equations

1-rj(t)
Trec

uj (t)
Tfac

rit+1)=r;(t)+

=Urj(t)oj(t) - (1-U)u;(t)rj(t) oj (1),
(10)

uj (t+1) =uj(t) - +U [1-uj(1)] 0 (1),

whereTrec and Ti5c are the time constants for depressing and facilitating raeisims,
respectively. Again, as in the model of the previous sectilba static Hopfield case is
recovered fokj = 1. This can be achieved in the present modeltfgg — 0 andU = 1.
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FIGURE 4. (Left) Behaviour of the maximum absolute value for the eigdmes driving the
dynamics around the fixed points, for=T = 0.1 andtc = 20 ms. Herej,. and 1,5 are,
respectively, the critical points at which the ferromagn@¥) and oscillatory phases (O) become
unstable. Forec > Tya,, the paramagnetic states (P) are the only ones that remaie sight)
The emergence of different dynamical behaviours by conshpincreasingec from 4 to 18
during 3 seconds.

The system of equations (9-10) can be solved within the stahtean field approach
0 ~ (g;) and in the limit of only one stored pattecn= M /N = 0 anda = 1/2. Most
of our conclusions are also valid for many patterns, howesewe will show latter. The
resultis a discrete 6-dimensional mgip,1 = F (), wherey = {m,,m_,r,r_,u,,u_}
is a vector whose components are order parameters whichumneeasspectively, the
overlap with the stored patterm(= mt), the mean depression leve) @nd the mean
facilitation level 1), in the neurons that are active- Y or inactive ) [15]. The local
stability of the steady state solutions can be studied byyaimg the behavior of the
eigenvalues, namel); associated to the local dynamics of this map (see Ref. [15] fo
further details). In particular, fixed points become ungaihen the maximum absolute
value of all eigenvalues, namelp |max is bigger than one. Fig. 4(left) sShowa |max
as a function oftec for U = T = 0.1 and 155 = 20 ms. Then, the analysis of the
stability of fixed points reveals three different regimeshea behaviour of the system.
First, a ferromagnetic-like phase associated to standaacative memory appears for
Trec < Tjee Second a paramagnetic-like or non-memory phase occursdor /o
Finally, an oscillatory phase in which the network activgyumping between different
memories appears fafs. < Trec < Tjac- Fig. 4(right) shows the emergence of these three
phases when one continously varigs: in the interval[3,18] during three seconds.
Fig. 5 shows phase diagrams obtained by plotting the criiivas at which transitions
between these three phases occur for different values gbdahemeterSyec, Trac and
U. By inspection of these diagrams and Fig. 5B, one observdashbawidth of the
oscillatory phase enlarges for increasing valueggfand decreases with

A detailed analysis of the oscillatory phase shows that ticess to the stored mem-
ories and the error in the retrieval of such memories styodgbends on facilitation
and on its competition with depression. This is shown in Bigthere the half period of
the oscillations in the overlap with a pattam= m, —m_ and its maximum absolute
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FIGURES. Phase diagrams far = 0 and several values of the relevant parameters defining the
dynamics of the synapses, namblyrec, Trac andT. The panel A represents the phase diagram
in the plane tec, Trac) at temperaturd = 0.1 andU = 0.1. The dashed (solid) line correspond

to the line of critical 1., (7,a0) Where recall (oscillatory) phase disappears. In the pBniel

is shown, from top to bottom, the width of the oscillatory peadefined af = 1,5, — /5 IN

the (Trec, Trac) Plane for increasing values of the temperature. Panel f2gponds to the phase
diagram in the planetfec,U) for T = 0.1 andy = Trac/ Trec = 0.25. Panel D is the phase diagram

in the plane T, Tta¢) for U = 0.1 andtec = 3 ms. In panels A,C and D, solid lines correspond to
second order phase transitions and dashed lines to first-phéise transitions.

value is represented as function Bf, for different values oft,ec andU =T = 0.1.
The appearance of the oscillatory phase is the result ohftahbility of the fixed-point
ferromagnetic solutions, as in the model of the previousi@@cHowever, in this case
dynamics is periodic for the case of one pattern.

We have also investigated, for several values of the deipgeasd facilitating param-
eters and in the limit ofr — 0 (M = 1), the sensitivity of the network under external
stimulation, namelyieXt: iéfil, during a time interval of 20 ms. The pulse is such that
it takes a positive value at tintéf m*(t — 1) < 0 and a negative value fifit(t — 1) > 0.
Some of the resulting picture is illustrated in Fig. 7, whitre network is responding to
a periodic external stimulus of amplitude= 0,0.01,0.1,0.4. This shows (left panels)
how the presence of an activity-dependent dynamics on thepses through the vari-
abler(t) induces instability of the memories, which allows for a betesponse to the
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FIGURE 6. (Left) Dependence of the half period during the oscillatagime as a function
of Tiae. (Right) Dependence of the maximum of the ovenlaas a function also of,c and
four different values off,ec. Both panels illustrate that strong facilitation (largeued ofts,c)
produces a more rapid access to stored information and etk érror, in particular when
depression is not so high (smaller valueg@f). The figure also shows the opposite effect due
to depression, that appear for week facilitation (smalugalof 1;5c). Data points correspond
to Monte Carlo simulations forec = 10 ms confirming the mean field results. The vertical
dashed line in the left panel marks the critical valuesgf in which the oscillations disappear
for Trec= 13 ms.

stimulus even if it is very week. On the contrary, for stajoapses as in the Hopfield
model (right panels), the system is not sensible to stimaasonly when its amplitude
is very large some tiny level of response appears in the n&taaivity. The figure also
shows that increasing facilitation, that is for larger e wf 1., the stability of the fer-
romagnetic solution also increases. This is shown in therskteft panel of the figure
where increasings,c from 0 to 80 ms impedes a efficient response to a week stimulus
of 6 =0.01

The case of many stored memories, can still be studied noatigri Preliminary
studies show that, similarly to the case of only one pattitiere are three main phases.
That is, paramagnetic, ferromagnetic and complex oseilfgthases where, depending
on the relevant parameters, the activity jumps between meara mixture states. An
example of this behavior is shown in Fig. 8. The figure repres¢he autonomous
behavior of the network activity in the oscillatory phase fe.= 40 ms,T = 0.01,
U = 0.1 andM = 10 overlapping patterns, each one withconsecutive neurons in
an active state, namel§’ = 1, starting at positions + vN/M, with v =0...M — 1.
The top and bottom raster plots correspond, respectively,d= 10 and 200 ms. This
figure shows how an increase of the facilitation effect afidor a faster access to stored
information but during a shorter period of time

We have also investigated the response of the network untennal stimuli when it
stores many patterns (= 0). An example of this study is showed in Fig. 9. The figure
shows (left panels) that including realistic dynamic sygegresponds more efficient to a
varying external stimulus, even when the stimulus is vergky@lote that the amplitude
of the stimulus i® = 0.1 in this simulation). On the contrary, the static Hopfieltivark
is unable to respond to the stimulus. Only when its amplitbéeomes large enough
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FIGURE 7. Response of the network activity, measured in terms of thelagm, under a
periodic external stimulus for dynamic (left panels) anatist(right panels) synapses in the
limit a — 0 (M = 1). Simulation parameters afle= 0.1,U = 0.1, T;ec = 3 ms for dynamic
synapses an@l = 0.1,U = 1, 1,¢c = 0 ms for static synapses. The increasing protocol from
Ttac = 0 ms to i, = 80 ms plotted in the two bottom graphs was applied in bothsdeghe
case of static synapses this protocol has no effect bethusi.

(0 = 0.42) the system begins to have some non-efficient responge timulus (See
right panels). These results agree quantitative and qtigéty with those reported in
the previous section for the fast-noise depression model.

DISCUSSION

We have reviewed here a theoretical framework to study rdiffemodels of activity-

dependent processes which occur at different time scalesural networks. We have
first introduced a model which includes biologically mote@ synaptic noise whose
dynamics is coupled with that of the network activity via gteady-state noise distri-
bution (5). This aims to mimic synaptic depression and/eilifation. It follows that

the network exhibits much more varied and intriguing bebathan the standard static
Hopfield model. For instance, the network exhibitsdok 1 a high sensitivity to exter-
nal stimuli and, in some conditions, chaotic jumping amdrgsgtored memories, which
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FIGURE 8. Raster plots showing the behaviour Mf= 100 binary neurons with dynamic
synapses including facilitating mechanisms. Each blatkdwesponds to a neuron firing event.
Top and bottom graphs correspondrig = 10 ms and 200 ms, respectively. Other parameters
areTec =40 ms, T =0.01, U = 0.1 andM = 10 overlapping patterns.

allows for better exploring the stored information. Thedietical framework presented
is general enough to allow for investigating more realissumptions concerning the
noise distribution; in this way, the presented models caretased to other models in
the literature.

On the other hand, we have illustrated that networks inalgighhenomenologically-
motivated dynamical synapses which account for short-taaifitation and depression
show complex behavior which depends on the relative balbatgeen depression and
facilitation. For low depression, a memory phase occurs.veoy large depression or
facilitation, the phase exhibits no memory. For intermesdfacilitation and/or depres-
sion, an oscillatory phase with the activity of the netwankping between the attractors
appears. We also observed that a high facilitation enhaheasetwork ability to switch
among the stored patterns, as well as its adaptation tonektgimuli [15]. Other inter-
esting new phenomena are, for instance, that the memone hsappears earlier for
a fixed degree of depression and temperature. Moreover, senabin the oscillatory
phase that its width in the corresponding phase diagraneases with facilitation, as
shownin Fig. 5. In addition, the frequency of the oscillas@lso increases with facilita-
tion. As a consequence, it seems one should conclude thigatean allows to recover
stored information with less error but during a shorter @eaof time. This supports the
idea that synaptic facilitation influences the processesboft-term memory. The facility
to switch could be interesting to code both spatial and tealpoformation, and could
explain, for instance, the spatio-temporal dynamics iretirdy olfactory processes [16].
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FIGURE9. Response of a neural networkif= 1000 neurons storinlgl = 5 random patterns
under a time varying external stimuly® = 6&", wherev changes randomly during time in
the set[1,M] (see two bottom panels). Left panels shows that the respafntbe network to
stimuli is efficient for dynamic synapses even for very snséilnulus amplitude § = 0.1).

On the contrary right panels show a non-efficient responsatfiic synapses even for very
large stimulus amplituded(= 0.42). The two bottom panels show the pattern that every time is
presented to the network in the stimulus.
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