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Lennard-Jones and lattice models of driven fluids
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We introduce a nonequilibrium off-lattice model for anisotropic phenomena in fluids. This is a Lennard-
Jones generalization of the driven lattice-gas model in which the particles’ spatial coordinates vary continu-
ously. A comparison between the two models allows us to discuss some exceptional, hardly realistic features of
the original discrete system—which has been considered a prototype for nonequilibrium anisotropic phase
transitions. We thus help to clarify open issues, and discuss on the implications of our observations for future

investigation of anisotropic phase transitions.
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The concept of nonequilibrium phase transition (NPT)
[1-3] helps our present understanding of many complex phe-
nomena including, for instance, the jamming in traffic flow
on highways [4], the origin of life [5], and the prehumans
transition to mammals [6]. Many studies of NPTs have fo-
cused on lattice systems [7-13]. This is because lattice real-
izations are simpler than in continuum space, e.g., they
sometimes allow for exact results and are easier to be imple-
mented in a computer. Furthermore, a bunch of emerging
techniques may now be applied to lattice systems, including
nonequilibrium statistical field theory. A general amazing re-
sult from these studies is that lattice models often capture the
essentials of social organisms, epidemics, glasses, electrical
circuits, transport, hydrodynamics, colloids, networks, and
markets, for example.

The driven lattice gas (DLG) [14], a crude model of “su-
per ionic currents” [15], has become the theoreticians’ pro-
totype for anisotropic NPTs. The DLG consists of a lattice
gas with the particles hopping preferentially along one of the
lattice directions, say X. One may imagine this is induced by
an external drive EX, e.g., an applied electric field assuming
the particles are positive ions. Consequently, for periodic
boundary conditions, a particle current and an anisotropic
interface set up along X at low temperature 7<<7Tp. That is, a
liquidlike phase which is striped then coexists with its gas.
More  specifically,  assuming—for  simplicity  and
concreteness—the square lattice half filled of particles,
Monte Carlo (MC) simulations show that the function T
monotonically increases with E from the Onsager value T
=Tonsager=2.269Jk3' 10 T..=1.4T¢per. This limit corre-
sponds to a nonequilibrium critical point. As a matter of fact,
it was numerically shown to belong to a universality class
other than the Onsager one, e.g., MC data indicates S
=0.33 (instead of the Ising value S=1/8 in two dimensions)
for the order parameter critical exponent [11,16—18].

Statistical field theory is a complementary approach to the
understanding of nonequilibrium ordering in the DLG. The
derivation of a general mesoscopic description is still an
open issue, however. Two different approaches have been
proposed. The driven diffusive system (DDS) [8,19,20],
which is a Langevin type of equation aimed at capturing all
the relevant symmetries, predicts that the current will induce
a predominant mean-field behavior and, in particular S
=1/2. The anisotropic diffusive system (ADS) [21], which
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follows after a nonrigorous coarse graining of the master
equation, rules out the relevance of the current and leads to
the above-indicated MC critical exponent for E— . How-
ever, the ADS approach reduces to the DDS for finite E, a
fact which is hard to be fitted to MC data, and both contain
disquieting features [22].

In any case, field theoretical studies have constantly de-
manded further numerical efforts, and the DLG is nowadays
the most thoroughly studied system showing an anisotropic
NPT. The topic is not exhausted, however. On the contrary,
there remain unresolved matters such as the above-
mentioned issues concerning critical and mesoscopic behav-
iors, and the fact that T}, increases with E, which is counter-
intuitive [23]. Another significant question concerns the
observation of triangular anisotropies at early times after a
rapid MC quench from the homogenous state to 7<<T}. The
triangles happen to point against the field, which is contrary
to the prediction from the DDS continuum equation [24].

This paper reports on an effort toward better understand-
ing basic features of NPTs. With this aim, we here present a
description of driven systems with continuous variation of
the particles’ spatial coordinates—instead of the discrete
variations in the DLG. We hope this will provide a more
realistic model for computer simulation of anisotropic fluids.
Our strategy to set up the model is to follow as closely as
possible the DLG. That is, we analyze an off-lattice repre-
sentation of the DLG, namely, a microscopically continuum
with the same symmetries and hopefully criticality. Investi-
gating these questions happens to clarify the puzzling situa-
tion indicated above concerning the outstanding behavior of
the DLG. The clue is that the DLG is, in a sense, pathologi-
cal.

Consider a fluid consisting of N particles in a two-
dimensional LX L box with periodic boundary conditions.
Interactions are according to a truncated and shifted
Lennard-Jones (LJ) potential [25]

VLJ(rij)—VLJ(VC), if rl»j<r6

0, ifr=r.

V(rij) =

Here, r;;=|r;—7}| is the relative distance between particles i
and j, Vi ,(r)=4€(a/r)"*=(0/r)®], € and o are our energy

and length units, respectively, and r. is the cutoff that we
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FIG. 1. (Color online) Typical configurations during the station-
ary regime of the DLJF subject to a horizontal field of intensity
E"=1. These graphs, which are for N=900 particles and density
p"=0.30, illustrate, from left to right, (a) coexistence of a solid and
its vapor (the configuration shown is for temperature 7"°=0.20), (b)
liquid-vapor coexistence (7°=0.35), and (c) a disordered, fluid
phase (7°=0.50). The left-most graph shows a detail of the solid
strip. The particles, which move in a square box of side \W, are
given here an arbitrary size, namely, diameter=1.10.

shall fix at r.=2.50. The preferential hopping will be imple-
mented as in the lattice, i.e., by adding a drive to the poten-
tial energy. Consequently, the familiar energy balance is (as-
suming kz=1 hereafter)

~TY[H(") - H(E)] + EX X &}. (1)
Where ¢={r|,...,ry} stands for configurations, H(c)

=3,.;V(r;)), and 6=r] —r; is the attempted particle displace-
ment. Defining the latter is a critical step because, as we shall
show, the resulting (nonequilibrium) steady state will de-
pend, even qualitatively on this choice. Lacking a lattice, the
field is the only source of anisotropy, and any trial move
should only be constrained by a maximum displacement in

the radial direction. That is, we take 0<|51 <A, where A
=0.50 in the simulations reported here. The temperature 7,
number density p=N/ L%, and field variables will be reduced
according to T'=T/€, p'=pa?, and E*=Eoc/ €, respectively.
Our model thus reduces for E—0 to the truncated and
shifted LJ fluid, one of the most studied models in the com-
puter simulation of fluids [25,26].

We studied this driven LJ fluid (DLJF) in the computer by
the MC method using a “canonical ensemble,” namely, fixed
values for N, p*, T°, and E*. Simulations involved up to N
=10" particles with parameters ranging as follows: 0.5<E"
<1.5, 0.20<p"<0.60, and 0.15<7 =<0.55. The typical
configurations one observes are illustrated in Fig. 1. As its
equilibrium counterpart, the DLJF exhibits three different
phases (at least): vapor, liquid, and solid (sort of close-
packing phase; see the left-most graph in Fig. 1). At interme-
diate densities and low enough 7*, vapor and a condensed
phase segregate from each other. The condensed droplet (see
Fig. 1) is not near circular as it generally occurs in equilib-
rium, but striplike extending along the field direction. A de-
tailed study of each of these phases will be reported else-
where [27]; we here focus on more general features.

A main observation is that the DLJF closely resembles the
DLG in that both depict a particle current and the corre-
sponding anisotropic interface. However, they differ in an
essential feature, as illustrated by Fig. 2. That is, contrary to
the DLG, for which T increases with E, the DLJF shows a
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FIG. 2. Schematic phase diagrams for the three models, as de-
fined in the main text, showing ordered (OP) and disordered (DP)
phases. The left graph is for the DLG, for which Ty=Tgger The
graph on the right is valid for both the NDLG, i.e., the DLG with
next-nearest-neighbor (NNN) hops, for which 7(=2.35Tpsscr» and
the DLIF, for which 7y=0.459 (Ref. [26]).

transition temperature 7 which decreases with increasing E.
The latter behavior was expectable. In fact, as E is increased,
the effect of the potential energy in the balance Eq. (1) be-
comes weaker and, consequently, the cohesive forces be-
tween particles tend to become negligible. Therefore, unlike
for the DLG, there is no phase transition for a large enough
field, and Ty—0 for E—< in the DLJF. Confirming this,
typical configurations in this case are fully homogeneous for
any T under a sufficiently large field £. One may think of
variations of the DLJF for which Ty_ .=const>0, which is
more realistic, but the present one follows more closely the
DLG microscopic strategy based on Eq. (1) [27].

Concerning the early process of kinetic ordering, one ob-
serves triangular anisotropies in the DLJF that point along
the field direction. That is, the early-time anisotropies in the
off-lattice case (right graph in Fig. 3) are similar to the ones
predicted by the DDS, and so they point along the field,
contrary to the ones observed in the discrete DLG (left graph
in Fig. 3).

The above observations altogether suggest a unique ex-
ceptionality of the DLG behavior. This is to be associated
with the fact that a driven particle is geometrically restrained
in the DLG. In order to show this, we studied the lattice with
an infinite drive extending the hopping to next-nearest-
neighbors (see also Refs. [28,29]). As illustrated in Fig. 4,
this introduces further relevant directions in the lattice, so

FIG. 3. (Color online) Triangular anisotropies as observed at
early times for E=1 in computer simulations of the lattice (left) and
the off-lattice (right) models defined in the main text. The DLG
configuration is for t=6x 10* MCS in a 128 X 128 lattice with N
=7372 particles and T=0.4Tgpgager- The DLIJF configuration is for
1=1.5X10° MCS, N=10"* particles, p“=0.20, and T"=0.23.
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FIG. 4. Schematic comparison of the accessible sites a particle
(at the center, marked with a dot) has for nearest-neighbors (NN)
and next-nearest-neighbors (NNN) hops at equilibrium (left) and in
the presence of a large horizontal field (right). The particle-hole
exchange between neighbors may be forbidden (x), depend only on
the potential energy (T), or occur with probability 1 (E).

that the resulting model, to be named here NDLG, is ex-
pected to behave closer to the DLJF. This is confirmed. For
example, one observes in the discrete NDLG that, as in the
continuum DLIJF, T decreases with increasing E—though
from Ty=2.35T gpgger in this case. This is illustrated in Fig. 2.

There is also interesting information in the two-point cor-
relation function and its Fourier transform S(k). In fact, the
DLG displays (more clearly above criticality) slow decay of
two-point correlations [30] due to the detailed balance viola-
tion for E+# 0. For a half-filled lattice, this function is C(7)
=(s;57.5)—1/4, where s; is the occupation number at site g
and the steady average (- --) involves also averaging over g.
Analysis of the components along the field C(x,0) and trans-
verse to it C(0,y) shows that correlations are qualitatively
similar for the DLG and the NDLG—although somewhat
weaker along the field for next-nearest-neighbor (NNN)
hops. That is, allowing for a particle to surpass its forward
neighbor does not modify correlations. The power-law be-
havior translates into a discontinuity of S(k) [30], namely,
lim__S(k,,0) #lim; _S(0,k,), which is clearly confirmed
in Fig. 5 for both NN and NNN hops.

The above shows that the nature of correlations is not
enough to determine the phase diagram. There are already
indications of this from the study of equilibrium systems,
and also from other nonequilibrium models. That is, one may
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FIG. 5. Parallel (circles) and transverse (triangles) components
of the structure factor above criticality for the DLG on a 128
X 128 lattice with NN interactions (filled symbols, left scale) at T
=1.58 and NNN interactions (empty symbols, right scale) at T=1.
Temperatures normalized to0 Toygaper- Here, n, =128k, /2.
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have a qualitatively different phase diagram but essentially
the same two-point correlations by modifying the micro-
scopic dynamics [27,29]. It follows, in particular, that the
exceptional behavior of the DLG cannot be understood just
by invoking the functions C(7) and S(k) or crude arguments
concerning symmetries. The fact that particles are con-
strained to travel precisely along the two principal lattice
directions in the DLG is the cause for its singular behavior.
Allowing jumping along intermediate directions, as in both
the NDLG and the DLIJF, modifies essentially the phase dia-
gram but not features—such as power-law correlations—that
seem intrinsic of the nonequilibrium nature of the phenom-
enon.

Rutenberg and Yeung [28] also performed quenching ex-
periments for variations of the DLG. They showed, in par-
ticular, that minor modifications in the DLG dynamics may
lead to an inversion of the triangular anisotropies during the
formation of clusters which finally condense into strips. Our
observations above prove that such nonuniversal behavior
goes beyond kinetics, namely, it also applies to the stationary
state.

The unique exceptionality of the DLG has some important
consequences. One is that this model involves features that
are not frequent in nature. There are situations in which a
drive induces stripes but not necessarily DLG behavior. The
fact that a particle impedes the freedom of the one behind to
move along X for a large enough field may only occur very
seldom in cooperative transport. The NDLG is more realistic
in this sense. In any case, the great effort devoted to the DLG
during two decades has revealed important properties of both
nonequilibrium steady states and anisotropic phase transi-
tions, and there are some unresolved issues yet. For example,
a general mesoscopic description which captures the excep-
tionality of the DLG remains elusive. According to our ob-
servations above, such a description needs to include the
microscopic details of transverse dynamics which, in particu-
lar, should allow one to distinguish between the DLG and the
NDLG. On the other hand, it ensues that, due to its unique-
ness, the DLG does not have a simple off-lattice analog. This
is because the ordering agent in the DLG is more the lattice
geometry than the field itself. The fact that one needs to be
very careful when modeling nonequilibrium phenomena—
one may induce both a wrong critical behavior and an spu-
rious phase diagram—ensues again in this example. This
seems not to be so dramatic in equilibrium where, for ex-
ample, the lattice gas is a useful oversimplification of a LJ
fluid.

Finally, we remark that a fluid model in which the par-
ticles move in a continuum space has been introduced in this
paper. The particle “infinite freedom” is realistic, as it is also
the LJ potential. It may contain some of the essential physics
in a class of nonequilibrium anisotropic phenomena and
phase transitions. On the other hand, the model is simple
enough to be useful in computer simulations, and it is en-
dowed of even simpler and functional lattice analogs such as
the NDLG.
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