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The influence of nonequilibrium bulk conditions on the properties of the interfaces exhibited by a kinetic
Ising-like model system with nonequilibrium steady states is studied. The system is maintained out of equi-
librium by perturbing the familiar spin-flip dynamics at temperatureT with completely random flips; one may
interpret these as ideally simulating some(dynamic) impurities. We find evidence that, in the present case, the
nonequilibrium mechanism adds to the basic thermal one resulting on a renormalization of microscopic pa-
rameters such as the probability of interfacial broken bonds. On this assumption, we develop theory for the
nonequilibrium “surface tension,” which happens to show a nonmonotonous behavior with a maximum at
some finiteT. The phase diagram, as derived from this effective interfacial free energy, exhibits reentrant
behavior. In addition, interface fluctuations differ qualitatively from the equilibrium case, e.g., the interface
remains rough at zeroT, in full agreement with Monte Carlo simulations. We discuss on some consequences
of these facts for nucleation theory, and make some explicit predictions concerning the nonequilibrium droplet
structure.
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I. INTRODUCTION

Interfaces that separate different homogeneous media are
familiar from many natural phenomena such as phase segre-
gation, wetting processes, fluid dynamics, crystal growth,
and molecular beam epitaxy, for instance. In practice, the
interface may determine the system morphology and its criti-
cal properties, or the details of time evolution, which has
motivated many specific studies during the last two
decades.1–7 The phenomena most deeply studied so far con-
cern interfaces that separateequilibrium phases. However,
the actual systems of interest are seldom at equilibrium and
one often needs to be concerned withnonequilibrium inter-
faces, i.e., interfaces that separate nonequilibrium phases.8–11

This paper aims towards a better understanding of how non-
equilibrium conditions influence the properties of an inter-
face. The results here will be applied in a forthcoming paper
to analyze the exit from a(nonequilibrium) metastable state,
which is an interface-controlled process.12

Mathematical complexity often compels one to deal with
the simplest model situations. In this paper, we study inter-
faces in a two-dimensional kinetic Ising model. The nonequi-
librium condition is obtained by perturbing the underlying
stochastic dynamics in such a way that, in general, a non-
equilibrium steady state is reached asymptotically(instead of
the more familiar thermodynamic equilibrium state).10 We
develop for this case a simple approximation which predicts
both microscopic and macroscopic properties for the(non-
equilibrium) interface, namely, the profile or single-step
height probability distribution and a(nonequilibrium) “sur-
face tension”sNE. The latter turns out to qualitatively differ
from the equilibrium surface tensionse. In particular,sNE

behaves nonmonotonously with decreasing temperature, and
exhibits a maximum at some finite temperature, unlikese

that monotonously grows as one cools the system. In addi-
tion, the phase diagram of the model, as derived from this
effective surface tension, exhibits reentrant behavior. We also
predict that, due to the nonequilibrium perturbation, the in-
terface in this model remains rough at zero temperature. In
order to understand this behavior, we analyze the shape of a
droplet of the minority phase, and conclude how the non-
equilibrium condition substantially influences the low-
temperature droplet morphology. Our predictions are com-
pared with the results from computer simulations, which
seem to firmly support them in general.

The paper is organized as follows. The model is defined in
Sec. II, and Sec. III describes our approximation. The main
results are in Sec. IV which also contains some details of the
computer simulations and a comparison of the numerical re-
sults with theory. Section V is devoted to conclusions.

II. THE MODEL

Let the square latticeLsLx,LydPZ2 of size N=Lx3Ly

with a binary spin variablesi = ±1 at each nodei P f1,Ng. We
remind the reader that the two states ofsi may be interpreted
as corresponding to the presence or absence, respectively, of
a particle ati; this happens to provide a more intuitive pic-
ture concerning the phenomena of interest here. There is in-
teraction between nearest-neighborspinsgiven by the Ising
Hamiltonian
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H = − o
ki,jl

sisj s1d

and stochastic dynamics by single-spin flips. The latter occur
with transition rate(per unit time) given by

vssi → − sid = p + s1 − pdCsbDHid. s2d

Here, b=1/T—we take both the coupling constant and the
Boltzmann constant equal to unity—andDHi =4sisni −2d,
whereni P f0,4g is the number of up nearest-neighbor spins
surroundingsi, i.e.,DHi measures the energy cost of flipping
at i. The undetermined function in Eq.(2) is either CsGd
=e−Gs1+e−Gd−1 or CsGd=minf1,e−Gg; as indicated below, we
are mostly concerned here with the first choice, except when
the second one allows for an explicit or a simpler descrip-
tion. In any case, both choices lead to the results in this
paper.

One may interpret that the parameterp in Eq. (2) balances
the competition between two thermal baths: one is at tem-
peratureT, while the other induces completely random tran-
sitions as if it was at infinite temperature. Forp=0, vssi →
−sid satisfies detailed balance, and the system goes asymp-
totically to the equilibrium state for temperatureT and en-
ergy H. The system exhibits in this case the familiar, On-
sager critical point at T=TCsp=0d=TO=2/ lns1+Î2d.
Otherwise, 0,p,1, the competition in Eq.(2) impedes ca-
nonical equilibrium and, in general, a nonequilibrium steady
state sets in asymptotically with time. A critical point is still
observed in this case, but atT=TCspd,TO, as far asp,pc.
For p.pc the system remains in the disordered phase at any
T. As shown below, our theoretical approach in this paper
predicts pc=sÎ2−1d2<0.1716, in perfect agreement with
previous Monte Carlo estimations.10 In addition, when sub-
ject to an external magnetic field, this model exhibits meta-
stable states whose strength decreases with increasing field,
eventually becoming unstable. The spinodal field character-
izing the limit of metastability undergoes an interesting re-
entrant phenomenon as a consequence of the nonlinear inter-
play betweenT and p.13 We will show below that a similar
reentrant behavior is observed for the phase diagramTCspd.

In the ordered phase belowTCspd, this system exhibits an
interface for appropriate boundary conditions. Consider, for
instance, periodic boundary conditions along thex̂ direction,
and open boundaries along theŷ direction. Then let the spins
in the bottom(top) row freeze in the up(down) state, while
the rest of spins are allowed to change stochastically accord-
ing to Eq. (2). Under these conditions, an interface eventu-
ally develops along thex̂ direction that separates up- from
down-spin rich regions located at the bottom and top of the
system, respectively. Forp=0 (the equilibrium case), the
macroscopic properties of this interface are well known. In
particular, its scaling behavior is characteristic of the Kardar-
Parisi-Zhang universality class,14 and one knows the total
free energy per unit length or surface tension.15 The question
is how these properties are affected by the nonequilibrium
perturbation parametrized byp.

III. SOLID-ON-SOLID APPROXIMATION

The interface is first analyzed here by adapting to our case
the solid-on-solid(SOS) picture introduced by Burton, Ca-
brera, and Frank.16 This assumes that the interface can be
described by a single-valued discrete function completely de-
fined by the set of interface stepshdx,xP f1,Lxgj, as illus-
trated in Fig. 1. No overhangs are allowed in this approxi-
mation. Furthermore, the heights of the individual steps are
assumed to be independent. The probability of a step of
heightd is assumed to be given by

Psdd =
1

zfT,p,gsfdg
XsT,pduduegsfdd. s3d

HereXsT,pd is the statistical weight associated to a broken
bond in the interface, andgsfd is a Lagrange multiplier in-
tended to keep the average step value at ax-independent
valuekdxl=tanf, wheref is theaverageangle between the
interface and thex̂ axis.17,18 The functionzfT,p,gg may be
obtained from the normalization of Eq.(3), and the “partition
function” for the SOS interface follows asZsT,p,gd
=fXzsT,p,gdgLx. This allows one to define a “thermody-
namic” potentialwsT,p,gd; limLx→`−sbLxd−1 ln Z. Our in-
terest is then on the “free energy”s8sT,p,fd—defined as
conjugated to the potentialwsT,p,gd via a Legendre trans-
form, which involves the variables tanf and Tg—and, in
particular, on its projections along thex̂ axis. The nature of
the above approximation is discussed below; we now remark
that our use of equilibrium words here is only for simplicity
and comfort. The general result is

ssfd = TucosfuHgsfdtanf − ln
Xs1 − X2d

1 + X2 − 2X coshgsfdJ .

s4d

In the equilibrium limit p=0, one has the weightXsT,p
=0d=e−2b, andse;ssT,p=0,fd is the SOS surface tension
associated to the equilibrium Ising interface.16–18 We shall
assume in this paper that all the main effects of the nonequi-
librium perturbationspd on the interface can be taken into
account after a proper generalization of the microscopic pa-

FIG. 1. Example of interface forLx=12 with stepsd=s1,−2,
−1,2,2,−2,1,−2,1,1,−1,0d. The numbers shown in the squares
indicate the class of the corresponding spin as defined in the main
text. Notice that interfacial spins can only belong to classes 2, 3,
and 4.
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rameterXsT,pd. The functionsNE;ssT,p.0,fd which re-
sults after using this generalization in Eq.(4) is therefore
assumed to be the nonequilibrium “surface tension” in SOS
approximation, and this is expected to capture the macro-
scopic properties of the nonequilibrium interface. The result-
ing sNE is to be interpreted as aneffectivefree energy per
unit length in the present case that lacks of a proper bulk
free-energy function. This definition of nonequilibrium “sur-
face tension” is based on the assumption that the normaliza-
tion ZsT,p,gd of the probability measure associated to inter-
face configurations in SOS picture is some sort of
nonequilibrium analog of the partition function. Similar hy-
potheses have been shown to yield excellent results when
applied to other nonequilibrium models.19 For instance, in
the one-dimensional asymmetric simple exclusion process
(ASEP) with open boundaries, the distribution of(complex)
zeros of the steady-state normalization factor has been shown
to obey the Lee-Yang picture of phase transitions.19

In the simplest scenario—which is consistent with the
equilibrium limit—the weightXsT,pd will not depend on
gsfd. An explicit relation betweengsfd and tanf can then
be obtained. In particular, usingkdxl=tanf, one finds that

e±gsfd =
s1 + X2dtanf ± Ssfd

2Xstanf ± 1d
, s5d

zsfd =
s1 − X2ds1 − tan2 fd

1 + X2 − Ssfd
, s6d

where Ssfd=fs1−X2d2 tan2 f+4X2g1/2 and we dropped an
obvious dependence onT andp. The nonequilibrium surface
tension(4) may now be explicitly written as

ssfd = TucosfuHstanfdln
s1 + X2dtanf + Ssfd

2Xstanf + 1d

− ln
Xs1 − X2ds1 − tan2 fd

1 + X2 − Ssfd J . s7d

Equations(3) and (7) are two important properties of the
interface at the microscopic and macroscopic levels of de-
scription, respectively. Interesting enough, Eq.(7) reduces in
equilibrium sp=0d to the knownexactresult forf=0. It also
yields a very good approximation for any angle
ufu,p /4;15,20 for ufu.p /4, it is convenient to turn to theŷ
(instead ofx̂) axis as the reference frame.ssT,p=0,f=0d is
a monotonously decreasing function ofT, which converges
toward 2 asT→0, and vanishes at the exact Onsager critical
temperature. In addition, the angular dependence ofssT,p
=0,fd may be used to determine the equilibrium crystal
shape via minimization of the total surface tension for a fixed
volume in a homogeneous droplet(Wulff construction).

A. Statistical weight of a broken bond

At equilibrium, the weight equals the Boltzmann factor
XsT,p=0d=e−2b (2 is the energy cost of a broken bond).
More generally, 0,p,1, the weight of a broken bond de-
pends on the local order surrounding the spin at the end of
the bond. One may say thatXsT,pd depends on theclassof

this spin. The spinsi is said to be of classhssi ,nid=3−sisni

−2d, whereni is the number of up nearest-neighbor spins of
si. That is, our model may exhibit up to five different classes
of spinsh=1, . . . ,5.21 All the spins in a given class are char-
acterized by the same value ofDHh=4sisni −2d and, conse-
quently, by the same rate, Eq.(2).

The functionXhsT,pd for classh now follows straightfor-
wardly. Consider Eq.(2) with CsGd=minf1,e−Gg which al-
lows for a simpler and more explicit discussion.22 If, for
instance, a spin in classh=1 is flipped, four new broken
bonds appear. SinceDH1=8, one immediately has that
X1sT,pd=fp+s1−pde−8bg1/4 for the first class. Equivalently,
X2sT,pd=fp+s1−pde−4bg1/2 for the second class, and the rest
are characterized by the same weight as in equilibrium
X3sT,pd=X4sT,pd=X5sT,pd=XsT,p=0d. It follows that X1

,X2,X3,4,5 for any 0,p,1, and one may also see that
XhsT,p→0d→e−2b, independent ofh as expected.

As illustrated in Fig. 1, interfacial spins may only belong
to classes 2, 3, and 4; class 1 corresponds to spins in the bulk
of (either up or down) homogeneous regions and class 5
corresponds to typical isolated fluctuations in the bulk. Con-
sequently, for the case in consideration,22 only two weights
X2 andX3=X4 are relevant. An even simpler description en-
sues assuming, which amounts a reasonable mean-field ap-
proximation, that interfacial broken bonds have an unique
statistical weight equal to theweightedaverage ofX2 andX3,
namely,

XsT,pd = P2sT,pdX2sT,pd + fP3sT,pd + P4sT,pdgX3sT,pd.

s8d

Here, PhsT,pd is the probability of an interfacial broken
bond associated to a spin of classh. Alternatively, given that
any bond can be arbitrarily associated to any of the two spins
at the ends, we may interpretPhsT,pd as the probability of
an interfacial up spin of class h. Therefore, P2sT,pd
+P3sT,pd+P4sT,pd=1.

B. Population of interfacial spin classes

Next, we estimate the population densitiesPhsT,pd,
which requires a detailed counting beyond the SOS approxi-
mation. LetPsd ,ed the joint probability that a step variable
equalsd and the step variable at its right ise. This com-
pletely characterizes the population of each interfacial class
in the involved column. Consider, for instance, the cased,
e.0, as in the column betweenx=4 andx=5 in Fig. 1. This
column containsd+e interfacial spins, of whichd+e−2 are
of class 2 and the other two spins are of class 3. On the other
hand, this configuration involvesd+e+1 broken bonds, of
which d+1 belong to up spins in this column; following our
convention above, the othere broken bonds may be associ-
ated with the up interfacial spins in the column betweenx
+1 andx+2. In order to go further in the analytical solution
of the problem, let us neglect column-column correlations by
assuming that broken bonds in the interfacial column are to
be associated to interfacial spins in this column. Ford, e
.0, one hasd+e−2 broken bonds associated to interfacial
spins of class 2, and three broken bonds associated to spins
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of class 3. Let us assume also that, in general, the probability
of a given interfacial column configuration is proportional to
the product of probabilities of each of the broken bonds
which form it. We have that

Psd . 0,e . 0d =
1

Q hLd+eX2
d+e−2X3

3j,

where Q is a normalization factor andLsfd;egsfd.23

Equivalently, ford.0 ande,0 one may write that

Psd . 0,e , 0d =
1

Q hLd+eX2
l−aX3

2a+1j,

wherea=minsudu , ueud andl=maxsudu , ueud. Table I shows all
of the possible interfacial column configurations, together

with their statistical weights. Notice that, as one may con-
clude from Table I and Eq.(3), the probabilitiesPsd ,ed con-
verge asp→0 to the SOS equilibrium valueXPsddPsed.

The densitiesPhsT,pd may be written as an average over
all possible interfacial column configurations

PhsT,pd = o
d,e=−`

`

phsd,edPsd,ed. s9d

Here,phsd ,ed is the probability of finding anup spin of class
hP f2,4g in an interfacial column characterized by the pair
sd ,ed. In general,phsd ,ed=nhsd ,ed /Nsd ,ed, wherenhsd ,ed
is the number ofup spins of classh in an interfacial column
characterized bysd ,ed, andNsd ,ed is the total number ofup
interfacial spins associated to this column. Table II shows
nisd ,ed andNsd ,ed for all possible configurations.

The densities(9) will depend on the average interface
slope tanf through the Lagrangian multipliergsfd. This de-
pendence is inherited in general by the average weight of a
broken bond in the nonequilibrium regimeXsT,pd, see Eq.
(8), and it makes the explicit calculation of the nonequilib-
rium surface tension unfeasible, see Sec. III A. Therefore,
further simplifications are needed. We shall assume that the
densitiesPhsT,pd in Eq. (9) correspond to the case tanf
=0, i.e.,Lsfd;egsfd=1. In fact, the underlying lattice aniso-
tropy implies that the interface tends in general to orientate
parallel to any of the principal axis, which has a lower en-
ergy cost. Therefore, for regions of the parameter space
sT,pd where such tendency is strong, it is justified to particu-
larize the populationsPhsT,pd to the case tanf=0. On the
other hand, the parameter-space regions in which that ten-
dency is weak are characterized by an effective isotropy, so
that particularizing to a given orientation, e.g., tanf=0 is
valid. This approximation amounts to assume that the rel-
evant orientation dependence entering the definition of the
nonequilibrium surface tension(4) comes from the depen-
dence onLsfd that appears in the probabilityPsdd of a step
of sized in the interface, see Eq.(3). A higher order, iterative
procedure to take into account thef dependence ofXsT,p

TABLE I. The nine different typical configurations of an inter-
facial spin column in our approximation. These configurations are
defined by the signs of the left,d and righte steps. The last column
shows the probabilityPsd ,ed of each configuration. Here,a
;minsudu , ueud and l;maxsudu , ueud; see the main text for other
definitions.

TABLE II. Number nhsd ,ed of up interfacial spins of classh
=2,3,4 for the column configuration types defined in Table I. The
last column shows the total number of up interfacial spins associ-
ated to each type.

Step variables n2sd ,ed n3sd ,ed n4sd ,ed Nsd ,ed

d.0, e.0 d−1 1 0 d

d.0, e=0 d−1 1 0 d

d.0, e,0 l−a a−1 1 l

d=0, e.0 1 0 0 1

d=0, e=0 1 0 0 1

d=0, e,0 ueu−1 1 0 ueu
d,0, e.0 1 0 0 1

d,0, e=0 1 0 0 1

d,0, e,0 ueu−1 1 0 ueu
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.0d would consist in(i) calculateXs0d;XsT,pd using the
tanf=0 simplification,(ii ) useXs0d to computeLs0dsfd as a
function of f from Eq. (5), (iii ) replaceLs0dsfd in the gen-
eral,Lsfd-dependent expression forXsT,pd, and use the so-
definedXs1d in Eq. (7) to compute an improved approxima-
tion to the nonequilibrium surface tension. We do not expect
this complex procedure to produce a significative improve-
ment of our approximation(while the resulting formulas are
much more involved).

AssumingLsfd=1, and usingphsd ,ed as given in Table
II, we obtain from Eq.(9) that

P2 =
X3

2

QH 2X3

s1 − X2d2 +
2

1 − X2
F2 +

X3

X2
lns1 − X3

2dG
+

2

X2
lns1 − X2d +

X2X3

1 − X2
F 3

X2 − X3
2 +

1

1 − X3
2G

+
X3

X2 − X3
2F 2

X2 − X3
2 ln

1 − X2

1 − X3
2 −

X3
2

1 − X3
2G +

X2

X3
2J .

s10d

The same method leads to

P4 =
X3X2

QsX2 − X3
2d
FX3

2

X2
ln

1 − X3
2

s1 − X2d2 + lns1 − X3
2dG , s11d

and the normalization condition givesP3sT,pd=1
−P2sT,pd−P4sT,pd. The factorQ follows from the normal-
ization of Psd ,ed for Lsfd=1 as

Q =
2X3

2

1 − X2
H2 +

X3

1 − X2
+

X3X2

X2 − X3
2

−
s1 − X2dX3

3

sX2 − X3
2ds1 − X3

2d
+

X3X2

1 − X3
2J + X2.

In equilibrium p=0, whereXhsT,pd→XsT,p=0d=e−2b, the
above expressions forPhsT,pd reduce to the known SOS
equilibrium results.18

IV. SOME RESULTS

We summarize in this section some main results that fol-
low from the above for the properties of the nonequilibrium
interface and compare our predictions with Monte Carlo
simulation data.

A. Microscopic structure

The basic SOS hypothesis is that the probability of a step
of sized in the nonequilibrium interface is given by Eq.(3).
That is, Psdd is an exponentially decaying function ofudu
controlled by a typical scale which, for tanf=0, is d̄
= uln XsT,pdu−1 with X given in Eq.(8). In order to check this
assumption on the microscopic structure of the interface, we
performed Monte Carlo simulations of the system in Sec. II.
This evolved with time in the computer starting with two
stripes of the same width of up and down spins, respectively,
separated by a flat interface. We suppressed bulk dynamics in

these simulations, i.e., bulk, class-1 spins remained frozen to
prevent the nucleation of droplets in the bulk to interfere the
interface dynamics. This turns out to simplify notably the
analysis while it does not modify essentially the interface
structure except close to the critical temperature, where fluc-
tuation of all sizes occur. In fact, we carefully checked the
validity of this assertion by computer simulations.

The interface was thus observed to eventually reach a
steady state, in which we measured the interface microscopic
structure as a time average ofd=hdi , i =1, . . . ,Lxj—taking
into account some(small) correlations observed between
neighboring steps. Figure 2 depictsPsdd as obtained for a
(relatively large) system at low temperature for an average
interface slope such that tanf=0. The figure shows also our
theoretical prediction(3), revealing an excellent agreement
for all values ofp. It is noticeable that the typical step scale

d̄ increases asp increases at fixedT, i.e., the nonequilibrium
noise tends to amplify the interface fluctuations, as one
should have probably expected.

Our data is good enough to provide an estimate for the
second central moment of the step distribution, which mea-
sures the interface widthw2sT,pd=kd2l−tan2 f. Our theoret-
ical prediction is

w2sT,pd =
XL

zsfdF 1

s1 − XLd2 +
1

sL − Xd2

+
2XL

s1 − XLd3 +
2X

sL − Xd3G − tan2f, s12d

whereLsfd, zsfd, andXsT,pd are given by Eqs.(5), (6), and
(8), respectively. Figure 3 compares this with Monte Carlo
estimates. The most noticeable fact here is thatw2sT,pd ex-
trapolates towards a nonzero value in the low-temperature
limit for any p.0, contrary to the case of an equilibrium
interface, which is completely flat at zero temperature. That
is, nonequilibrium fluctuations imply a rough interface even
at zero temperature. The low-temperature roughness may be

FIG. 2. The symbols are Monte Carlo results for the probability
of stepd for a system of sizeLx3Ly=2563128 at temperatureT
=0.3TO, with tanf=0 and different values of the nonequilibrium
perturbation, namely,p=0, 0.01, 0.02, 0.03, 0.04, and 0.05 from
bottom to top. Solid lines are the corresponding theoretical predic-
tion (3). For the shake of clarity, the curves are shifted by a factor
2i, i P f0,5g in the vertical direction, wherei =1003p.
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estimated by realizing that, forT→0 and moderate values of
p, P2sT,pd,1 from Eq. (10), i.e., almost all interfacial up
spins belong to class 2. Therefore,XsT,pd→X2sT=0,pd
=Îp in this limit, so that one has for tanf=0 that

w2sT = 0,pd <
2Îp

s1 −Îpd2
. s13d

The inset in Fig. 3 depicts this behavior which is in full
agreement with our Monte Carlo values. The only significant
differences we found between theory and simulations are at
high enough temperatures, as illustrated in Fig. 3. This is to
be attributed to step-step correlations as the critical tempera-
ture is approached.

B. Macroscopic behavior

A principal interface macroscopic property is the surface
tension. The prediction(7) is illustrated in Fig. 4 forf=0. It
is remarkable the essential difference occurring at lowT be-
tween the equilibrium and nonequilibrium cases.

The surface tensionsNEsT,p.0;f=0d exhibits nonmo-
notonous behavior as a function ofT, with a maximum at a
temperature which depends on the intensity of the nonequi-
librium perturbationTmaxspd. For T,Tmaxspd, sNE decreases
as one cools the system. Thisanomalousbehavior turns out
to play a fundamental role in understanding the exit from
metastable states in this system,11,12 and it is likely it may
help the understanding of the low-temperature behavior in
other complex systems concerning nucleation and growth
processes.

We devised the following indirect method to check our
predictions for the nonequilibrium surface tension. The sys-
tem defined in Sec. II happens to exhibit long-lived meta-
stable states in the ordered phase when subject to a small
negative external magnetic field.12,13The exit from this state

is a highly inhomogeneous process that proceeds via the
nucleation and growth of one or several droplets of the stable
phase within the metastable sea. Droplet nucleation is con-
trolled by the competition between the surface tension,
which hinders the droplet growth, and the bulk “free energy,”
which favors it. Consequently, small droplets—having a
large surface/volume ratio—tend to shrink, while the larger
ones tend to grow. The critical droplet sizeRcsT,pd separates
these two regimes. Following further the trend in equilibrium
theory,12 one may assume that an effective macroscopic po-
tential controls the escape from the metastable state for 0
,p,1, and that

RcsT,pd =
sd − 1dssT,pd
2mssT,pduh

. s14d

Here,d is the system dimensionality,h is the applied mag-
netic field, ssT,pd stands for the zero-field surface tension
along one of the lattice axes, andmssT,pd is the spontaneous
(positive) magnetization forh=0. The latter may be approxi-
mated by mean-field theory,13 and the surface tension may
then be obtained from a Monte Carlo estimate ofRcsT,pd.

In order to perform this computation, consider our system
in a square lattice with periodic boundary conditions along
both the x̂ and ŷ directions. The Hamiltonian is nowH8
=H−hoisi, with H given in Eq.(1) andh,0. All the spins
are initially up, except for asquaredroplet of down spins of
side 2R which represents the stable phase. This is let to
evolve according to Eq.(2). The state is highly unstable, so
that anysubcritical initial cluster, i.e.,R,RcsT,pd, will very
quickly shrink, while asupercritical one R.RcsT,pd, will
rapidly grow to cover the whole system. Since our dynamics
is stochastic, we define the probability that a droplet of size
R is supercriticalPspcsRd. This is measured in practice by
simply repeating many times the simulation and counting the
number of times that the initial droplet grows to cover the

FIG. 3. The symbols are Monte Carlo results for the interfacial
width w2sT,pd as a function of temperature for a system of size
Lx3Ly=2563128, tanf=0, and, from bottom to top,p=0, 0.005,
0.01, and 0.02. Errorbars are smaller that the symbol sizes. Solid
lines are the corresponding theoretical prediction. Notice the non-
zero interfacial width in the low-temperature limit for the nonequi-
librium systemsp.0d. The inset shows the SOS zero-temperature
limit for the interfacial widthw2sT=0,pd, see Eq.(13), as a func-
tion of p.

FIG. 4. Main graph: Theoretical prediction for the surface ten-
sion as a function of temperature for, from top to bottom,p=0,
10−6, 10−5, 10−4, 10−3, 5310−3, 10−2, 2310−2, 3310−2, and 4
310−2. Notice that, for any—even small—p.0, the surface ten-
sion behaves nonmonotonously, contrary to the equilibrium case.
Inset: The effective interface temperatureTef

sId, as defined in the
main text, as a function ofT for the same values ofp than in the
main graph. Notice thatTef

sIdsT,p.0d strongly deviates fromT in
the low-temperature regime.
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system. The critical droplet size is defined byPspcsRcd=0.5.
As observed in the inset of Fig. 5,PspcsRd sharply goes from
0 to 1, which allows a relatively accurate estimate ofRc.

Figure 5 compares our Monte Carlo results forRcsT,pd
with the theoretical prediction from Eq.(14) using ssT,pd
=sNEsT,p;f=0d as given by Eq.(7). The agreement is
rather good, and we confirm thatRcsT,pd behaves nonmo-
notonously withT in the nonequilibrium regime.

The temperature dependence ofsNEsT,p;f=0d may be
used to compute the phase diagram of the modelTCspd.24 In
equilibrium, the interface free energy approaches zero asT
→TO; for T.TO there is no surface tension because there
exist only one disordered phase.24 Therefore, if as assumed
in this papersNE captures the macroscopic properties of the
nonequilibrium interface, we may identifyTCspd as the tem-
perature(other thanT=0) for which sNEsT,p,f=0d=0. This
is done in Fig. 6. In particular, we may ask about the non-
equilibrium parameterpc above which no ordered phase ex-
ists at lowT. For p.0 andT→0, sNEsT,p;f=0d,aspdT
[see Fig. 4 and Eq.(7)]. The slopeaspd decreases monoto-
nously with p, and the conditionaspcd=0 signals the onset
of disorder at low temperature. This yieldspc=sÎ2−1d2

<0.1716, in excellent agreement with previous Monte Carlo
simulations.10 For p.pc one does not expect low-T order.
However, the nonmonotonous temperature dependence of
sNE (see inset in Fig. 6) involves the emergence of an
intermediate-T region for pc,p,pc

* <0.18625 where order
sets in, as opposed to the low-T and high-T disordered
phases, see Fig. 6. This reentrant behavior ofTCspd is similar
in spirit to the one reported in Ref. 13 for the spinodal field
characterizing the limit of metastability in this model, and it
is reminiscent of the reentrant phase diagram observed in
systems subject to multiplicative noise.25

In order to gain some intuition on the physical origin of
the anomalous low–temperature behavior of the nonequilib-
rium surface tension, let us write the statistical weight of an
interfacial broken bond as

XsT,pd = expf− 2bef
sIdg, s15d

which defines aninterface effective temperature. The func-
tion Tef

sIdsT,pd=1/bef
sId is illustrated in the inset of Fig. 4.

One first realizes thatTef
sIdsT,p.0d.T for any TP f0,TOg.

That is, the nonequilibrium interface endures an effective
temperature larger than the thermodynamic one. On the other
hand, one identifies two different regimes in the inset of Fig.
4 at givenp. At high-T, where thermal fluctuations dominate
over the nonequilibrium noise,Tef

sId is proportional toT. How-
ever, at low enoughT the nonequilibrium noise dominates; in
this caseTef

sId deviates fromT and tends to a saturating, con-
stant value which depends onp. Following the method above
to obtain the zero-temperature interfacial width, we conclude
that

lim
T→0

Tef
sIdsT,pd < −

4

ln p
. 0. s16d

It is also remarkable that the onset of the deviation ofTef
sId

from T for a givenp coincides with the maximum observed
for the nonequilibrium surface tension; see Fig. 4. In fact,
sinceTef

sId is a small constant for 0,T!TCspd andp!pc, we
may expand sNE at low-T to obtain sNE,sT/Tef

sIddse

+OsTXd. On the other hand, for 0!T,TCspd and the same
p!pc, the quotientT/Tef

sId;1−a is a constant, with 0,a
!1. Usinga as small parameter now, a high-T expansion of
sNE yieldssNE,sT/Tef

sIddse+Osad. In both limits the correc-
tions to the asymptotic behaviorsNE,sT/Tef

sIddse are small.
Now, sinceTef

sId,constant andse,2s1−Te−2/Td as T→0,
one expectssNE to be an increasing function ofT in this
limit. On the other hand,T/Tef

sId,constant in the high-T
limit, so sNE depends onT as se does, i.e.,sNE decreases
with T for high enoughT. Therefore one would expect a

FIG. 5. Critical droplet sizeRc as a function of temperature for
a system of sizeL=53, with periodic boundary conditions, subject
to a magnetic fieldh=−0.1 and, from top to bottom,p=0, 0.001,
0.005, and 0.01. The symbols are Monte Carlo results obtained as
an average overNexp=1000 independent “experiments.” The solid
curves correspond to the theoretical prediction(14). For the sake of
clarity, results for thenth value ofp, n=1, . . . ,4 (using the above
indicated order) have been shifted bys1−nd units along theŷ axis.
The inset shows Monte Carlo results for the probability that a drop-
let of radiusR is supercriticalPspcsRd as a function ofR for a
system of sizeL=53 at T=0.4TO, p=0, andh=−0.1. This corre-
sponds to 103 independent experiments for each value ofR. In all
cases, error bars are smaller than the symbol sizes.

FIG. 6. Phase diagram of the model as obtained from the non-
equilibrium surface tension. Notice the reentrant behavior ofTCspd
for pc,p,pc

* , with pc=sÎ2−1d2 and pc
* <0.18625. Inset:sNEsf

=0d as a function ofT for p=0.175.pc. Notice the negative slope
at low-T and the intermediate temperature regime wheresNE is
positive.
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nonmonotonousT dependence ofsNE, with a maximum at
Tmaxspd, which roughly coincides with the crossover ob-
served inTef

sIdsT,pd. In this way, the anomalousT dependence
of sNE can be traced back to the crossover between a
T-dominated, high-T regime and ap-dominated, low-T re-
gion, as captured byTef

sId.

C. Droplet shape

The droplet shape is controlled by the need to minimize
the total surface tension at constant droplet volume. For iso-
tropic systems, this implies spherical shape. In our case,
however, the surface tension depends on the orientation of
the interface with respect to a privileged axisssfd. Conse-
quently, the shape adjusts itself to take advantage of the low
free energy cost of certain interface orientations, which pro-
duces droplets with a crystal-like appearance which depends
on temperature and other parameters.26 We apply next the
Wulff construction27 to obtain information concerning the
nonequilibrium droplet shape.

The method essentially consists in considering the polar
curve ssfd, fP f0,2pg, and drawing through its points a
line perpendicular to the radius. The interior envelope to
these lines determines the droplet radial function in polar
coordinates Rsud. More specifically, one may write
parametrically28

Rsud = R0fx2sfd + y2sfdg1/2,

xsfd = ssfdcosf −
dssfd

df
sinf,

ysfd = ssfdsinf −
dssfd

df
cosf,

tanu =
ysfd
xsfd

, s17d

where R0 is a fixed length scale andssfd is the surface
tension. We approximate the latter by Eq.(7). This is needed
only for the angular intervalfP f0,p /4g, since one may
extend then to the whole circumference by straightforward
symmetry considerations. The result is singular for angles

f=s2n+1dp /4, n=0, . . . ,3, which gives rise to angular in-
tervals aroundu=s2n+1dp /4, n=0, . . . ,3, whereRsud is not
defined. Therefore, one considers the analytical continuation
rsud such that, in particular,dr /du=0 at u=p /4 as required
by symmetry. This, together with continuity and analyticity,
leads to a second order polynomial and its coefficientsrsud
=au 2+bu+c.

Figure 7 illustrates the result. In equilibrium,p=0, the
droplet tends to become squared asT→0 due to the under-
lying lattice anisotropy, while it recovers the(isotropic)
spherical shape forT*0.5TO. In nonequilibrium, the droplet
adopts a shape which is intermediate between a circle and a
square. This is again due to the fact that the temperatureTef

sId

that the interfacefeelsdoes not go to zero asT→0 for any
p.0.

A more quantitative description is provided by the droplet
form factor VdsT,pd. This is defined via the equalityV
=VdsT,pdRd, whereR;Rsu=0d is a measure of the droplet
radius andV is the droplet volume. For a two-dimensional
system

VsT,pd = 4E
0

p/4

duSRsud
Rs0dD

2

. s18d

The square and circular droplets are characterized byV=4
andp, respectively. Figure 8 showsVsT,pd as a function of
T for different values ofp. This clearly demonstrates that
VsT,pd goes to 4(squared shape) in the low-T limit for p
=0, but the tendency is towards a smaller value for anyp
.0. That is, unlike in equilibrium at low enough tempera-
ture, no facets are expected in a nonequilibrium droplet.

V. CONCLUSIONS

This paper deals with the influence of a simple nonequi-
librium condition, which may ideally represent the situation
in a class of disordered systems,10 on the microscopic and
macroscopic properties of a complex interface. It is assumed
that the probability of an discrete change byd at the(non-
equilibrium) interface is proportional toXudu, where X
=XsT,pd is the statistical weight of an interfacial broken
bond for temperatureT and nonequilibrium perturbationp.

FIG. 7. (a) Shape of a droplet, as obtained from the Wulff con-
struction, forp=0 (equilibrium) at, following to the center,T/TO

=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. For the sake of clarity
we have rescaled the droplet according to its temperature.(b) The
same as in(a), but for the nonequilibrium model withp=0.01. FIG. 8. The form factorVsT,pd as a function of temperature for,

from top to bottom,p=0, 0.001, 0.005, 0.01, 0.02, and 0.03. The
top (bottom) line corresponds to the squared(circular) droplet.
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This is expressedX=ohPhXh in terms of the probabilityPh
that an interfacial broken bond ends at a spin surrounded by
certain degreeh of local order.

Our main hypothesis consists in assuming that the non-
equilibrium system is attempting to minimize a surface and,
consequently, one may translate here the equilibrium formal-
ism. It is also assumed that, at least for the model studied in
this paper, the specific nonequilibrium mechanism simply
adds to the basic thermal mechanism in such a way that it
may be incorporated in a nonperturbative manner to the mi-
croscopic parameterXsT,pd. Therefore, this containsall the
information concerning the effect of the nonequilibrium per-
turbationp on the interface, and it follows that a SOS theory
based onXsT,pd yields the microscopic and macroscopic
behavior of the nonequilibrium interface. In this way, one
may finally obtain an explicit expression for the relevant
nonequilibrium surface tensionsNEsT,pd.

Regarding the microscopic interface structure, the non-
equilibrium noise turns out to enhance interfacial fluctua-
tions. In particular, the typical scale for interfacial fluctua-
tions increases withp. It is also demonstrated that the
nonequilibrium interface remains rough in the zero-T limit,
contrary to the equilibrium case. These are theoretical pre-
dictions in full agreement with Monte Carlo simulations.

Regarding macroscopic behavior,sNEsT,pd exhibits
anomalousbehavior at lowT (for any p.0). In particular,
sNE is a nonmonotonous function ofT with a maximum at
T=Tmaxspd, andsNE decreases as the system is cooled further
below Tmaxspd. This counterintuitive prediction is also con-
firmed indirectly by Monte Carlo simulations. That is, we
estimated numerically the critical droplet sizeRcsT,pd,
which is expected to be proportional to the surface tension,12

as the system exits from a metastable state. Some intuition
on the origin of this anomaly is obtained by defining an
interface effective temperature which importantly deviates

from T. In this way, the nonmonotonousT dependence of
sNE can be related to a crossover between two different tem-
perature regimes: a low-T region dominated by the nonequi-
librium noise, wheresNE~T, and a high-T regime dominated
by thermal fluctuations, wheresNE~se. The shape of the
nonequilibrium droplet as obtained by a Wulff construction
also reflects the anomaly ofsNE. We find, in particular, that
droplets at very low temperature tend to minimize more their
surface under the nonequilibrium condition.

These details are essential to nucleation theory. Therefore,
we expect that the anomalous low-temperature behavior of
the nonequilibrium surface tension described above may be
relevant to many physical processes such as the ones men-
tioned in Sec. I. The possible utility of our results here will
be addressed in a forthcoming paper concerning the relax-
ation of a nonequilibrium system from a metastable state.12

Finally, the results in this paper are explicitly obtained for
a square lattice. Some caution should be used before gener-
alizing, since there are examples when the shape and prop-
erties of a nonequilibrium interface depend strongly on the
geometry of the host lattice.29 However, we believe that the
phenomenology here described should hold for more lattice
geometries other than square, provided that the(nonequilib-
rium) interface endures an effective temperature with the
same qualitative properties than the one discussed above,
i.e., Tef

sId saturates to a constantp-dependent value asT→0
and is proportional toT at high enough temperature.
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