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The influence of nonequilibrium bulk conditions on the properties of the interfaces exhibited by a kinetic
Ising-like model system with nonequilibrium steady states is studied. The system is maintained out of equi-
librium by perturbing the familiar spin-flip dynamics at temperatlineith completely random flips; one may
interpret these as ideally simulating sofdgnamig impurities. We find evidence that, in the present case, the
nonequilibrium mechanism adds to the basic thermal one resulting on a renormalization of microscopic pa-
rameters such as the probability of interfacial broken bonds. On this assumption, we develop theory for the
nonequilibrium “surface tension,” which happens to show a nonmonotonous behavior with a maximum at
some finiteT. The phase diagram, as derived from this effective interfacial free energy, exhibits reentrant
behavior. In addition, interface fluctuations differ qualitatively from the equilibrium case, e.g., the interface
remains rough at zer®, in full agreement with Monte Carlo simulations. We discuss on some consequences
of these facts for nucleation theory, and make some explicit predictions concerning the nonequilibrium droplet
structure.
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I. INTRODUCTION behaves nonmonotonously with decreasing temperature, and

Interfaces that separate different homogeneous media afhibits a maximum at some finite temperature, unlike
familiar from many natural phenomena such as phase segréat monotonously grows as one cools the system. In addi-
gation, wetting processes, fluid dynamics, crystal growthfion, the phase diagram of the model, as derived from this
and molecular beam epitaxy, for instance. In practice, theffective surface tension, exhibits reentrant behavior. We also
interface may determine the system morphology and its critipredict that, due to the nonequilibrium perturbation, the in-
cal properties, or the details of time evolution, which hasterface in this model remains rough at zero temperature. In
motivated many specific studies during the last twoorder to understand this behavior, we analyze the shape of a
decades:’ The phenomena most deeply studied so far congroplet of the minority phase, and conclude how the non-
cern interfaces that separagguilibrium phases. However, equilibrium condition substantially influences the low-
the actual systems of interest are seldom at equilibrium a”ﬂemperature droplet morphology. Our predictions are com-

;)ne often _nee?s to bﬁ concerned V\mﬂmeq_llJ_Lliprium r'%tsé pared with the results from computer simulations, which
aces i.e., interfaces that separate nonequilibrium ph&sés. oo o firmly support them in general.

This paper aims towards a better understanding of how non- The paper is organized as follows. The model is defined in

equilibrium conditions influence the properties of an mter—SeC_ Il, and Sec. Il describes our approximation. The main

face. The results here will be applied in a forthcoming paper . ) . .
to analyze the exit from @onequilibrium metastable state, results are in Sec. IV which also contains some details of the

which is an interface-controlled process, computer simulations and a comparison of the numerical re-

Mathematical complexity often compels one to deal Withsults with theory. Section V is devoted to conclusions.
the simplest model situations. In this paper, we study inter-
faces in a two-dimensional kinetic Ising model. The nonequi-

librium condition is obtained by perturbing the underlying IIl. THE MODEL
stochastic dynamics in such a way that, in general, a non- _ _
equilibrium steady state is reached asymptoticatigtead of Let the square lattice\(Ly,L,) e Z? of size N=L, XL,

the more familiar thermodynamic equilibrium stgte We  with a binary spin variablg = +1 at each nodee [1,N]. We
develop for this case a simple approximation which predictgemind the reader that the two statessofnay be interpreted
both microscopic and macroscopic properties for ghen-  as corresponding to the presence or absence, respectively, of
equilibrium) interface, namely, the profile or single-step a particle ati; this happens to provide a more intuitive pic-
height probability distribution and énonequilibrium “sur-  ture concerning the phenomena of interest here. There is in-
face tension’oye. The latter turns out to qualitatively differ teraction between nearest-neighlspinsgiven by the Ising

from the equilibrium surface tensiom,. In particular,ong ~ Hamiltonian

1098-0121/2004/1@4)/24540910)/$22.50 245409-1 ©2004 The American Physical Society



HURTADO, GARRIDO, AND MARRO PHYSICAL REVIEW B70, 245409(2004

+4
H=- 2 SiSj 1) +3 Dlowllp lﬂm
() 3 !
+2
T T 4] 8 B | &0 l5u
and stochastic dynamics by single-spin flips. The latter occur 0 4 a |3 4] & [4] 5
with transition ratg(per unit timg given by y 3 212] k|3 2|2 3 2
b : 2 : 1
o(s — —5)=p+(1-pV(BAH)). (2 -3 Up 1|ahaTe
1 23 456 7 89 1011 1t
Here, B=1/T—we take both the coupling constant and the X

Boltzmann constant equal to unity—anlH;=4s(n;—2),
wheren; €[0,4] is the number of up nearest-neighbor spins

;;Jrirlo_llfggIr;%sa;'tee'r’mAi?éénfeL?nS;Tgﬁ tif:]eEegze)rgijg Zﬁ;g???mg indicate t_he clasg of the_corre_sponding spin as defined in the main

T o1 - . S text. Notice that interfacial spins can only belong to classes 2, 3,

=e(1+e")tor¥(I)=min[1,e ]; as indicated below, we and 4.

are mostly concerned here with the first choice, except when

the second one allows for an explicit or a simpler descrip-

tion. In any case, both choices lead to the results in this

paper. The interface is first analyzed here by adapting to our case
One may interpret that the paramepein Eq. (2) balances the solid-on-solid(SOS picture introduced by Burton, Ca-

the competition between two thermal baths: one is at tembrera, and Frank® This assumes that the interface can be

peratureT, while the other induces completely random tran-described by a single-valued discrete function completely de-

sitions as if it was at infinite temperature. For0, w(s— fined by the set of interface stepé,,xe[1,L,]}, as illus-

—s) satisfies detailed balance, and the system goes asympated in Fig. 1. No overhangs are allowed in this approxi-

totically to the equilibrium state for temperatufeand en-  mation. Furthermore, the heights of the individual steps are

ergy H. The system exhibits in this case the familiar, On-assumed to be independent. The probability of a step of

sager critical point at T=T(p=0)=Tg=2/In(1+2). height § is assumed to be given by

Otherwise, B<p<1, the competition in Eq.2) impedes ca-

nonical equilibrium and, in general, a nonequilibrium steady P(8) = ;X(T,p)“ﬂey(‘f’)ﬁ. (3)

state sets in asymptotically with time. A critical point is still 4T,p, vP)]

observed in this case, but 8t T(p) <To, as far ap<p.. . - : .
For p> p, the system remains in the disordered phase at anHere X(T,p) is the statistical weight associated to a broken

T. As shown below, our theoretical approach in this paperkgond in the interface, ang(¢) is a Lagrange _muItipIier in-
predicts p —(\2-1)2~0.1716, in perfect agreement with tended to keep the average step value atiadependent
. N S » value(d,)=tan¢, where¢ is theaverageangle between the
previous Monte Carlo estimatiof%.In addition, when sub- ‘ d thé& axis'”® The f ; T b
ject to an external magnetic field, this model exhibits meta/Nterface and thecaxis. e function7T,p, y] may be

stable states whose strength decreases with increasing fiefPt@ined from the normalization of E(), and the “partition

eventually becoming unstable. The spinodal field charactefUnction” for the SOS interface follows aZ(T,p,y)

izing the limit of metastability undergoes an interesting re-=X2T.p, %] This allows one to define a ‘thermody-
entrant phenomenon as a consequence of the nonlinear int&@Mic” potentiale(T,p, y)=lim_ .= (AL,)™*In Z. Our in-
play betweerT and p.X® We will show below that a similar terest is then on the “free energy”(T,p, ¢)—defined as
reentrant behavior is observed for the phase diagra(p). conjugated to the potential(T,p,y) via a Legendre trans-

In the ordered phase belo¥i(p), this system exhibits an form, which involves the variables taf and Ty—and, in
interface for appropriate boundary conditions. Consider, foparticular, on its projection along thex axis. The nature of
instance, periodic boundary conditions along %hdirection, ~ the above approximation is discussed below; we now remark
and open boundaries along thelirection. Then let the spins that our use of equilibrium words here is only for simplicity
in the bottom(top) row freeze in the ugdown) state, while ~and comfort. The general result is

FIG. 1. Example of interface fok,=12 with stepss=(1,-2,
-1,2,2,-2,1,-2,1,1,-1)0The numbers shown in the squares

I1l. SOLID-ON-SOLID APPROXIMATION

the rest of spins are allowed to change stochastically accord- X(1-X2)

ing to Eq.(2). Under these conditions, an interface eventu- () :T|cos¢|{y(¢)tan¢— In 5 }
ally develops along th& direction that separates up- from 1+X*—-2X coshy(¢)
down-spin rich regions located at the bottom and top of the (4)

system, respectively. Fop=0 (the equilibrium casg the

macroscopic properties of this interface are well known. InIn the equilibrium limit p=0, one has the weighX(T,p
particular, its scaling behavior is characteristic of the Kardar=0)=¢€ %, ando,=o(T,p=0,¢) is the SOS surface tension
Parisi-Zhang universality clad$,and one knows the total associated to the equilibrium Ising interfaée!® We shall
free energy per unit length or surface tensi®ihe question assume in this paper that all the main effects of the nonequi-
is how these properties are affected by the nonequilibriuniibrium perturbation(p) on the interface can be taken into
perturbation parametrized hy account after a proper generalization of the microscopic pa-
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rameterX(T,p). The functionoye= o(T,p>0,¢) which re-  this spin. The spirs is said to be of clas(s;,n;)=3-s(n;
sults after using this generalization in E@) is therefore  —2), wheren; is the number of up nearest-neighbor spins of
assumed to be the nonequilibrium “surface tension” in SOS;. That is, our model may exhibit up to five different classes
approximation, and this is expected to capture the macroef spins»=1,...,5?L All the spins in a given class are char-
scopic properties of the nonequilibrium interface. The resultacterized by the same value Af1,=4s(n;-2) and, conse-
ing one is to be interpreted as aeffectivefree energy per quently, by the same rate, E@).
unit length in the present case that lacks of a proper bulk The functionX,(T,p) for classz now follows straightfor-
free-energy function. This definition of nonequilibrium “sur- wardly. Consider Eq(2) with ¥(I")=min[1,e™"] which al-
face tension” is based on the assumption that the normalizagws for a simpler and more explicit discussi®nlf, for
tion Z(T, p, y) of the probability measure associated to inter-instance, a spin in clasg=1 is flipped, four new broken
face configurations in SOS picture is some sort ofponds appear. Sinc&a?,=8, one immediately has that
nonequilibrium analog of the partition function. Similar hy- X,(T,p)=[p+(1-p)e ®]Y4 for the first class. Equivalently,
potheses have been shown to yield excellent results wheg,(T p)=[p+(1-p)e**]¥2 for the second class, and the rest
applied to other nonequilibrium modef$For instance, in  are characterized by the same weight as in equilibrium
the one-dimensional asymmetric simple exclusion procesg,(T p)=X,(T,p)=Xs(T,p)=X(T,p=0). It follows that X,
(ASEF’)fWri]th oper(; boundaries, tlhe d_istr:cbutionh@fogple» HovsX2=Xsas for any 0<p<1, and one may also see that
zeros of the steady-state normalization factor has been sho 0 28 i
to obey the Lee—Y)::\ng picture of phase transitiths. VW,&I\'S rijlas(izgez in ||:ri1depep dent ofy as expected.

i ; s ) ) 0. 1, interfacial spins may only belong

In the simplest scenario—which is consistent with they, cjasses 2, 3, and 4; class 1 corresponds to spins in the bulk
equilibrium limit—the weightX(T,p) will not depend on ¢ (either up or down homogeneous regions and class 5
¥(#). An explicit relation betweeny(¢) and tang can then  ¢orresponds to typical isolated fluctuations in the bulk. Con-
be obtained. In particular, usin@y) =tan¢, one finds that  gequently, for the case in considerat?ronly two weights
2 X, and X3=X, are relevant. An even simpler description en-
eé) = (1 +XOtand + S(¢), (5) sues assuming, which amounts a reasonable mean-field ap-

2X(tan¢+ 1) proximation, that interfacial broken bonds have an unique
statistical weight equal to theeightedaverage o, and X,
)= (1-X?(1-tarf ¢) ©) namely,
= . ,
1+X°-S¢) X(T,p) = (T, p)Xo(T, p) + [T15(T,p) + I1,(T,p)IXo(T,p).
where S(¢)=[(1-X?)?tar? ¢+4X%]Y2 and we dropped an (8)
obvious dependence dnandp. The nonequilibrium surface ) N ) ]
tension(4) may now be explicitly written as Here, I1,(T,p) is the probability of an interfacial broken
) bond associated to a spin of clagsAlternatively, given that
_ (1+XI)tang + S(¢) any bond can be arbitrarily associated to any of the two spins
o(¢) —T|cos¢|{(tan )in 2X(tan¢ +1) at the ends, we may interprét,(T,p) as the probability of

an interfacial up spin of class . Therefore, I1,(T,p)

X(1-X3)(1 - tarf ¢) 7)  +(T,p)+11,(T,p)=1.

1+X2-9(¢)

Equations(3) and (7) are two important properties of the B. Population of interfacial spin classes

interface at the microscopic and macroscopic levels of de- . . .

scription, respectively. Interesting enough, Ef).reduces in Next, we estimate the population densitiék,(T,p),
equilibrium (p=0) to the knownexactresult for¢=0. Italso ~ Which requires a detailed counting beyond the SOS approxi-
yields a very good approximation for any angle mation. LetP(J, €) the joint probability that a step variable
|| < 7/ 4:152%0r |$| > /4, it is convenient to turn to thi equalsé and the step variable at its right & This com-
(instead of) axis as the reference frame(T,p=0,$=0) is pletely characterizes the population of each interfacial class

a monotonously decreasing function Bf which converges n tge 'nYOIVﬁd C(lalumnb Consider, fo(; |Est§mcg, the cﬁse
toward 2 asT — 0, and vanishes at the exact Onsager criticalf~ 9 s In the column etwgenz4 andx=>5 n Fig. 1. This
temperature. In addition, the angular dependence(df,p column containsd+ ¢ interfacial Spins, of whiclg+e—2 are
=0,4) may be used to determine the equilibrium crystaIOf class 2 and the other two spins are of class 3. On the other

LT T . . and, this configuration involve§+e+1 broken bonds, of
shape via minimization of the total surface tension for a fixed . S . ) )

. . which 6+ 1 belong to up spins in this column; following our
volume in a homogeneous droplgVulff constructior).

convention above, the otherbroken bonds may be associ-
ated with the up interfacial spins in the column between
+1 andx+2. In order to go further in the analytical solution

At equilibrium, the weight equals the Boltzmann factor of the problem, let us neglect column-column correlations by
X(T,p=0)=e"28 (2 is the energy cost of a broken bond assuming that broken bonds in the interfacial column are to
More generally, 6<p<1, the weight of a broken bond de- be associated to interfacial spins in this column. Bpre
pends on the local order surrounding the spin at the end of 0, one hass+e—2 broken bonds associated to interfacial
the bond. One may say th&t{T,p) depends on thelassof  spins of class 2, and three broken bonds associated to spins

—-1In

A. Statistical weight of a broken bond
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TABLE I. The nine different typical configurations of an inter- TABLE Il. Number n,(4,¢€) of up interfacial spins of clasg
facial spin column in our approximation. These configurations are=2,3,4 for the column configuration types defined in Table I. The
defined by the signs of the leff,and righte steps. The last column last column shows the total number of up interfacial spins associ-
shows the probabilityP(5,e) of each configuration. Heregq ated to each type.
=min(|d],|e[) and A=max(|d,|€); see the main text for other
definitions.

Step variables  ny(4,€) n3(8, €) Ny(6, €) N(&,€)

Step variables Configuration P(d,¢) x Q 50, =0 51

6>0, =0 6-1
6>0, <0 A—a a-1
5=0,€>0 1
6=0, e=0 1
6=0, €<0 le-1
§vo—1+vy2 6<0,€>0 1
KXy A 5<0, €=0 1
0<0, e<0 le-1

[N
o
57

[EnY

e

§>0,e>0 ASFe gkl 8

o

0>0,e=0

O 0o oo ok o
=P

P O O Fr O O

el

ASteXpme xZot
with their statistical weights. Notice that, as one may con-
clude from Table | and Eq23), the probabilitiedP(s, €) con-

AEX§‘1X§ verge ap— 0 to the SOS equilibrium valu¥P(5)P(e).
The densitied,(T,p) may be written as an average over
X all possible interfacial column configurations

o0

-1 I,Tp= 2 m(80P(Se. 9
ASXE— X2 R
Here, (4, €) is the probability of finding amip spin of class
ne[2,4] in an interfacial column characterized by the pair
Ad+e xA—a x 20+l (6,€). In general,m,(5,€)=n,(5,€)/N(6,€), wheren, (3, )
9 3 is the number ofip spins of class; in an interfacial column
characterized byé, €), andN(4, €) is the total number ofip
5 w1611 vo interfacial spins associated to this column. Table Il shows
AX," T X; ni(8,e) andN(8, €) for all possible configurations.
The densitieg9) will depend on the average interface
slope tanp through the Lagrangian multipliey(¢). This de-
pendence is inherited in general by the average weight of a
A5+€X$6|+|6|_2X§’ broken bond in the nonequilibrium regim&T,p), see Eq.
(8), and it makes the explicit calculation of the nonequilib-
rium surface tension unfeasible, see Sec. Il A. Therefore,
further simplifications are needed. We shall assume that the
of class 3. Let us assume also that, in general, the probabilitg%??_lgﬁilg(zgl EZ«L?:Eq.rf ?;C?:LeesﬁgggrﬁngTatfiizeamo_

?rfea g:\ézzé?tg;faﬁfgggiﬂgg %?cngggr:a%?nﬂipl;?glggr'logilntgstropy implies that the interface tends in general to orientate
hi ?1 f i Wp h that parallel to any of the principal axis, which has a lower en-
which form It. ¥ve have tha ergy cost. Therefore, for regions of the parameter space

1 (T,p) where such tendency is strong, it is justified to particu-
P(6>0,e>0)= E{A5+EX?E_2X§}, larize the population$l,(T,p) to the case tag=0. On the
other hand, the parameter-space regions in which that ten-
where Q is a normalization factor and\(¢)=e”% .23  dency is weak are characterized by an effective isotropy, so
Equivalently, for§>0 ande<0 one may write that that particularizing to a given orientation, e.g., tan0 is
valid. This approximation amounts to assume that the rel-
evant orientation dependence entering the definition of the
nonequilibrium surface tensiof) comes from the depen-
dence onA(¢) that appears in the probabilif(5) of a step
wherea=min(|4,|¢) andA=max(d|,|€|). Table | shows all of size s in the interface, see E¢B). A higher order, iterative
of the possible interfacial column configurations, togethemprocedure to take into account tledependence oX(T,p

0<0,e>0

0<0,e=0

e e e

0<0,e<0

1
P(6>0,e<0)= é{A&exg-axgaﬂ},
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>0) would consist in(i) calculateX©=X(T,p) using the L e e e
tan =0 simplification,(ii) useX® to computeA®(¢) as a ok _
function of ¢ from Eq. (5), (iii) replaceA©(¢) in the gen-
eral, A(¢)-dependent expression fT,p), and use the so-

definedX® in Eq. (7) to compute an improved approxima- T i

tion to the nonequilibrium surface tension. We do not expect S0’ 8

this complex procedure to produce a significative improve- o'k 4

ment of our approximatiogwhile the resulting formulas are &

much more involvey o T
AssumingA(¢)=1, and usingm,(J,€) as given in Table 10°F 8

[I, we obtain from Eq.(9) that

X2 2x 2 X
1,= 3{ S+ {2+—3In(1—x§)}

2= E (1-X)%2 1-X%X, Xs FIG. 2. The symbols are Monte Carlo results for the probability
of stepé for a system of sizé., X L,=256X 128 at temperaturé
+ E IN(1-X,) + XoX3 3 + 1 =0.3Tp, with tan$=0 and different values of the nonequilibrium
5 CaEY -X, Xg—Xé 1 —X§ perturbation, namelyp=0, 0.01, 0.02, 0.03, 0.04, and 0.05 from
) bottom to top. Solid lines are the corresponding theoretical predic-
+ X3 2 In 1-X; _ X3 + X_z tion (3). For the shake of clarity, the curves are shifted by a factor
X, — xg Xo = x§ 1 _xg 1- xg X% ' 2, i €[0,5] in the vertical direction, where=100X p.

(10 these simulations, i.e., bulk, class-1 spins remained frozen to
The same method leads to prevent the nucleation of droplets in the bulk to interfere the
XX NG 1-x2 interface dynamics. This turns out to simplify not_ably the
:L{_?) In—23 4 In(l—Xg)}, (11)  analysis while it does not modify essentially the interface
QX =XHL X (1-X)° structure except close to the critical temperature, where fluc-
and the normalization condition givesITy(T,p)=1 tua_tign of ali sizes occur. In fact, we c.arefull_y checked the
~IL(T.p)~TL,(T.p). The factorQ foll f th3e riormal- validity of this assertion by computer simulations.
—a1,p a1, P). The faclore Tofllows from The interface was thus observed to eventually reach a
ization of P(8, €) for A(¢)=1 as steady state, in which we measured the interface microscopic
2%2 {2 X XX, structure as a time average 6f{s,i=1,... L J—taking

4

Q= 1-x 1-x + > into account somgsmall) correlations observed between
2 2 X=X neighboring steps. Figure 2 depid®d) as obtained for a
(1 —xz)xg XX (relatively largg system at low temperature for an average
- w2\ (1 _ 2 2 [T X interface slope such that ta"=0. The figure shows also our
(X =X)L =X 1-X;5

theoretical prediction(3), revealing an excellent agreement
In equilibrium p=0, wherexn(T,p)—>X(T,p:O):e‘ZB, the  for all values ofp. It is noticeable that the typical step scale

above expressions fdd,(T,p) reduce to the known SOS sincreases ap increases at fixed, i.e., the nonequilibrium

equilibrium results'® noise tends to amplify the interface fluctuations, as one
should have probably expected.
IV. SOME RESULTS Our data is good enough to provide an estimate for the

second central moment of the step distribution, which mea-

We summarize in this section some main results that folsyres the interface width®(T, p)=(5% —tar? ¢. Our theoret-
low from the above for the properties of the nonequilibriumica) prediction is

interface and compare our predictions with Monte Carlo
simulation data. XA { 1 1

W= | Toxae F (- X2

A. Microscopic structure
P 2XA 2X

The basic SOS hypothesis is that the probability of a step + (L-XA)? + (A- X)g] -tarfg, (12
of size § in the nonequilibrium interface is given by E@).

That is, P(9) is an exponentially decaying function @ﬂ_ whereA(¢), z(¢), andX(T, p) are given by Eqs5), (6), and
controlled by a typical scale which, for ta=0, is & (8), respectively. Figure 3 compares this with Monte Carlo
=[In X(T,p)|~* with X given in Eq.(8). In order to check this estimates. The most noticeable fact here is WAl ,p) ex-
assumption on the microscopic structure of the interface, wérapolates towards a nonzero value in the low-temperature
performed Monte Carlo simulations of the system in Sec. IlLlimit for any p>0, contrary to the case of an equilibrium
This evolved with time in the computer starting with two interface, which is completely flat at zero temperature. That
stripes of the same width of up and down spins, respectivelyis, nonequilibrium fluctuations imply a rough interface even
separated by a flat interface. We suppressed bulk dynamics at zero temperature. The low-temperature roughness may be
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FIG. 4. Main graph: Theoretical prediction for the surface ten-

FIG. 3. The symbols are Monte Carlo results for the interfacialsion as a function of temperature for, from top to bottqus0,
width w(T,p) as a function of temperature for a system of size 1076, 1073, 1074, 1073, 5x 1073, 102 2x 1072 3x 1072 and 4
Ly X Ly=256X 128, tan$=0, and, from bottom to topp=0, 0.005, X 102 Notice that, for any—even smallp=>0, the surface ten-
0.01, and 0.02. Errorbars are smaller that the symbol sizes. Soligion behaves nonmonotonously, contrary to the equilibrium case.
lines are the corresponding theoretical prediction. Notice the nonmnset: The effective interface temperatuTéf), as defined in the
zero interfacial width in the low-temperature limit for the nonequi- main text, as a function of for the same values g than in the
librium system(p>0). The inset shows the SOS zero-temperaturemain graph. Notice thaTgf)(T,p> 0) strongly deviates fronT in
limit for the interfacial widthWZ(TZO,p), see Eq(13), as a func-  the low-temperature regime.
tion of p.

is a highly inhomogeneous process that proceeds via the
estimated by realizing that, far— 0 and moderate values of npycleation and growth of one or several droplets of the stable
p, Lx(T,p)~1 from Eq.(10), i.e., almost all interfacial up phase within the metastable sea. Droplet nucleation is con-
spins belong to class 2. Therefor®(T,p) —X,(T=0,p)  trolled by the competition between the surface tension,

=y/p in this limit, so that one has for tap=0 that which hinders the droplet growth, and the bulk “free energy,”
I which favors it. Consequently, small droplets—having a
WA(T=0,p) = Lp_ (13) large surface/volume ratio—tend to shrink, while the larger

(1-Vp)? ones tend to grow. The critical droplet siRgT, p) separates

. R . . . C these two regimes. Following further the trend in equilibrium
The inset in Fig. 3 depicts this behavior which is in _fuII theory!2 one may assume that an effective macroscopic po-

. i ; tential controls the escape from the metastable state for O
differences we found between theory and simulations are at p<1, and that

high enough temperatures, as illustrated in Fig. 3. This is to

be attributed to step-step correlations as the critical tempera- (d-1)a(T,p)
ture is approached. R(T,p) = E G (14)
B. Macroscopic behavior Here,d is the system dimensionality, is the applied mag-

A principal interface macroscopic property is the surfacehetic field, o(T,p) stands for the zero-field surface tension
tension. The predictioti) is illustrated in Fig. 4 forp=0. It ~ @long one of the lattice axes, ang(T, p) is the spontaneous
is remarkable the essential difference occurring at Tobe-  (Positive) magnetization foh=0. The latter may be approxi-

tween the equilibrium and nonequilibrium cases. mated by mean-field theoly,and the surface tension may
The surface tensioo(T,p>0;$=0) exhibits nonmo- then be obtained from a Monte Car_lo estlma_td?g(ﬂ',p).
notonous behavior as a function ®f with a maximum at a In order to perform this computation, consider our system

temperature which depends on the intensity of the nonequin a square lattice with periodic boundary conditions along
librium perturbationT,a,(p). For T<Tm.(p), one decreases both theX and § directions. The Hamiltonian is novk’
as one cools the system. Thisomalousbehavior turns out =H—h;s;, with H given in Eq.(1) andh<0. All the spins
to play a fundamental role in understanding the exit fromare initially up, except for aquaredroplet of down spins of
metastable states in this systéhd? and it is likely it may side R which represents the stable phase. This is let to
help the understanding of the low-temperature behavior ifgvolve according to Eq(2). The state is highly unstable, so
other complex systems concerning nucleation and growtfhat anysubcriticalinitial cluster, i.e. R<R(T,p), will very
processes. quickly shrink, while asupercritical one R>R(T,p), will

We devised the following indirect method to check our rapidly grow to cover the whole system. Since our dynamics
predictions for the nonequilibrium surface tension. The sysis stochastic, we define the probability that a droplet of size
tem defined in Sec. Il happens to exhibit long-lived meta-R is supercriticalPs,{R). This is measured in practice by
stable states in the ordered phase when subject to a smaiimply repeating many times the simulation and counting the
negative external magnetic fielé® The exit from this state number of times that the initial droplet grows to cover the
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FIG. 5. Critical droplet siz&R, as a function of temperature for ~ FIG. 6. Phase diagram of the model as obtained from the non-
a system of sizé =53, with periodic boundary conditions, subject equilibrium surface tension. Notice the reentrant behaviorp)
to a magnetic fielch=-0.1 and, from top to bottonp=0, 0.001, for p.<p<p,, with p.=(v2-1)? and p,~0.18625. Insetoyg(¢
0.005, and 0.01. The symbols are Monte Carlo results obtained &s0) as a function off for p=0.175>p,. Notice the negative slope
an average oveN,;=1000 independent “experiments.” The solid at low-T and the intermediate temperature regime wheyg is
curves correspond to the theoretical predictidd). For the sake of  positive.
clarity, results for thenth value ofp, n=1,...,4(using the above
indicated orderhave been shifted bjl —n) units along they axis. In order to gain some intuition on the physical origin of
The inset shows Monte Carlo results for the probability that a dropthe anomalous low—temperature behavior of the nonequilib-

let of radiusR is supercriticalPspdR) as a function ofR for a  1iym surface tension, let us write the statistical weight of an
system of sizd=53 atT=0.4Ty, p=0, andh=-0.1. This corre- interfacial broken bond as

sponds to 1®independent experiments for each valueRofin all
cases, error bars are smaller than the symbol sizes. X(T,p) = exd - 2841, (15

system. The critical droplet size is defined By,{R:)=0.5.  which defines arinterface effective temperatur@he func-
és otl)ser\égc:]m”the inset IOf _Flgl- Bspd R) sharply go;e%]l:rom tion T(T,p)=1/pL) is illustrated in the inset of Fig. 4.
to 1, which allows a relatively accurate estimat ; : (1)
Figure 5 compares our Monte Carlo results R(T,p) One f_|rst realizes the.lT.ef (T,p_>0)>T for any Te[0,To). )
' That is, the nonequilibrium interface endures an effective

!Vith tr_:_e thec:rgtical pr_edictitc))n fErom7 Eq#]l) using ‘T(T'Ft’). temperature larger than the thermodynamic one. On the other
_‘:r“]‘E( .p,(gjﬁ— )das glver}_ ythq.(T). behagreemen 'S" hand, one identifies two different regimes in the inset of Fig.
rather good, and we confirm th&(T,p) behaves nonmo- 4 at givenp. At high-T, where thermal fluctuations dominate

notonously withT in the nonequilibrium regime. over the nonequilibrium noisd.) is proportional toT. How-
- = ef .
The temperature dependence (T, p; ¢=0) may be ever, at low enougf the nonequilibrium noise dominates; in

used to compute the phase diagram of the magép).2* In : . )
P P g deh) this caseT(e'f) deviates fromT and tends to a saturating, con-

equilibrium, the interface free energy approaches zerd as . .
—Te; for T>T there is no surface tension because therei@nt value which depends pnFollowing the method above

exist only one disordered pha&eTherefore, if as assumed to obtain the zero-temperature interfacial width, we conclude

in this paperoyg captures the macroscopic properties of thethat

nonequilibrium interface, we may identiff-(p) as the tem- 4

peraturgother thanT=0) for which oyg(T,p, $=0)=0. This limTY(T,p) = - — > 0. (16)
T—0

ef
is done in Fig. 6. In particular, we may ask about the non- Inp

9qui|ibrium parametep. above which no ordered phase ex- It is also remarkable that the onset of the deviationTgff
ists at lowT. For p>0 andT—0, one(T,p; =0~ a(P)T  fom T for a givenp coincides with the maximum observed
[see Fig. 4 and Eq.7)]. The slopea(p) decreases monoto- o the nonequilibrium surface tension; see Fig. 4. In fact,
nously withp, and the conditiorx(pc)=0 signals the onget sinceT! is a small constant for @ T<Tc(p) andp<p,, we
T‘Odis%cirge_r at low temperature. Th|s yle_lct:g—(\sZ—l) may expand oye at low-T to obtain UNEN(T/T&))%
=0. , in excellent agreement with previous Monte Ca”°+(’)(TX) On the other hand, for€ T<Tc(p) and the same
simulationst® For p>p, one does not expect loWw-order. ' . oA c )

However, the nonmonotonous temperature dependence B Pe t.he quotientT/ Ty =1-a is a constant, W'th.&a
one (see inset in Fig. pinvolves the emergence of an <L L.JsmgaaS small(l)parameter oW, a h.|g*r.1expan5|on of
intermediateF region for p,<p<p,~0.18625 where order INE yields UNEN(T/Tef)Ue+O(?é)- In both |I<gllt5 the correc-
sets in, as opposed to the IGvand highT disordered tions to the asymptotic behaviatye ~ (T/Tg;) o are small.
phases, see Fig. 6. This reentrant behaviofp) is similar ~ Now, since T} ~ constant ando,~2(1-Te'?T) as T—0,

in spirit to the one reported in Ref. 13 for the spinodal fieldone expectsrye to be an increasing function dF in this
characterizing the limit of metastability in this model, and it limit. On the other hand,‘l’/Tgf)~constant in the high-
is reminiscent of the reentrant phase diagram observed itimit, so ong depends orT as o, does, i.e.,one decreases
systems subject to multiplicative noi&e. with T for high enoughT. Therefore one would expect a
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FIG. 7. (a) Shape of a droplet, as obtained from the Wulff con- ]
struction, forp=0 (equilibrium) at, following to the centerT/To 35 55 0T i o5
=0.1,0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. For the sake of clarity /1,
we have rescaled the droplet according to its temperathyelhe _
same as ina), but for the nonequilibrium model witp=0.01. FIG. 8. The form factof)(T,p) as a function of temperature for,

from top to bottom,p=0, 0.001, 0.005, 0.01, 0.02, and 0.03. The

nonmonotonoud dependence ofye, with a maximum at top (bottom) line corresponds to the squargarcularn droplet.

TmadP), Which roughly coincides with the crossover ob- ) ) ) )
served inT")(T,p). In this way, the anomalouk dependence ¢=(2n+1)m/4,n=0,...,3, which gives rise to angular in-

of owe can be traced back to the crossover between 4TVals around)=(2n+1)w/4,n=0,...,3, wherex(6) is not
T-dominated, highF regime and gp-dominated, lowF re- defined. Therefore, one considers the analytical continuation

gion, as captured ngf). r(6) such that, in'particulax;lr/dﬂ:o at Qz 77/4 as requirgq

by symmetry. This, together with continuity and analyticity,
leads to a second order polynomial and its coefficie(#s
=af?+bo+c.

The droplet shape is controlled by the need to minimize Figure 7 illustrates the result. In equilibriurp=0, the
the total surface tension at constant droplet volume. For isodroplet tends to become squaredTas O due to the under-
tropic systems, this implies spherical shape. In our casdying lattice anisotropy, while it recovers th@sotropio
however, the surface tension depends on the orientation afpherical shape fof =0.5T. In nonequilibrium, the droplet
the interface with respect to a privileged axiép). Conse- adopts a shape which is intermediate between a circle and a
quently, the shape adjusts itself to take advantage of the lowquare. This is again due to the fact that the temperél'tgfre
free energy cost of certain interface orientations, which prothat the interfacdeelsdoes not go to zero aé— 0 for any
duces droplets with a crystal-like appearance which depends> 0.

C. Droplet shape

on temperature and other parameférsve apply next the A more quantitative description is provided by the droplet
Wulff constructio” to obtain information concerning the form factor Q4(T,p). This is defined via the equality
nonequilibrium droplet shape. =Q4(T,p)RY, whereR =R(6=0) is a measure of the droplet

The method essentially consists in considering the polafadius andV is the droplet volume. For a two-dimensional
curve o(¢), ¢ €[0,27], and drawing through its points a system
line perpendicular to the radius. The interior envelope to a )
these lines determines the droplet radial function in polar QT p):4f da(@)
coordinates R(6). More specifically, one may write ’ '

RO) (18
parametrically®

0

The square and circular droplets are characterize@ byl

R(6) = Ro[X*(¢) + y2($) ], and 1, respectively. Figure 8 show3(T,p) as a function of
T for different values ofp. This clearly demonstrates that
do(¢p) . Q(T,p) goes to 4(squared shapen the low-T limit for p
X(¢) = a(¢)cos¢ - de sing, =0, but the tendency is towards a smaller value for any
>0. That is, unlike in equilibrium at low enough tempera-
ture, no facets are expected in a nonequilibrium droplet.
_ o do(g)
y(¢)=o(g)sing - =" cosd,
¢ V. CONCLUSIONS
y(¢) This paper deals with the influence of a simple nonequi-
tan6o= (&)’ (17)  Jibrium condition, which may ideally represent the situation

in a class of disordered systedfspn the microscopic and
where Ry is a fixed length scale and(¢) is the surface macroscopic properties of a complex interface. It is assumed
tension. We approximate the latter by E@). This is needed that the probability of an discrete change byt the(non-
only for the angular intervalp € [0,7/4], since one may equilibrium) interface is proportional tox%, where X
extend then to the whole circumference by straightforward=X(T,p) is the statistical weight of an interfacial broken
symmetry considerations. The result is singular for angledond for temperaturd and nonequilibrium perturbatiop.
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This is expresseX =%, 1T, X, in terms of the probability from T. In this way, the nonmonotonouE dependence of
that an interfacial broken bond ends at a spin surrounded by can be related to a crossover between two different tem-
certain degreey of local order. _ perature regimes: a loW-region dominated by the nonequi-
Our main hypothesis consists in assuming that the nontibrium noise, whereryg T, and a hight regime dominated
equilibrium system is attempting to minimize a_su_rface andpy thermal fluctuations, whereyz o, The shape of the
consequently, one may translate here the equilibrium formalnonequilibrium droplet as obtained by a Wulff construction
ism. It is also assumed that, at least for the model studied ig|5qg reflects the anomaly ofye. We find, in particular, that
this paper, the specific nonequilibrium mechanism simplyyqplets at very low temperature tend to minimize more their
adds to the basic thermal mechanism in such a way that i, t5-e under the nonequilibrium condition.
may be _mcorporatgz(%rj a) n_lqﬂper;urbatt%v.e maf;”?” Tlot:lhe M= These details are essential to nucleation theory. Therefore,
croscopic parame -p). Theretore, this containall the -, expect that the anomalous low-temperature behavior of

information conce.rning the effeqt of the nonequilibrium PE" the nonequilibrium surface tension described above may be
turbationp on the interface, and it follows that a SOS theoryrelevant to many physical processes such as the ones men-

based onX(Tp) yields the microscopic and macroscopic tioned in Sec. I. The possible utility of our results here will

behavior of the nonequilibrium interface. In this way, one . ddressed in a forthcoming paper concerning the relax-

may finally obtain an explicit expression for the relevant™ S 9 pap 9

nonequilibrium surface tensiome(T, p) ation of a nonequilibrium system from a metastable state.
B Finally, the results in this paper are explicitly obtained for

Regarding the microscopic interface structure, the non- lattice. S ' hould b d bef
equilibrium noise turns out to enhance interfacial fluctua- & Square lattice. Some caution should be used before gener-

tions. In particular, the typical scale for interfacial fluctua- alizing, since there are examples when the shape and prop-

tions increases withp. It is also demonstrated that the ©'ti€S of a nonequilibrium interface depend strongly on the
nonequilibrium interface remains rough in the zardimit,  9eometry of the host lattic®. However, we believe that the

contrary to the equilibrium case. These are theoretical pré2h€nomenology here described should hold for more lattice

dictions in full agreement with Monte Carlo simulations. ~ 980metries other than square, provided thai(tieequilib-
Regarding macroscopic behaviokrye(T,p) exhibits rium) mterf_acg endures an effective temperature with the

anomalousbehavior at lowT (for any p>0). In particular, §ame(|9ualltatlve properties than the one discussed above,

one IS @ nonmonoatonous function df with a maximum at €+ Ter Saturates to a constapidependent value a6— 0

T=T,..(p), andoye decreases as the system is cooled furtheNd IS proportional " at high enough temperature.

below T,,.{(p). This counterintuitive prediction is also con-

firmed indirectly by Monte Carlo simulations. That is, we ACKNOWLEDGMENTS
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