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Abstract. Phase segregation under anisotropic non-equilibrium conditions is studied in the driven
lattice gas. We show that, at early times, the degree of segregation of the nonequilibrium system
is smaller than for the equilibrium counterpart, and that at latet there is a uniquet�dependent
length increasing��t�� t1�3 for a two-dimensional macroscopic system. We also identify the basic
growth mechanisms, and demonstrate time self-similarity as well as other interesting features of
both the structure factor and the scaling function. The chances are that our findings can be observed
experimentally.

Many complex systems, e.g., binary alloys, polymers, and some hydrodynamical
systems, undergo phase segregation after a quench below certain temperature. Many
properties of the final state depend strongly on the kinetics of the segregation process.
For instance, the alloy Al-Zn, which is homogeneous at high temperature, develops
coarsening macroscopic grains after the quench. The details of the grains growth, and
its competition with the progress of solidification from the melt determine the resistivity
and hardness of the alloy, among other properties.

The underlying physics is now rather well understood, partially due to computer
simulation of lattice gas models.[1, 2] There are some more general situations that
have only been poorly studied, however. For instance, those that involve anisotropy and
more, generally, non-equilibrium conditions, such as in the case of mixtures under shear
flow. Alternatively, the driven lattice gas (DLG) evolving at low temperature provides a
simple model situation for the kinetics of pattern formation in unstable mixtures under
anisotropic non-equilibrium conditions. We studied the kinetics of the DLG by extensive
Monte Carlo simulations, and concluded a coherent theoretical description.[3] In this
paper we review some previous results and provide some additional interesting details.

The DLG consists of ad-dimensional lattice gas at temperatureT in which nearest
neighbors (NN) particle-hole exchanges are favoured along one of the lattice princi-
pal directions, say�x. There is a variable,ni � 1 (particle) orni � 0 (hole), defined at
each node of the lattice,NN particle pairs interact viaH � �4∑NN nin j, and one as-
sumes periodic boundary conditions and transition rates defined via a biased Metropolis
rule, ω�n� n�� � min�1�exp���∆H �Eδ��T ��. Heren� represents the configuration
n � �ni� after a particle-hole exchange,∆H � H�n���H�n�, E�x may be interpreted
as an (electric) field driving (charged) particles, andδ � ��1�0� for jumps along��x
or jumps in any of the transverse directions, respectively. ForE � 0 this model reduces



FIGURE 1. Snapshots of the coarsening process for LG (upper row) and DLG (lower row)
defined on a 256�256 lattice for times (from left to right)t � 10, 100 and 10000 MC steps,
respectively.

to the equilibrium lattice gas. However, the combination of the external field and peri-
odic boundary conditions makes the system to constantly stay far from equilibrium. In
particular, for any non-zero driving field, a particle current sets in. AsE is increased,
one eventually reaches saturation, i.e., particles cannot jump against the field. Ford � 2,
ρ � 1

2 andE � ∞ (the only case we consider below) the system exhibits a critical point
at T � T ∞

c � 1�41Tc�E � 0�. Steady states below this temperature consist of a single
particle-rich stripe, which percolates along the field direction. The interfaces are then
rather flat, showing only some microscopic roughness.[4]

In order to simulate a deep quench, we initialize our system in a completely random
configuration, and let it to evolve under dynamicsω at temperatureT (below the critical
point) until one or a few stripes form. Our code involves a listλ �t� of NN particle-hole
pairs from where the next move is drawn. Time is increased by∆t � λ �t��1, so that
theMC step involves a visit to all sites on the average. This corresponds to the standard
Monte Carlo method only if the time increment∆t is drawn from a Poisson distribution.
Taking constant∆t � λ �t��1 involves some approximation. However, if the number of
particle-hole pairs in the system is sufficiently large (which is our case forρ � 1

2), the
approximation is excellent. The lattice is rectangular,L��L�, with sides ranging from
64 to 256. Averages correspond to one thousand independent runs.

The DLG exhibits different time regimes during phase segregation. Starting from
complete disorder, there is a very short initial transient in which small grains form.
A main novelty is that, as compared to the standard lattice gas (LG), typical grains
are now stretched along the field direction (cf. Fig. 1). This initial anisotropy can be
characterized quantitatively by measuring the number of broken bonds in the direction
of the field,n��t�, and perpendicular to it,n��t�, as a function of time. Fig. 2.a compares

the differenceA�t�� �n��t��n��t���2N, which measures the degree of anisotropy (2N
is the total number of bonds in the system), as a function of time for the LG and the
DLG. While A�t� fluctuates around zero for the isotropic LG, it rapidly grows with time
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FIGURE 2. (a) Theanisotropy functionA�t�, as defined in the main text, as a function of time
for both LG (circles) and DLG (squares); (b) Logarithmic plot of thesegregation functionB�t�
as a function of time for both LG (circles) and DLG (squares). See the main text for definitions.
Both figures contain data from a single typical run.

for DLG, thus confirming anisotropy. On the other hand, close inspection of Figs. 1
suggests significant differences in the degree of segregation between LG and DLG at
early stages of evolution. That is, for a fixed (early) time, LG seems more segregated
than DLG. The observableB�t� � �n��t�� n��t���2N, which measures the density of
broken bonds, illustrates the degree of segregation at timet. Fig. 2.b depictsB�t� as a
function of time for both LG and DLG as obtained from a single run. The smallerB�t�,
the higher the degree of segregation is. We observe thatB�t�	 t1�8 for LG, while B�t� is
compatible with a time dependence according to a stretched exponential with exponent
α � 0�37 for DLG. Although the stretched exponential relaxes faster than the power law,
we observeBLG�t�� BDLG�t� at early stages of evolution, confirming that LG is in fact
more segregated than DLG at given early time. The reason for such different segregation
relies on the effect that anisotropy induces on surface tension.[3]

The grains rapidly coarsen to form macroscopic strings, very similar to those observed
in sheared fluids and other systems [5, 6]. The strings, as well as the anisotropic grains,
can be characterized by two different typical length scales, namely���t� 	 tϕ� and

���t� 	 tϕ�, whereϕ� � 1 and ϕ� � 0�2.[7] The multiplicity of length scales is a
consequence of the underlying anisotropy. The DLG strings further segregate with time
until well defined, relatively narrow stripes percolating in the field direction are formed.
Strings give rise to stripes once���t� equalsL�. Hence the timeτst the system needs to

reach the striped state isτst 	 L
1�ϕ�
�

.[7] Furthermore, the typical length in the direction

perpendicular to the field at timeτst is ��τst�	 Lφ
�
, whereφ� ϕ��ϕ�, so that the number

of stripes formed isnst 	 L�L�φ
�

.[7] Consequently, for rectangular lattices such that

L� 
 Lφ
�
, the resulting state exhibits a single stripe, and no further net evolution is

observed.
However, in general, the resulting state is multistriped. Multistripe states are only



partially segregated, so that a clear tendency towards a fully segregated state with a
single stripe is generally observed in computer simulations. The stripe coarsening stage
is characterized by a single typical length,���t�� ��t�, the mean stripe width, since the
longitudinal length has reached the system limits. Assuming that the stripe coarsening
process proceeds via effective diffusion (due to single particle events) and coalescence
of stripes, it ensues that��t� obeys the following differential equation,[3]

d�
dt

� L�1
� �µEC�

�3�µHD�
�2� (1)

whereµEC andµHD are parameters. The term��2 is associated to hole (particle) diffu-
sion within particle (hole) stripes, while the term��3 is associated to the evaporation-
condensation of particles and holes from stripes interfaces.[3] For large systems, eq. (1)
predicts��t� 	 �t�L��

1�4 at early times and a crossover to��t� 	 �t�L��
1�3 for longer

times. The crossover time is estimated asτcross ∝ L�. On the other hand, the time the

system needs to reach the steady, single-striped state isτ ss ∝ L3
�L��1���L�1

�
��.[3]

These two charasteristic times, together with the timeτ st signaling the onset of the
striped state, characterize the evolution. The different size and shape dependence of
these three time scales,τst�L��, τcross�L�� andτss�L��L��, defines different regions in
the space�L��L��, each characterized by a typical time evolution. In particular, one usu-

ally hasτcross�L��� τss�L��L��, so that��t�	 �t�L��
1�3 is the most generally observed

asymptotic behavior. However, for small enough values ofL� and fixedL�, one has

τcross�L��� τss�L��L�� leading to��t�	 �t�L��
1�4; this corresponds to a system that has

reached the steady state before entering the asymptotict1�3 region. The time crossover
between 1�4 and 1�3 behaviors, and the different size dependence ofτcross�L�� and
τss�L��L��, induce a size crossover for the observed long time growth law. It may also

happen thatτst�L�� � τcross�L�� and hence, once the striped state is formed, puret1�3

behavior is observed without anyt1�4 precursor region.
The structure factor is an important tool for experimental analysis.[1] Given that the

DLG shows a unique relevant length scale in the stripe coarsening stage, one should
expect dynamical scaling onS�k�; t�, namely,S�k�; t� ∝ ��t�F�k���t��.[2] This is con-
firmed in Fig. 3 for a latticeL�� L� � 256� 8. In equilibrium (E � 0), the scaling

function F �η � is predicted to decay, according to Porod’s law, asη�3 (for d � 2) at
largeη . This is a consequence of the isotropic short scale structure of the equilibrium
system, which is captured by the correlation function,C��r� t�. The anisotropic, striped
geometry of DLG, however, implies thatF�η � 	 η�2 as an (anisotropic) extension of
Porod’s law to our driven non-equilibrium model.[3] This is fully confirmed in Fig. 3.
Furthermore, a detailed analysis ofF�η � reveals that, asL� is increased, the anisotropic

behaviorF�η �	 η�2 crosses over toF�η �	 η�3 for very large values ofη . This reflect
the existence of standar nearly-isotropic thermal fluctuations for short wavelengths.

Summing up, we studied the time evolution after a quench to lowT of a nonequilib-
rium interacting-particle model under a large drive. Anisotropic grains form, coarsening



10
1

10
2

10
3

10
4

η=k⊥ l(t)

10
-3

10
-2

10
-1

10
0

S
(k

⊥
;t)

/l(
t)

η-2

FIGURE 3. Scaling of the structure factor with time for a latticeL��L� � 256�8.

in strings as time goes on, until well defined narrow stripes develop. During the grain-
string stage, the degree of segregation of the driven system is smaller than its equi-
librium counterpart. The stripes, characterized by its mean width��t�, further coarsen
with time in such a way that��t� generally grows ast1�3 due to hole diffusion in the
bulk. However one may also observet1�4 at early times (or for shortL�) due to surface
evaporation-condensation processes. Perhaps these machanisms ar of some relevance for
related experimental situations; see [6] for instance. We also found time self-similarity
of the structure factor. The resulting scaling functionF�η � decays asη�2 for largeη ,
due to the singular geometry induced by the drive.
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