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Kinetics of phase separation in the driven lattice gas. Self-similar pattern growth
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P. I. Hurtada* J. Marro® P. L. Garrido! and E. V. Alband
Ynstituto Carlos | de Fisica Tedrica y Computacional, and Departamento de Electromagnetismo y Fisica de la Materia,
Universidad de Granada, 18071 - Granada, Spain
2Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas, UNLP, CONICET, La Plata, Argentina
(Received 27 May 2002; revised manuscript received 9 October 2002; published 29 January 2003

The driven lattice gaéDLG) evolving at low temperature helps understand the kinetics of pattern formation
in unstable mixtures under anisotropic conditions. We here develop a simple theoretical description of kinetics
in Monte Carlo simulations of the DLG. A Langevin continuum analog is also studied which is shown to
exhibit the same behavior. We demonstrate that pattern growth is mainly a consequence of single-particle
processes and that, after a short transient time, in which a surface evaporation/condensation mechanism is
important, hole diffusion in the bulk becomes dominant. Consequently, there is a unique relevant length that
behavest (t)~t¥3 for macroscopic systems except at some very e@grhaps unobservabléime. This
implies a sort of self-similarity, namely, the spatial pattern looks alike, but fooatrivial) change of scale at
different times. We also characterize the structure factor, in which we identify Guinier and Porod regions, and
its scaling form with both time and size. The underlying anisotropy turns out to be essential in determining the
macroscopically emergent peculiar behavior.
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I. INTRODUCTION sphericalized structure fact&(k,t) as observed in scattering
experiments. After a relatively short transient time, one ob-
Many alloys such as Al-Zn, which are homogeneous aserves thaS(k,t)~J(t)- F[k{(t)]. Taking this as a hypoth-
high temperature, undergo phase separation after a suddesis, one may interprétand| as phenomenological param-
quench into the miscibility gaffor details, see the reviews eters to scale along th& and k axes, respectively. The
in Refs. 1-5, for instangeOne first observes nucleation in hypothesis is then widely confirmed, and it follows that
which small localized regiongrains) form. This is followed  J(t)~€(t)? whered is the system dimension. It also follows
by “spinodal decomposition.” That is, some grains grow atthat F(x)=®(x)-¥(ox) where ® and ¥ are universal
the expense of smaller ones, and eventually coarsen, whifgnctions. In fact,® describes the diffraction by a single
their composition evolves with time. In addition to being grain, ¥ is a grain interference function, amdcharacterizes
theoretically challenging, the details are of great practicathe point in the(density-temperatuygohase diagram where
importance. For example, hardness and conductivities are dehe sample is quenched. It then ensues thatl except at
termined by the spatial pattern finally resulting in the alloy,small values ok, so that, for larges, F(x) becomes almost
and this depends on how phase separation competes with thelependent of density and temperature, and even the sub-
progress of solidification from the melt. stance investigatet!’®
A complete kinetic description of these highly nonlinear  The grain distribution may also be directly monitored. A
processes is lackiryNevertheless, the essential physics fordetailed study of grains in both microscopy experiments and
some special situations is now quite well understood. This igomputer simulations confirms time scale invariance. More
the case when nothing prevents the system from reaching thgecifically, one observes that the relevant length grows ac-
equilibrium state, namely, coexistence of two thermody-cording to a simple power law,(t)~t?, and one typically
namic phases. The simplest example of this is(#tendard  measuresi= 3 at late times. This is understood as a conse-
lattice gas evolving from a fully disordered state to segregaguence of diffusion of monomers that, in order to minimize
tion into liquid (particle-rich phaseand gas (particle-poor  surface tension, evaporate from small grains of high curva-
phase. (Alternatively, using the language of the isomorphic ture and condensate onto larger o@stwald ripening In
lattice binary alloy’ the segregation is into, say Al-rich and fact, Lifshitz, Slyozov, and Wagner independently predicted
Zn-rich phases$ As first demonstrated by means of computer{ ~t3,° which is often observed, even outside the domain of
simulationst?” this segregation, as well as similar processewalidity of the involved approximation¥.In some circum-
in actual mixtures, exhibit timeelf-similarity. This property  stances, one should expect other, nondominant mechanisms
is better defined at sufficiently low temperature, when theinducing corrections to the Lifshitz-Slyozov-Wagner drie.
thermal correlation length is small. The system then exhibit$-or instance, effective diffusion of graitSmoluchowski co-
asingle relevant length, the siz&(t) of typical grains grow- agulation leads toa= %, which may occur at early timés;

ing algebraically with time. Consequently, any of the systeminterfacial conduction leads @= 3;'>'2and, depending on
properties(including the spatial patteyriook alike, except density and viscosity, a fluid capable of hydrodynamic inter-
for a change of scale, at differetitmes. actions may exhibit crossover with time to viscous=(1)

This interesting property is revealed, for example, by theand then inertial §= ) regimes'
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Whether one can extend the above interesting picture tbinary alloy oné. Dynamics then consists of interchanges
more realistic situations is an open question. The assumptidnetween particles of different species, one of them favored
that the system asymptotically tends to the coexistence Oélongf.)
two thermodynamic (equilibrium) phases is often unjustified  the p|G was described as modeling surface growth, fast
in nature. This is the case, for example, for mixtures under g,,ic conduction, and traffic flow, among a number of actual
shear flow, whose study has attracted considerable attentioly, ations of practical intereét. A common feature in these

€.g. see Refs. 14-18. The p“’b'e”.‘. IS that sheared flow, ituations is anisotropy, and that steady states are out of equi-
asymptotically evolve towards rmonequilibrium steady state ., . : .

R ) . . librium. Both are essential features of the DLG induced by
and this is highly anisotropic. Studying the consequences g

anisotropy in the behavior of complex systems is in fact arjne rate(1). The onlly tnwa! case 1 fQE:O' Wh'Ch. reduces
important challengésee, for instance, Refs. 1992Another (1) to the Metropol_ls algorithm. In thls'(.:ase, d_etalled ba[ance
important example is that of binary granular mixtures undef'0lds: and one simply has the familiar lattice gas with a

horizontal shaking. The periodic forcing causes in this casémiq_ue _(equilibrium) ste_ady state. For any, even smal|
phase separation and highly anisotropic clusteffng. qualitatively new behavior emerges. In fact, detailed balance

In this paper, we study in detail the kinetics of the drivenPréaks down fore>0 and, consequently, the steady state

lattice ga& (DLG) following a deep quench. Our motivation dePends om(n—n*). Increasingk, one eventually reaches
is twofold. On one hand, the DLG is recognized to be a saturation. That is, particles cannot jump backwards, i.e.,

-

excellent microscopic model for nonequilibrium anisotropic =X, which formally corresponds to an infinite fieldE (
phenomend! On the other, the DLG is not affected by hy- =%).

drodynamic interactions, which makes physics simpler. Our The way in which the microscopic anisotrofi) conveys
goal is timely given that the asymptotic state of the DLG isinto macroscopic behavior is amazifigConsider, for sim-
now rather well understood, and previous studies of kineticlicity, d=2, p=3, andE=c. The system then exhibits a
altogether reveal an intriguing situatiéh.? Following this  critical point at T=Tg=1.4T(E=0), where T,(E=0)
pioneering effort, we here present a theoretical description of2.2691, with different critical behaviéf:?® Furthermore,

the essential physics during anisotropic, nonequilibrium patthe asymptotic, steady states bel&# do not comprise equi-
tern growth. This is compared with extensive computerlibrium phases. Instead, one observes a particle current and
simulations. A brief and preliminary account of some of ourfully anisotropic phases; both are nonequilibrium features.

results was presented elsewhéte. The intensity of the current increases withand suddenly
changes slope af¢ (in fact, this property may serve to ac-
II. MODEL AND SIMULATION DETAILS curately locate the critical pointThe stable ordered configu-

rations consist of one stripe, to be interpreted asqeid
. : ; . ; : (rich-particle phase of densityp, (T). The gas (poor-
lattice with configurationsi={n;;i=1,... N}. The vari- o nicla phase of densityg(T) fills the remainder of the
able at each lattice site has two possible staigs,1 (par-  gyqtem. Except for some microscopic roughness, the inter-
ticle) or O (hole). As for the standard Iattlc_e gas, dynamics iS¢ace is linear and rather flat, in genefal.
a stochastic process at temperatlireonsisting of nearest- e computer evolutions reported here always begin with
neighbor (NN) part|clfellhole exchanges. This conserves they completely disordered state to simulate the system at infi-
partlcl_e (_jens_|typ=N in;, and depef‘ds on. nite temperature. We then model a sudden quench and the
A distinguishing feature of the DLG is that exchanges aregpsequent time evolution. With this aim, one proceeds with
favored in one of the principal lattice directions, say, a rate(1) that involves the temperatufieat which the system
Therefore, assuming perioditoroida) boundary conditions, is quenched. The run is followed until one stripe is obtained
a net current of particles is expected to set in alenghis is  (eventually, in order to save computer time, the run was
accomplished in practice by defining a biased transition ratesometimes stopped before reaching the final stationary) state
We shall refer here to theenergy function H The code involves a list ofy(t) particle-hole NN pairs from
=—4JZ\\nin;, which describes attractive interactions be- where the next move is drawn. Time is then increased by
tween particles at NN sites, and to the transition fpe unit ~ At=7(t) !, so that its unit or Monte Carl@MC) step in-

The DLG consists of al-dimensional, e.g., simple cubic

time):?* volves a visit to all sites on the averaffe.
_ CAHAES)T The lattice is rectangulai. XL, , with sides ranging
w(n—n*)=min{1,e"( s (1) from 64 to 256 and, in a few cases, 512. Results concern on

n* stands for configuration after jumping of a particle to a average over ar_ound a thousaf‘d |r_1dependent runs. Due to the
great computational effort which is consequently involved,

= *) I
NN hole, AH=H(n") ~H(n) is the energy change brought this paper describes simulations concerning a single point of

about by the jump, and units are such that both the couplin . . : .
strengthJ and the Boltzmann constant are set to unity. One%qe two-dimensional DLG lphase diagram. That is, most of

i - ) - our evolutions are forp=35 and E=«, and simulate a
further definess=(+1,0) for NN jumps along+x or along quench atT=0.8T. (E=0)=0.6T%. This choice is moti-
any of the transverse directions, sgy,respectively. Consis-  vated by the fact that clustering is then reasonably compact,
tent with this, E=Ex may be interpreted as field driving which helps to obtain good statistics, while it proceeds fast
particles, e.g., an electric field if one assumes that particlesnough, so that one can observe full relaxation to the steady
are charged(One may adopt other interpretations, e.g., thestate. In spite of this restriction, brief investigation of other
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points, together with some of our observations below, led us G at early times merits further study. This will need to take
to believe that the validity of our results extends to a largeinto account the anisotropy of surface tension. In any case,
domain around the center of the miscibility gap; in fact, suchthis concerns a regime very near the initial, melt state that

generality of behavior has been reported for 0.25 711 only bears minor practical importance, given that it extends
extremely shortly on the macroscopic time scale. We are in-
I1l. GROWTH OF ORDER terested in the rest of this paper on the subsequent evolution,

to be described on the assumption of a simple flat interface,
The DLG exhibits different time regimes during phasewhich holds in Fig. 1 fort>100.

separation. Though they parallel the ones Bt 0, the pe- The DLG strings coarsen with time until well-defined,
culiarities induced by the anisotropic condition are essemia‘relatively narrow longitudinali.e., directed along:) stripes
_ Starting from complete disorder, there is a very short ini-yre formed.(For periodic boundary conditions, the case of
tial regime in which small grains form. The novelty |s»that our simulations, each stripe forms a ringhis results into a
typical grains are now fully anisotropic, stretched along  multistripe state, as illustrated in Figs. 1 and 2. The ordering
The grains then rapidly coarsen to form macroscopic stringsime in the DLG, defined as the time the system needs to
as illustrated in Fig. 1. Sheared fluidan experimentally form the stripes, scales with the system size in the direction
accessible situation that also involves both nonequilibriunof the field, L, since in this case ordered clustéséripes
physics and anisotropyseem to exhibit similar initial percolate along the field directigisee below?® This is not
regimes:®*® That is, during a short-time interval, they show the case for the equilibrium LG, where the ordering time
larger growth rate along the flow than in the other directionsdepends exclusively on system-intensive parameters such as
which is assumed to correspond to the initial formation oftemperature and density.
anisotropic regions. Afterwards, sheared fluids develop The multistripe states are not stable, however. They are
stringlike macroscopic domains similar to the ones in thepnly partially segregated and, in fact, a definite tendency

DLG. _ _ _ . towards a fully segregated state with a single stripe is gen-
~ Figure 1 includes a comparison with the zero-field caseerally observed in computer simulations. One may also de-
i.e., the standard, isotropic lattice gd<G). This clearly il-  velop simple arguments indicating that, in general, a multi-

lustrates the strong anisotropy of nucleation and early phassripe state will monotonically evolve until forming a single
separation for the DLG. Close inspection of these and similagtripe?' 3|t is true that, in practice, the complete relaxation
graphs also seems to indicate relatively small but significaninay take a very long time. More specifically, a macroscopic
differences in the degree of segregation between the twgystem may take to decay into the true stable state a long,
cases at a given time. That is, at small distances, there is @acroscopic time interval, namely, a time that may show up
more homogeneous distribution of particles, both longitudi-as mathematically infinite in some time scales. In fact, the
nally and transversely, in the DLG than in the LG. The lattercomplete relaxation time is observed to increase with system
shows to be more segregated at the same time, which kize, as first demonstrated in Ref. 26. It should also be re-
already rather evident by direct inspection of graphs for Imarked that this property is not a nonequilibrium feature but
<t=100 in Fig. 1. We believe this reveals the different role occurs already in the equilibriumEE0) case; see, for in-
played by surface tension as the degree of anisotropy is vastance, Refs. 2 and 4, and references therein. Slow relaxation
ied: Typical DLG grains are rather linear except at their lon-js a consequence of the conservation of particle density
gitudinal ends, where curvature may be even stronger thainplied by the particle-hole exchange dynamics; this induces
for the spherical clusters in the LG at comparable times. Thigcale invariance, namely, slojgower-law evolution of cor-
seems to be at the origin of a smoother transverse distribielations so that, once enough order sets in, all but very small
tion of particles in the DLG at early times. On the other pattern modifications during a single MC step are precluded.
hand, the field also tends to smoothen things longitudinallyConsequently, certain individual runs sometimes block for a
In order to quantify the aforementioned observation, welong time in a state with several stripes; however, this does
evaluated the number of broken bonds in the direction ohot correspond to the average behavior. As illustrated by Fig.
(perpendicular tpthe field, ni(t) [n, (t)], as a function of 2, which shows a typical evolution, and demonstrated below
time during the early evolution stage. Thé{t)=[n, (1) by our averages corresponding to thousand evolutions, the
+ny(t)]/2N is the density of broken bonds. The higher thenumber of stripes monotonically decreases with tifaee
degree of segregation at timiethe smaller isA(t). For in-  also Sec. V, and the whole relaxation can easily be observed
stance, we observe in a large 25856 lattice thatA(t in computer simulations if one waits long enough.
=10)=0.295 andA(t=10)=0.38 for the LG and DLG, re- We next attempt a theoretical description of the relaxation
spectively, confirming the above observation. On the otheprocess. Our interest is on tlaisotropic spinodal decom-
hand, letB(t)=[n, (t)—n)(t)]/2N. One would expecB(t) position by which the earliest state with many well-defined
~0 (up to fluctuationsonly for the isotropic system. In fact, stripes decays into a single stripe. We shall assume that re-
we measured(t)~0 for the LG, whileB(t) rapidly con- laxation is a consequence of monomer events causing effec-
verges to a nonzero valug(t)~0.05 for the DLG at early tive diffusion of liquid stripes.(Note that assuming gas
times(again for a large 256 256 lattice. We take this num-  stripes here would be completely equivalgfthat is, due to
ber, B(t)=0.05, as characterizing the anisotropic shape ofingle-particle processes, liquid stripes move transversely as
DLG clusters at early times. a whole, and may collide and eventually coalesce with one of
The difference of segregation between the DLG and théhe neighboring stripes; see the late evolution depicted in
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FIG. 1. (a) A series of MC snapshots comparing very early
patterns for the DLGQwith an infinite horizontal field and for the
standard lattice gas, i.e., zero figldG) at the same time. This
corresponds to a 256256 lattice atT=0.6T¢. The time(in MC
steps is heret= 4 and 10(from top to bottom for the DLG (left
column and for the LG(right column). (b) The same aga) but at
late time, namelyf=100, 1000, and 10 00Grom top to bottom
for the DLG (left column and for the LG(right column.

PHYSICAL REVIEW B67, 014206 (2003

FIG. 2. A series of MC snapshots that illustrél@e) growth at
T=0.6T¢. This is for a rectangular lattice of side, XL =256
X 64 andt=10, 1¢%, 1P, 1¢°, 10/, and 1.x 10® MC steps, re-
spectively, from left to right.

Fig. 2. We notice that coalescence implies evaporation of the
gas stripe between the two involved liquid stripes. Therefore,
given the particle/hole symmetry, our assumption is in a
sense equivalent to assuming that growth is due to evapora-
tion of stripes?®® however, the view adopted here allows for a
more detailed description below.

In order to evaluate the implications of stripe effective
diffusion via monomer events, let's assume that stripes are
well defined and compact and exhibit(Bnean interface
which is rather flat. This is perfectly justified at sufficiently
low temperaturgthe case analyzed in detail hgfé and it
might hold more generally, in a wide region including the
center of the miscibility gap but excluding the critical region.
Under this assumption, consider a stripe of mean width)
that consists ofM particles whose coordinates along the
transverse(vertica) direction arey;(t); j=1,... M. We
characterize the stripe position by its center of masses,
Yc.m.(t) =M 712]Yj(t)-

Let us evaluate the mobility -coefficientD,
=Np (AY¢m)?) which depends on the stripe wid#{t).
Here N, is the number of monomer events per unit time,
and ((AY.m)?) is the mean-squared displacement of the
stripe associated to one of the monomer events. We think of
two possible types of events, each giving a different contri-
bution to D, :

(A) Evaporation condensation of particles and holes in the
stripe surface. Here particléholes at the stripe interface
evaporate to the holgarticle gas, and condensate later at
the same interface. The evolution of the evaporated particle
(hole) in the bulk can be seen as a one-dimensional random
walk with two absorbing walls, the left and right interfaces,
respectively. According to standard random-walk thé8ry,
the evaporated particléghole) will go again with unit prob-
ability to one of the(two) possible interfaces. Moreover, the
random walker will stick again to its original interface with
high probability, so trapping a particl@ole) from the oppo-
site interface is unlikely. Consequently, in this c&8e, N
is simply the evaporation rate. That iSNpea
= ij’exp(—ZT‘lAj) where v is thea priori frequency, the
sum is over the surface particles, ang is the number of
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resulting broken bonds. For a flat linear interface, particles g~(¢,9)1/w(t/|_”)1/¢_ (5)

can only jump transversely away the surfaseequals the . . B _ .
inverse of the lattice coordination numbgr and one may The dn‘ferenci IS thaﬁ_a_A and =4 from Eq.(2) while

) _1 — — one obtainsd=ag and ¢=3 from Eg. (3). On the other
write Nipe 4~4q "L |€xp(—2A/T) whereA is the mean num-  hand, for sufficiently late times, becomes large and E¢#)
ber of broken bonds per evaporation event. We multipliedsimply solves into
here by 2 to take into account evaporation of surface holes
that travel within the stripe to reach tk@ame surface again. €(t)~atB+¢, (6)
On the other hand, evaporation processes induce chang%erea3:3a8|_”—1 and¢= a,/2ag. That is, the prediction
AY.m=M"18y, where oy is the net particle(transverse s that hole diffusion within the stripmechanism(B)] will
displacement, anM~L < ¢(t) for compact stripes. There- be dominant at late times. A different hypothesis, based on

fore, the stripe evaporation picture, was shown in Ref. 26 to imply
7 €~ (t/L))* This coincidence is not surprising since, as ar-
D%A)~4q*l< @2>e*2A/T|_”* lp-2 2 gued above, the coalescence of two particles’ stripes implies

the evaporation of the intermediate hole stripe and due to the
(B) A hole jumps one lattice spacing away within the stripeparticle/hole symmetry in our system, both mechanisms
interior. This inducesAY.,,=1/M or 0, depending on the (stripe diffusion/coalescence and stripe evaporaticorre-
jump direction. One may WriteNme g=2vpn(T)L| € pr(T) spond to the same physical process yielding the same behav-
wherepy, is the density of holed, ¢ is the volume or total ior. In order to uncover the close analogy between the two
number of sites within the liquid stripe, amy is the jump-  pictures, one may notice that, to evaporate a particle stripe,
ing probability per unit time. The factor 2 here comes frommany of its particles must cross the surrounding hole stripes
the fact that a hole modifieé, ,, when jumping to any of the and stick to the neighboring particle strip@his is so since
two directions=y. At low T, py, is small; holes are then the particle density in the gas phase remains almost con-
rather isolated from each other, so that jumps do not modif@tam. This particle migration process through the surround-

the number of broken bonds, apg~1. What ensues is ing hole stripes is in fact what we have called “hole diffusion
within the stripe” in the presence of particle/hole symmetry.
,D%B)wzqflphLHflgfl. 3) Hence the fundamental mechanism involved in a stripe

evaporation is the diffusion of its constituents through the
Note that a different dependence of E¢®.and(3) on{isa  nheighboring stripes. This observation is key to understanding
consequence of the fact that the ratgge o and Ny g in- the relation between the stripe’s evaporation and lipée-

volve processes consisting of evaporation on the line anticle) diffusion. .
difussion on the bulk, respectively. The effect of mechanisnfA)—surface evaporation and

For p=13, one has on the average stripes of widtthat ~ Subsequent condensation—on growth is more subtle. In fact,
are separated a distanéérom each other. Therefore, a given our theory predicts a crossover from ¢ regime to the®
Stripe takes a mean t|m= (2/’D€ to find (and thus to coa- r€gime as time is increased. That is, the two mechanisms will

lesce with another one, and this causes its width to increas®ave a comparable influencetat 7qssWith

by A¢=¢. Consequently,d€/dt~Al7,'=D 1. To- (4ap)3
gether with Eqs(2) and (3), respectively, this implies that Tcross=—A4 |- (7)
mechanisn(A) is characterized by a power lafvt'* and (3ag)

that mechanisn(B) is to be associated with~t'°. Further-  For timest< .., mechanism(A) is dominant and the'*
more, assuming that pattern growth in the DLG is the resulbenavior is expected, while mechanigB) is dominant for
of competition between the two mechanisms, and that they~ ;___ and the asymptotit”® growth law is then observed.
H A B : . . . .
are independent of each oth@, =D+ D, it follows  The crossover time,.is a macroscopic, observable time.

that Further, we may define the timggat which a single stripe is
reached by the condition th&{(t)~3L, . One obtains
av 1 (aA+ aB) @ L (L3 L2
dt L\ ¢3 e2) i I e %
H € € 7-SS aB[ 24 4 +2§ LL

whereay=4v(8y?)e ?*'T andag=2vp,. This is our gen-
eral result for the DLG as far as the fieklis large, e.g., -878 ! } (8
infinite, and the temperatur€ is low enough so that the Ly Ly

interfaces, and mechanisni{®) and (B), are sufficiently Hence our system is characterized by two different time
simple as assumed. This is to be compared with the Lifshitzscales, namely;.,ssand 7ss. They depend on system size in
Slyozov-Wagner behaviat ¢/d t~ €~ 2 which assumes spa- a different way. For large systems one generally obtaigs

tial isotropy and diffusion directly governed by surface ten-> 7 SO that the system converges, after a short, perhaps
sion. Formally, Eq.(4) is similar to an equation obtained unobservable transient time, to the relevatt behavior.

ag(2Z+1/2L ) 2lag
In —In

before by assuming isotropic conditions; see Sé@. I. However, there are small systems for whiel<7g.oss
The consequences of Eq®)—(4) are as follows. Both These systems will reach the stationary statsingle stripg
Egs.(2) and(3) imply independently that before having time to enter into the asymptati regime.
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For these small systems, the only relevant behavior is'the
one. Therefore, there is aize crossover betweert’*
asymptotic behavior for small systems ari asymptotic
behavior for large ones. The conditiorre,s{T,L|)
=71s{T,L,L,) defines the crossover size.

Consider now the parameter y=7g{T,L|)/
7{T,L,,L}). Itfollows that thet'® behavior is dominant for
y<1. However, one also has thg{T,L ,L)— 0 for finite T
in the thermodynamic limit I, ,Lj—c,L, /Lj=const).
Consequently, the'® growth law is the general one, namely,
the only one we should expect to observe in a macroscopic
system. Corrections to this should only occur at early times
in small systems. Th|s_ is fully con_wflrmed below. 50 10" x10° 10’ 10’ 10

One may also define a longitudinal lengfi?/ say, I t
~1t?, where one expecta;>1/3 (given that the growth is
more rapid longitudinally than transversghfhis length is
only relevant during the initial regime, until stripes become
well defined, with all of them extending the whole length of

FIG. 3. Time evolution of the relevant lengtf(t), as obtained
by different methods, namely, from the numblg of stripes
(dashed ling from the maximum width¢ ,{squares) from the

. . _— mass{ (triangles), and from the peak of the structure function,
LH' This condition may be taken as defining the onset of thefss27T/kl,ma>4(circles); these quantities are defined in the main

multistripe state, which may be Characﬁgrlzed "WTms) text. The graphs here correspond to an average of over 600 inde-
=L, from where it follows thatrps~L, I Interesting  pendent runs for the 128128 lattice.

enough, this is on the macroscopic time scale, as for both

Teross@Nd 7ss (More preciselyze s~ L and TSS’VLHLE). The Fig. 4a@—happen to behave differently than “large”
fact that all these relevant times are on the macroscopidattices—Fig. 4b). In both cases we plotte€i(t) versust®:
observable time scale confirms that, as argued above, tifer varying a, , looking for the best linear fif (t) = at®:
single-stripe(and not the multistripestate is the only stable +¢, excluding the initial time regime. The upper insets in
one in general. It is also to be remarked that, once the mukhe figures show the chi square function associated to each
tistripe state sets in, the only relevant length is the transversié, namely,

one,l. Of course, this is compatible with the possible exis-

tence of two correlation lengths describing thermal fluctua- 70
tions at criticality. xXAa)=>,

In order to test our predictions, several measures of the =1
relevant length in computer simulations were monitored, , . .
namely, for a Ieast-square§ fit tg data pq|nts usmg-paramete@,

(i) the maximum width of the stripe, ., averaged over % and{. The main graphs anf'rm the existence OT a com-
all stripes in the configuration. This maximun width is de-MO"N behavior for all the monitored measures(¢f) (indi-

fined as the distance in the direction perpendicular to th&at€d by different symbolsThese graphs also demonstrate

field between the leftmost and the rightmost particles withinthat €(t)=at® +¢, with small £, during the whole time
regime of consideration. On the other hand, the upper insets

the stripe; LS . 1 p p :
(i) €w=M/L;, whereM=M(t) is the mass, or number indicate thata, is very close to; for “small” systems (in
<128) while a, =%, as the system becomes

of particles belonging to the stripe, averaged over all stripe&Ct: for L r stem
in the configuration. This mass width is defined as the widtHarger, SayL, =256, corresponds to a “large” lattice accord-

€(t) = (at + )17

a
at*+{

C)

of a perfectly dense stripe withl particles: ing to familiar MC standards. As an alternative method to
(iii) €<=L, /2Ng, whereNy is the number of stripes in the analyzet(t), one may evaluate

configuration.
After averaging over many independent evolutions, all —( )= dlog,f(t) (10

these quantities happen to behave similarly with time. Fur-
ther measures of the relevant length that we define in the o
next section behave in the same way. We shall refer to thi®ur prediction is thaa(t)=a, —a, /£(t), i.e., this should
common behavior, which is illustrated in Fig. 3, éd). [It  provide the exponerd, by extrapolating to largé(t) (late
is noticeable that, before showing a common behavior, Fig. me). The insets at the bottom of Figs(a# and 4b) show
reveals some significant differences between our measures tife results fom=2. They are in agreement with the other
€(t) at early times. This confirms the more difficult method, and again confirm our predictions.
description—not attempted here—which is required by the As indicated above, the size crossover betweenttffe
initial regime] and t*® asymptotic regimes is expected for a system size
In Fig. 4 we illustrate our analysis and main results con-(L,L,) such that7e,{T,L)=7{T,L, ,L). In order to
cerning the(late) time evolution of €(t). The predictions make this condition explicit, we need to estimate the ampli-
above are confirmed and, in particular, “ small” lattices— tudes @y and ag in Eq. (4); see Eqgs.(7) and (8). These

dlog,t
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e FIG. 5. The parametey=7¢o{T,L|)/7s{T,L, ,L), with the
! characteristic timesr,,ss and 755 defined in the main text, as a

30 ' ‘ ‘ ' function of L, for Lj=64. This confirms our distinction between
o “small” and “large” lattices, as explained in the main text.

“I the crossover fot =64, for instance, is predicted fdr,

~140, which confirms the above; see also Fig&) 4nd

4(b).

This behavior may be understood on simple grounds. The
surface/volume ratio is large initially and, consequently,
mechanismA) (based on surface evepis then dominant.
This is more dramatic the smaller the system. That is, the
surface is negligible for macroscopic systems, in general,
and, as illustrated in Fig. 2, even if the surface is relevant at
very early times, its ratio to the volume will monotonically
] decrease with time. This causes hole diffusion in the bulk
0 20 a0 %0 80 1 [mechanism(B)] to become dominant, more rapidly for

NE larger systems, since the liquid phase is trying to exhibit only
. two surfaces. On the other hand, Ref. 26 studies the stripe

FIG. 4. () The main graph show§(t) ={4(t) versust™ for  coarsening process in the infinitely driven lattice gas. Pure
a, =7 inthe case of the “small” 64 64 lattice. A similar behavior {13 hehavior is reported assuming the stripe evaporation
is obtained for any of the studied measured ¢éee the main text mechanism. This result is perfectly compatible with our re-
for definitiong, which are represented in the insets by differentsuhs’ given that the systems in Ref. 26 correspond to very
symbols, namelyf ;s (Squarek s (circles, and £y (triangles. |00 yalues o, (800 and 960) and small values lof (8,

The upper inset shows the chi square function for vanangas 16”204 33 For these shapes our theory also predicts the
obtained from a series of fits; a well-defined minimum is exhibited . 1/3 - ;
(simple t** asymptotic behavior.

indicating thalal:;l1 in this case. The lower inset shows tiféec-
tive exponent, d log,¢/d log,t, as a function of ¥/(t); this extrapo-
lates to the same value af . Same aga) but demonstrating that IV. CORRELATIONS AND THE STRUCTURE FACTOR

= § for the “large” L, X L= 256x 64 lattice(one obtains a simi-
lar result for larger ).

20

Consider now the Fourier transform of the pair-correlation
functionC(x,y;t) =(ng (t)n y(t)) wheren, , stands for the
amplitudes, which state the relative importance of surface@ccupation variable at lattice site= (x,y). This is the so-
evaporation/condensation versus bulk hole diffusion, arealled structure factos(k t), wherek= (kj.k,). Given that
given, respectively, by a,=4q (dy?)e” 28T and @ the k) dependence is only relevant at early times, before the
=24 'p,. We note that, for a sufficiently flat interfagee., ~ multistripe state sets in, i.e., for< 7,,s, we shall sek;=0 in
one that involves microscopic—but not macroscopic—the following. That is, our interest here is on
roughnesk (8y?)~O(1) andA=5. On the other hand, the
excess energy associated with an isolated hole is 16, so that S(k, :t)=
ph~exp(—=16/T) is a rough estimate of the hole density. As Lo
depicted in Fig. 5, it follows numerically, in full agreement
with our observations, that, = is to be observed only at As illustrated in Fig. 6, this function develops a peakkat
early times, earlier for larger systems; to be more specific=Kna(t) immediately after quenching. The peak then mono-

L” 2, My Wexdikyl .
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FIG. 6. Time development of the structure facg(k, ;t), as 2 ---l_1 P ---IO e ---I1 3
defined in the main text, for a “large” latticé , X L =256x 256 10 10 10
during early and intermediate phase segregation. A peak grows with K=K, 1()/L

time as it shifts towards the small valueslkaf. ) ) ) .
FIG. 7. The scaling with both time and size of the structure

_ _ ) L i
tonically shifts towards smaller wave numbers with increas—fu'"CtIOIn to show thal (x) =S(k, ;D)/IL, with %=k, IL ", is well

. . . . defined and universal, i.e., the same at any tieecluding some
ing t; in fact, one expectk, —0 ast—o in a macroscopic

- early evolution and for any square lattice of side This plot in-
system. The wavelengths=2m/kna, turns out to be an ex- cludes all data fot=10* MC steps and 6464, 128<128, and

cellent CharaCte”Z_at'on _Of the relevant Qrde“ name_ly, it MEar56x 256 lattices. The broken lines illustrate the different kinds of
sures both the stripe width and the stripe separation duringanavior ofd (xt) that are discussed in the main text.

phase segregation. In particular, we confirm thgft) has

the common behavior discussed above for lenftt); see  (otherwise long enoughsimulations. This is so because
Figs. 3 and 4. o ®(x) goes ap?L/€(t) atk, =0, and thus depends on time
The fact that the DLG shows a uniquene-dependent  for very small values of, breaking the scaling observed for
relevant length{, =I(t), has some important consequences.jarger values ofc. However, a detailed study of data reveals
For example, extrapolating from the equilibrium cdsee that the scaling function near the origin tends with time to-
Sec. ),” one should probably expect dynamical scaling, i.e.,yards a common envelopab (x) ~x 13 for xo<x
_ <xmax; We do not have a simple explanation of this. In any
Stk sl (OF [k (D) (12) case, this behavior breaks down close to the origig,x,
for the anisotropic DLG in two dimensions. This is indeedWhere®(x)—0 asx—0 andt—c for the infinite system.
observed to hold during most of the relaxation and, in par- The behavior after the peak> x5, may be predicted
ticular, during all of the segregation process after formatiorPn simple grounds. Thesphericalizedl structure factor for
of well-defined stripes. This is illustrated in Fig. 7 depicting (equilibrium) isotropic binary mixtures is known to satisfy
the scaling functiorF. A time-dependent mean-field model the Porod lawS~k~(4*1) at large enough, whered is the
of a binary mixture in shear flow has recently been demonsystem dimensiof,i.e., S~k™2 in two dimensions. The
strated to exhibit a similar property, though involving two main contribution to the largk-tail comes from the short-
lengths both behaving differently from(t) above'® distance behavior o€(x,y;t). That is, the Porod's region
The structure factor may be obtained by scattering, whichor the DLG may be taken to correspondxo<k, '<¢(t)
makes it an important tool in many studies. Analyzing fur-where\, stands for gtransversgthermal length that char-
ther the details of function§(k, ;t) and F(x) or, alterna- acterizes the smallest, thermal fluctuations. Let two points,
tively, the universal functionb(x)=S/¢L, as observed in r, andr,+r, r=(x,y). For anyx such that\ , <x<{(t),
computer simulatio.n.s. is thereforg of gregt_inte![@se ext.ra one roughly has that the produqto(t)n;(t) equals+1 if the
L factor in th? definition 9@(%) is our finite-size sci\hng two points are on the stripe, and 0 otherwise, i.e., if either an
ansatf Exeerlmental .StUd'eS often refer to the mean rad.'usinterface exists between them or else the two points belong
of gyration” of the grains as the slope of the straight portion, - 4o gas between stripes. Sinee£(t), the probability

in a plot of IMSkt)] versusk?.3 We checked the validity that 7 " terface | ligible. F
under anisotropic conditions of this concept, which is in fact atr crosses more than one Intertace Is hegligibie. For a

quite useful in equilibrium even outside the domain of valid-half filled system, the probability th&zo lies at a particle
ity of its approximations.We confirm thatS(k, ;t) exhibits  stripe is3, and the probability that both, andry+r belong
the Guinier Gaussian peak, namely, to the same stripe is roughB[ ¢(t) —x]/€(t). Hence,

— _ _ 2
D () ~exy — const x— a0 ] (13 C(X’y;t)zg(l_ %) X<€€(1). 14
around the maximunx,,,,. More intriguing is the behavior (1)
of ®(x) before the peakx< x,.«. Figure 7 indicates that By power counting, this implies thanisotropic Porod law
scaling does not hold in this region even at the end of oufin two dimensions
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present in this paper a confirmation that, as compared with

~—, )\L<k11<l(t). (15 other approache¥, Eq. (16) is indeed a proper continuum
€kt description of the DLG kinetic relaxation. A more complete
Therefore,® (%)~ » 2L~ 1, which is confirmed in Fig. 7. study of the kinetic consequences of this equation will be
This is in contrast with théisotropid Porod result. The dif- Presented elsewhere.
ference is a consequence of the fact that the DLG clusters are In order to numerically integrate E(L6), let us introduce
stripes that percolate in the direction of the field, instead othe indicesi,j=1, ... N to represent, respectively, the two
the isotropic clusters of the LG. The short-distance paircomponents of=(x, ,x|). One thus makes a trivial discreti-
correlation function for the latter isC(r;t)=2%[1  Zzation of the space, and then of the time by the Cauchy-Euler
—|r|/€(t)], from which one has thab (x)~ » 3. It follows method®® The result is a set oN?—1 coupled nonlinear
that anisotropy may easily be detected by looking at the taiequations, namely,
of the structure factor.
The detailed analysis @(k, ;t) also reveals that, ds; is

increased in computer simulations, the anisotropic behavior . o
&~ 2 crosses over td~ 3 for largerx; see Fig. 7. We P(i.jst+AD)=g(i,]j,1) + At
believe this reflects the existence of standard thermal fluc-
tuations. That is, very small clusters of particles occur in the
gas in the asymptotic regime whose typical size in the direc-
tion perpendicular to the field is of ordar, . These very
small asymptotic clusters are rather isotropic, namely, they
c_Jo not differ essgntially from the corrgsponding onesinequi- This equation is to be solved by the computer. With
librium bmar.y m|xtuifes. More speC|f|caIIy,. for.~)\l., one this aim, we may write ¥, &(i.j:t)=[£(i+1j:t)— &(i
mfl%/ apprOX|mate_3(r,t)~1—|r|/)\i(t), which implies the ~1ji0)120x, and (ij;)=a(iAx, jAX;t) where
x~ power-law tail for largex. On the other hand,aacgordlng Ax, =L, /N and Ax;=L/N. The maximum value oAx,
to (5), the mean stripe width grows dgt)~(t/L)" with a 4 S limited by the interface width. For Fig. 8, which con-

1 1 i
r?ullmct)):a(’r31 ofsétgeggnail?En(l)ari]sth?ovao“rjt?o% .t(;I'LheLrg/f:)ar eéntg € cerns a 256 256 lattice (N=256) we—rather arbitrarily—
P Prop Ll ' usedAx, =Ax=1.7, andAt=0.05, which produce a lo-

for a given time, the number of stripes increases wfras cally stable solution. The parameters, 7, and\ are fixed

a . .
Lj'. We also know that, at a given time, the number of smaII,On the basis of its physical meaning. The mass terrand

fluctuating clusters is proportional tg,. Hence the relative represent temperatures alona the lonaitudinal and trans-
importance of small clusters due to thermal fluctuations ad* P P 9 9

compared to stripes is proportional kg. In fact the, 3  verse directions, respectively, relative to the critical tempera-
tail is observed for large enough values lof but not for ~ 'Ure i.e.,7, ~ (T, —Tc). Given the anisotropy of phase seg-

Sk, ;1)

~ ~ Ao
T Vip-Vigt gVig®

+ 7V |+ VALY &Gt (17)

small lattices. regation, with longitudinal interfaces only;, <0 and 7
>0. On the other handl7, | should be small enough to allow
V. A CONTINUUM DESCRIPTION for a relatively fast evolution. Our choices for Fig. 8 are

_ o _ 7,=-0.25,7=0.5, and\=1.
The rigorous derivation of a general continuum analog of |t js remarkable that, in spite of some apparent similarity,
the driven lattice gas is an open probléhRecent studies the problem here differs from the one in the study(sthn-
led to the following proposal for a coarse-grained densitydar@ spinodal decomposition by means of the isotrofiic (

.36,37
b(r,1): =0) Cahn-Hilliard equation. In equilibriufff, one usually
N assumes that the influence of noise on growth, which is then
ap(r)=7,V2p—Vigp+ gvf¢3+ TIVE+V &1 1), assumed to be directly driven by surface tension, is negli-

gible far from criticality. The noise term in Eq17) may be

(16) expected to be important in a more general context, however.
Here, the last term stands for a conserved Gaussian noidéhat is, as described in Sec. lll, the DLG develops striped
representing the fast degrees of freedom, and 7, andA patterns in which surface tension smooths the interfaces but
are model parameters. Compared to previous propés3ls, has no other dominant role on the basic kinetic events. Con-
this Langevin-type equation amounts to neglect a nonlineasequently, neglecting the noise in E47) would turn meta-

current term— “V\Id’z- that was believed to be essential-  stable any striped geometry after coarsening of strings,
evant) at criticality. However, one may show that, at least inwhich is not acceptablésee Sec. I
the limit E—oo, the coefficienta cancels out(due in this Finally, it is interesting to notice that if a one-dimensional

case to a subtle saturation effett In fact, recent scaling structure is assumed, and the gradient in the direction paral-
analysis has unambiguously confirmed that a particle curreriel to the field in Eq.(16) is eliminated, then this equation

is not relevant and that E@16) captures the correct critical reduces to the one-dimensional time-dependent Ginzburg-
behavior of the DLG'?® Consequently, an important ques- Landau model in Ref. 41. There a ipgrowth was found at
tion is now whether Eq(16) reproduces also the kinetic zero temperature and a crossover front)ing t*/ at finite
behavior of the DLG as described in previous sections. Weemperatures.
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puter simulations, which corresponds to a very short macro-
scopic time, so that it would be hardly observable in experi-
ments. As a matter of fact, most of the system relaxation
proceeds by coarsening of stripes until full segregatkig.
2). Surprisingly enough, this regime, which has been studied
for more than a decade nd#;2®happens to be theoretically
simpler than the corresponding one for the isotropic ¢a¥e.
The evolution from many stripes to a single one mainly
proceeds by competition of two mechanisni&) evapora-
tion of a particle from one stripe surface and subsequent
deposition at the same surface, af8) diffusion of a hole
within the bulk of the stripe. The first one dominates initially
(and lasts more for smaller systemsvhen the surface/
volume ratio is relatively large. MechanisfA) implies that
the relevant lengtlias defined in Fig. Bincreases with time
according to€(t)~tY% The surface/volume ratio decreases
with time, however, and mechanigi®) soon becomes domi-
nant. This impliest (t)~t*® which is the general prediction
for a macroscopic systertcf. Figs. 4 and 5* This was
obtained before by assuming coarsening of tdiquid)
stripes by evaporation of the gas stripe placed between
them?® see also Ref. 22. Note that th¥® law is precisely
the behavior which is acknowledged to be dominant under
isotropy, but this has a different origin in the equilibrium
case*® Note also that surface tension determines evaporation
rates but has no other influence on mechaniésand(B).
Thet*? growth law, Eq.(6), is perfectly confirmed by the
DLG data[Fig. 4(b)]. This indicates time-scale invariance. In
fact, such invariance was demonstrated for the isotropic case,
in which the situation is somewhat more involvésec. ).
The invariance property may be better analyzed by looking
at the structure factor transversely to the drisgs, ,t) (Fig.
6). This exhibitsdynamic scaling, i.e., it remains self-similar
FIG. 8. Series of snapshots as obtained from @) for the  during phase segregatiéh. More specifically, ®(x)
256x 256 lattice with parameters as given in the main text. Time=S(k, ;t)/€L, with z:kl{?L’l, is universal, namely, the
(arbitrary unitg is t=0, 10, 100, 200, 500, and 1000, respectively, same at anysufficiently late time t and for any square lat-
from left to right and from top to bottom. tice of sideL. Furthermore, the functio® () has a well-
defined shape. In particular, it exhibits the Guinier Gaussian
peak, and this is followed by the anisotropic Porod decay,
This paper presents a theoretical description of spinoddP (%)~ 2 and then by a thermal taib ()~ (Fig. 7).
decomposition in the DLG, and compares it with data from aAlso noticeable is the fact that the parameter to scale along
kinetic Monte Carlo study. This is also compared with thethe Saxis isJ(t)=¢ and not¢? as under isotropy.
kinetic implications of a Langevin, continuum equation that Our results in this paper have two main restrictions, both
had previously been shown to capture correctly the criticadue to the great computational effort required by this
behavior of the DLG. The resulting picture from these threeProblem?®* First, they follow from an extensive analysis of
approaches, which is summarized below, should probablgnly one phase-diagram point, namelys 3, E=, andT
hold for a class of highly-anisotropic phase segregation phe=0.8T¢. However, our own observation§ncluding the
nomena. In fact, our results provide a method for analyzindorief investigation of other pointstogether with an extrapo-
experiments that could be checked against laboratory realizéation of the many results known for the isotropic case,
tions of the DLG, i.e., the case of phase segregation undetrongly suggest that the picture in this paper holds within a
biased fields or other influences such as electric fields, gratarge domain around the center of the miscibility §&pn
ity, and elastic stresses. fact, the scaled structure factor for isotropic systems was
Immediately after a deep quench, there is an early regimehown to be almost independent of density and temperature,
in which anisotropic grains develop. They tend to coarsen t@nd even the substance investigated, in a wide region below
form small strings that then combine into well-defined thinthe coexistence lin Our consideration of only a two-
stripes. Such nucleation and early coarser(ifig. 1) seem dimensional system does not seem to be a real restriction
governed by surface tension at the string ends competingither. That is, adding an exttansversgdimension should
with other both surface and bulk processes. This complicatedot essentially modify the picture hete.
situation typically extends less than 3lMC steps in com- It would be interesting to look next in the laboratory for

VI. CONCLUSION
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both time scale invariance and® growth under highly an- results. In general, we hope our observations will motivate
isotropic conditions. In fact, there is some evidence of suctboth experiments and more complete theories.

behavior in sheared fluid6Sec. ), and one may think of
some more direct experimental realizations of the driven lat-
tice gas. In particular, coarsening striped patterns very simi-
lar to those observed in our system are found in some in- )
triguing experiments on granular binary mixtures under We acknowledge very useful discussions with Rearal
shaking*® We think that the mechanisms we propose in thisand Miguel Angel Muroz, and support from MCYT, Project
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