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The driven lattice gas�DLG� evolving at low temperature helps understand the kinetics of pattern formation
in unstable mixtures under anisotropic conditions. We here develop a simple theoretical description of kinetics
in Monte Carlo simulations of the DLG. A Langevin continuum analog is also studied which is shown to
exhibit the same behavior. We demonstrate that pattern growth is mainly a consequence of single-particle
processes and that, after a short transient time, in which a surface evaporation/condensation mechanism is
important, hole diffusion in the bulk becomes dominant. Consequently, there is a unique relevant length that
behaves�(t)�t1/3 for macroscopic systems except at some very early�perhaps unobservable� time. This
implies a sort of self-similarity, namely, the spatial pattern looks alike, but for a�nontrivial� change of scale at
different times. We also characterize the structure factor, in which we identify Guinier and Porod regions, and
its scaling form with both time and size. The underlying anisotropy turns out to be essential in determining the
macroscopically emergent peculiar behavior.
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I. INTRODUCTION

Many alloys such as Al-Zn, which are homogeneous at
high temperature, undergo phase separation after a sudden
quench into the miscibility gap�for details, see the reviews
in Refs. 1–5, for instance�. One first observes nucleation in
which small localized regions�grains� form. This is followed
by ‘‘spinodal decomposition.’’ That is, some grains grow at
the expense of smaller ones, and eventually coarsen, while
their composition evolves with time. In addition to being
theoretically challenging, the details are of great practical
importance. For example, hardness and conductivities are de-
termined by the spatial pattern finally resulting in the alloy,
and this depends on how phase separation competes with the
progress of solidification from the melt.

A complete kinetic description of these highly nonlinear
processes is lacking.5 Nevertheless, the essential physics for
some special situations is now quite well understood. This is
the case when nothing prevents the system from reaching the
equilibrium state, namely, coexistence of two thermody-
namic phases. The simplest example of this is the�standard�
lattice gas evolving from a fully disordered state to segrega-
tion into liquid �particle-rich phase� and gas �particle-poor
phase�. �Alternatively, using the language of the isomorphic
lattice binary alloy,6 the segregation is into, say Al-rich and
Zn-rich phases.� As first demonstrated by means of computer
simulations,1,2,7 this segregation, as well as similar processes
in actual mixtures, exhibit timeself-similarity. This property
is better defined at sufficiently low temperature, when the
thermal correlation length is small. The system then exhibits
a single relevant length, the size�(t) of typical grains grow-
ing algebraically with time. Consequently, any of the system
properties�including the spatial pattern� look alike, except
for a change of scale, at differenttimes.

This interesting property is revealed, for example, by the

sphericalized structure factorS(k,t) as observed in scattering
experiments. After a relatively short transient time, one ob-
serves thatS(k,t)�J(t)•F�k�(t)�. Taking this as a hypoth-
esis, one may interpretJ and l as phenomenological param-
eters to scale along theS and k axes, respectively. The
hypothesis is then widely confirmed, and it follows that
J(t)��(t)d whered is the system dimension. It also follows
that F(�)��(�)•�(	�) where � and � are universal
functions. In fact,� describes the diffraction by a single
grain,� is a grain interference function, and	 characterizes
the point in the�density-temperature� phase diagram where
the sample is quenched. It then ensues that�
1 except at
small values ofk, so that, for large�, F(�) becomes almost
independent of density and temperature, and even the sub-
stance investigated.5,7,8

The grain distribution may also be directly monitored. A
detailed study of grains in both microscopy experiments and
computer simulations confirms time scale invariance. More
specifically, one observes that the relevant length grows ac-
cording to a simple power law,�(t)�ta, and one typically
measuresa� 1

3 at late times. This is understood as a conse-
quence of diffusion of monomers that, in order to minimize
surface tension, evaporate from small grains of high curva-
ture and condensate onto larger ones�Ostwald ripening�. In
fact, Lifshitz, Slyozov, and Wagner independently predicted
��t1/3,9 which is often observed, even outside the domain of
validity of the involved approximations.10 In some circum-
stances, one should expect other, nondominant mechanisms
inducing corrections to the Lifshitz-Slyozov-Wagner one.1,3,5

For instance, effective diffusion of grains�Smoluchowski co-
agulation� leads toa� 1

6 , which may occur at early times;11

interfacial conduction leads toa� 1
4 ;12,13 and, depending on

density and viscosity, a fluid capable of hydrodynamic inter-
actions may exhibit crossover with time to viscous (a�1)
and then inertial (a� 2

3 ) regimes.4
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Whether one can extend the above interesting picture to
more realistic situations is an open question. The assumption
that the system asymptotically tends to the coexistence of
two thermodynamic �equilibrium� phases is often unjustified
in nature. This is the case, for example, for mixtures under a
shear flow, whose study has attracted considerable attention,
e.g., see Refs. 14–18. The problem is that sheared flows
asymptotically evolve towards anonequilibrium steady state
and this is highly anisotropic. Studying the consequences of
anisotropy in the behavior of complex systems is in fact an
important challenge�see, for instance, Refs. 19–21�. Another
important example is that of binary granular mixtures under
horizontal shaking. The periodic forcing causes in this case
phase separation and highly anisotropic clustering.46

In this paper, we study in detail the kinetics of the driven
lattice gas20 �DLG� following a deep quench. Our motivation
is twofold. On one hand, the DLG is recognized to be an
excellent microscopic model for nonequilibrium anisotropic
phenomena.21 On the other, the DLG is not affected by hy-
drodynamic interactions, which makes physics simpler. Our
goal is timely given that the asymptotic state of the DLG is
now rather well understood, and previous studies of kinetics
altogether reveal an intriguing situation.21–28 Following this
pioneering effort, we here present a theoretical description of
the essential physics during anisotropic, nonequilibrium pat-
tern growth. This is compared with extensive computer
simulations. A brief and preliminary account of some of our
results was presented elsewhere.29

II. MODEL AND SIMULATION DETAILS

The DLG consists of ad-dimensional, e.g., simple cubic
lattice with configurationsn��ni ;i�1, . . . ,N�. The vari-
able at each lattice site has two possible states,ni�1 �par-
ticle� or 0 �hole�. As for the standard lattice gas, dynamics is
a stochastic process at temperatureT consisting of nearest-
neighbor�NN� particle/hole exchanges. This conserves the
particle density,
�N�1� ini , and depends onn.

A distinguishing feature of the DLG is that exchanges are
favored in one of the principal lattice directions, say,x� .
Therefore, assuming periodic�toroidal� boundary conditions,
a net current of particles is expected to set in alongx� . This is
accomplished in practice by defining a biased transition rate.
We shall refer here to the energy function H
��4J�NNnin j , which describes attractive interactions be-
tween particles at NN sites, and to the transition rate�per unit
time�:21

��n→n* ��min�1,e�(�H�E�)/T�. �1�

n* stands for configurationn after jumping of a particle to a
NN hole,�H�H(n* )�H(n) is the energy change brought
about by the jump, and units are such that both the coupling
strengthJ and the Boltzmann constant are set to unity. One
further defines��(�1,0) for NN jumps along�x� or along
any of the transverse directions, say,y� , respectively. Consis-
tent with this, E� �Ex� may be interpreted as field driving
particles, e.g., an electric field if one assumes that particles
are charged.�One may adopt other interpretations, e.g., the

binary alloy one.6 Dynamics then consists of interchanges
between particles of different species, one of them favored

alongx� .�
The DLG was described as modeling surface growth, fast

ionic conduction, and traffic flow, among a number of actual
situations of practical interest.21 A common feature in these
situations is anisotropy, and that steady states are out of equi-
librium. Both are essential features of the DLG induced by
the rate�1�. The only trivial case is forE�0, which reduces
�1� to the Metropolis algorithm. In this case, detailed balance
holds, and one simply has the familiar lattice gas with a
unique �equilibrium� steady state. For any, even smallE,
qualitatively new behavior emerges. In fact, detailed balance
breaks down forE�0 and, consequently, the steady state
depends on�(n→n* ). IncreasingE, one eventually reaches
saturation. That is, particles cannot jump backwards, i.e.,
�x� , which formally corresponds to an infinite field (E
��).

The way in which the microscopic anisotropy�1� conveys
into macroscopic behavior is amazing.21 Consider, for sim-
plicity, d�2, 
� 1

2 , andE��. The system then exhibits a
critical point at T�TC

��1.4TC(E�0), where Tc(E�0)

2.2691, with different critical behavior.27,28 Furthermore,
the asymptotic, steady states belowTC

� do not comprise equi-
librium phases. Instead, one observes a particle current and
fully anisotropic phases; both are nonequilibrium features.
The intensity of the current increases withT, and suddenly
changes slope atTC

� �in fact, this property may serve to ac-
curately locate the critical point�. The stable ordered configu-
rations consist of one stripe, to be interpreted as aliquid
�rich-particle� phase of density
L(T). The gas �poor-
particle� phase of density
G(T) fills the remainder of the
system. Except for some microscopic roughness, the inter-
face is linear and rather flat, in general.30

The computer evolutions reported here always begin with
a completely disordered state to simulate the system at infi-
nite temperature. We then model a sudden quench and the
subsequent time evolution. With this aim, one proceeds with
a rate�1� that involves the temperatureT at which the system
is quenched. The run is followed until one stripe is obtained
�eventually, in order to save computer time, the run was
sometimes stopped before reaching the final stationary state�.
The code involves a list of�(t) particle-hole NN pairs from
where the next move is drawn. Time is then increased by
�t��(t)�1, so that its unit or Monte Carlo�MC� step in-
volves a visit to all sites on the average.32

The lattice is rectangular,L ��L� , with sides ranging
from 64 to 256 and, in a few cases, 512. Results concern on
average over around a thousand independent runs. Due to the
great computational effort which is consequently involved,
this paper describes simulations concerning a single point of
the two-dimensional DLG phase diagram. That is, most of
our evolutions are for
� 1

2 and E��, and simulate a
quench atT�0.8TC (E�0)�0.6TC

� . This choice is moti-
vated by the fact that clustering is then reasonably compact,
which helps to obtain good statistics, while it proceeds fast
enough, so that one can observe full relaxation to the steady
state. In spite of this restriction, brief investigation of other
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points, together with some of our observations below, led us
to believe that the validity of our results extends to a large
domain around the center of the miscibility gap; in fact, such
generality of behavior has been reported forE�0.2,5,7,11

III. GROWTH OF ORDER

The DLG exhibits different time regimes during phase
separation. Though they parallel the ones forE�0, the pe-
culiarities induced by the anisotropic condition are essential.

Starting from complete disorder, there is a very short ini-
tial regime in which small grains form. The novelty is that
typical grains are now fully anisotropic, stretched alongx� .
The grains then rapidly coarsen to form macroscopic strings,
as illustrated in Fig. 1. Sheared fluids�an experimentally
accessible situation that also involves both nonequilibrium
physics and anisotropy� seem to exhibit similar initial
regimes.16,18 That is, during a short-time interval, they show
larger growth rate along the flow than in the other directions,
which is assumed to correspond to the initial formation of
anisotropic regions. Afterwards, sheared fluids develop
stringlike macroscopic domains similar to the ones in the
DLG.

Figure 1 includes a comparison with the zero-field case,
i.e., the standard, isotropic lattice gas�LG�. This clearly il-
lustrates the strong anisotropy of nucleation and early phase
separation for the DLG. Close inspection of these and similar
graphs also seems to indicate relatively small but significant
differences in the degree of segregation between the two
cases at a given time. That is, at small distances, there is a
more homogeneous distribution of particles, both longitudi-
nally and transversely, in the DLG than in the LG. The latter
shows to be more segregated at the same time, which is
already rather evident by direct inspection of graphs for 1
�t�100 in Fig. 1. We believe this reveals the different role
played by surface tension as the degree of anisotropy is var-
ied: Typical DLG grains are rather linear except at their lon-
gitudinal ends, where curvature may be even stronger than
for the spherical clusters in the LG at comparable times. This
seems to be at the origin of a smoother transverse distribu-
tion of particles in the DLG at early times. On the other
hand, the field also tends to smoothen things longitudinally.

In order to quantify the aforementioned observation, we
evaluated the number of broken bonds in the direction of
�perpendicular to� the field, n �(t) �n�(t)�, as a function of
time during the early evolution stage. ThenA(t)��n�(t)
�n �(t)�/2N is the density of broken bonds. The higher the
degree of segregation at timet, the smaller isA(t). For in-
stance, we observe in a large 256�256 lattice thatA(t
�10)�0.295 andA(t�10)�0.38 for the LG and DLG, re-
spectively, confirming the above observation. On the other
hand, letB(t)��n�(t)�n �(t)�/2N. One would expectB(t)

0 �up to fluctuations� only for the isotropic system. In fact,
we measuredB(t)
0 for the LG, whileB(t) rapidly con-
verges to a nonzero valueB(t)
0.05 for the DLG at early
times�again for a large 256�256 lattice�. We take this num-
ber, B(t)�0.05, as characterizing the anisotropic shape of
DLG clusters at early times.

The difference of segregation between the DLG and the

LG at early times merits further study. This will need to take
into account the anisotropy of surface tension. In any case,
this concerns a regime very near the initial, melt state that
only bears minor practical importance, given that it extends
extremely shortly on the macroscopic time scale. We are in-
terested in the rest of this paper on the subsequent evolution,
to be described on the assumption of a simple flat interface,
which holds in Fig. 1 fort�100.

The DLG strings coarsen with time until well-defined,
relatively narrow longitudinal�i.e., directed alongx� ) stripes
are formed.�For periodic boundary conditions, the case of
our simulations, each stripe forms a ring.� This results into a
multistripe state, as illustrated in Figs. 1 and 2. The ordering
time in the DLG, defined as the time the system needs to
form the stripes, scales with the system size in the direction
of the field,L � , since in this case ordered clusters�stripes�
percolate along the field direction�see below�.26 This is not
the case for the equilibrium LG, where the ordering time
depends exclusively on system-intensive parameters such as
temperature and density.

The multistripe states are not stable, however. They are
only partially segregated and, in fact, a definite tendency
towards a fully segregated state with a single stripe is gen-
erally observed in computer simulations. One may also de-
velop simple arguments indicating that, in general, a multi-
stripe state will monotonically evolve until forming a single
stripe.21,33 It is true that, in practice, the complete relaxation
may take a very long time. More specifically, a macroscopic
system may take to decay into the true stable state a long,
macroscopic time interval, namely, a time that may show up
as mathematically infinite in some time scales. In fact, the
complete relaxation time is observed to increase with system
size, as first demonstrated in Ref. 26. It should also be re-
marked that this property is not a nonequilibrium feature but
occurs already in the equilibrium (E�0) case; see, for in-
stance, Refs. 2 and 4, and references therein. Slow relaxation
is a consequence of the conservation of particle density

implied by the particle-hole exchange dynamics; this induces
scale invariance, namely, slow�power-law� evolution of cor-
relations so that, once enough order sets in, all but very small
pattern modifications during a single MC step are precluded.
Consequently, certain individual runs sometimes block for a
long time in a state with several stripes; however, this does
not correspond to the average behavior. As illustrated by Fig.
2, which shows a typical evolution, and demonstrated below
by our averages corresponding to thousand evolutions, the
number of stripes monotonically decreases with time�see
also Sec. V�, and the whole relaxation can easily be observed
in computer simulations if one waits long enough.

We next attempt a theoretical description of the relaxation
process. Our interest is on theanisotropic spinodal decom-
position by which the earliest state with many well-defined
stripes decays into a single stripe. We shall assume that re-
laxation is a consequence of monomer events causing effec-
tive diffusion of liquid stripes.�Note that assuming gas
stripes here would be completely equivalent.� That is, due to
single-particle processes, liquid stripes move transversely as
a whole, and may collide and eventually coalesce with one of
the neighboring stripes; see the late evolution depicted in
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Fig. 2. We notice that coalescence implies evaporation of the
gas stripe between the two involved liquid stripes. Therefore,
given the particle/hole symmetry, our assumption is in a
sense equivalent to assuming that growth is due to evapora-
tion of stripes;26 however, the view adopted here allows for a
more detailed description below.

In order to evaluate the implications of stripe effective
diffusion via monomer events, let’s assume that stripes are
well defined and compact and exhibit a�linear� interface
which is rather flat. This is perfectly justified at sufficiently
low temperature�the case analyzed in detail here�,21 and it
might hold more generally, in a wide region including the
center of the miscibility gap but excluding the critical region.
Under this assumption, consider a stripe of mean width�(t)
that consists ofM particles whose coordinates along the
transverse�vertical� direction arey j(t); j�1, . . . ,M . We
characterize the stripe position by its center of masses,
Y c.m.(t)�M �1� jy j(t).

Let us evaluate the mobility coefficient Dl
�Nme�(�Y c.m.)

2� which depends on the stripe width�(t).
Here Nme is the number of monomer events per unit time,
and �(�Y c.m.)

2� is the mean-squared displacement of the
stripe associated to one of the monomer events. We think of
two possible types of events, each giving a different contri-
bution toDl :
�A� Evaporation condensation of particles and holes in the

stripe surface. Here particles�holes� at the stripe interface
evaporate to the hole�particle� gas, and condensate later at
the same interface. The evolution of the evaporated particle
�hole� in the bulk can be seen as a one-dimensional random
walk with two absorbing walls, the left and right interfaces,
respectively. According to standard random-walk theory,34

the evaporated particle�hole� will go again with unit prob-
ability to one of the�two� possible interfaces. Moreover, the
random walker will stick again to its original interface with
high probability, so trapping a particle�hole� from the oppo-
site interface is unlikely. Consequently, in this case�A�, Nme
is simply the evaporation rate. That is,Nme,A

��� j�exp(�2T�1�j) where� is the a priori frequency, the
sum is over the surface particles, and� j is the number of

FIG. 1. �a� A series of MC snapshots comparing very early
patterns for the DLG�with an infinite horizontal field� and for the
standard lattice gas, i.e., zero field�LG� at the same time. This
corresponds to a 256�256 lattice atT�0.6TC

� . The time�in MC
steps� is heret� 4 and 10�from top to bottom� for the DLG �left
column� and for the LG�right column�. �b� The same as�a� but at
late time, namely,t�100, 1000, and 10 000�from top to bottom�
for the DLG �left column� and for the LG�right column�.

FIG. 2. A series of MC snapshots that illustrate�late� growth at
T�0.6TC

� . This is for a rectangular lattice of sizeL��L ��256
�64 andt�102, 104, 105, 106, 107, and 1.1�108 MC steps, re-
spectively, from left to right.
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resulting broken bonds. For a flat linear interface, particles
can only jump transversely away the surface,� equals the
inverse of the lattice coordination numberq, and one may
write Nme,A
4q�1L �exp(�2�̄/T) where�̄ is the mean num-
ber of broken bonds per evaporation event. We multiplied
here by 2 to take into account evaporation of surface holes
that travel within the stripe to reach the�same� surface again.
On the other hand, evaporation processes induce changes
�Y c.m.�M �1�y , where�y is the net particle�transverse�
displacement, andM
L ���(t) for compact stripes. There-
fore,

D �
(A)�4q�1��y2�e�2�̄/TL �

�1��2. �2�

�B� A hole jumps one lattice spacing away within the stripe
interior. This induces�Y c.m.�1/M or 0, depending on the
jump direction. One may writeNme,B�2�
h(T)L ��ph(T)
where
h is the density of holes,L �� is the volume or total
number of sites within the liquid stripe, andph is the jump-
ing probability per unit time. The factor 2 here comes from
the fact that a hole modifiesY c.m. when jumping to any of the
two directions�y� . At low T, 
h is small; holes are then
rather isolated from each other, so that jumps do not modify
the number of broken bonds, andph
1. What ensues is

D �
(B)�2q�1
hL �

�1��1. �3�

Note that a different dependence of Eqs.�2� and�3� on � is a
consequence of the fact that the ratesNme,A and Nme,B in-
volve processes consisting of evaporation on the line and
difussion on the bulk, respectively.

For 
� 1
2 , one has on the average stripes of width� that

are separated a distance� from each other. Therefore, a given
stripe takes a mean time� l��2/D� to find �and thus to coa-
lesce with� another one, and this causes its width to increase
by ����. Consequently,d �/d t��l��

�1�D ���1. To-
gether with Eqs.�2� and �3�, respectively, this implies that
mechanism�A� is characterized by a power law��t1/4, and
that mechanism�B� is to be associated with��t1/3. Further-
more, assuming that pattern growth in the DLG is the result
of competition between the two mechanisms, and that they
are independent of each other,D��D �

(A)�D �
(B) , it follows

that

d �

d t
�

1

L �
� �A

�3
�
�B

�2 � , �4�

where�A�4���y2�e�2�̄/T and�B�2�
h . This is our gen-
eral result for the DLG as far as the fieldE is large, e.g.,
infinite, and the temperatureT is low enough so that the
interfaces, and mechanisms�A� and �B�, are sufficiently
simple as assumed. This is to be compared with the Lifshitz-
Slyozov-Wagner behaviord �/d t���2 which assumes spa-
tial isotropy and diffusion directly governed by surface ten-
sion. Formally, Eq.�4� is similar to an equation obtained
before by assuming isotropic conditions; see Sec. I.12

The consequences of Eqs.�2�–�4� are as follows. Both
Eqs.�2� and �3� imply independently that

������1/�� t/L ��
1/�. �5�

The difference is that���A and��4 from Eq. �2� while
one obtains���B and ��3 from Eq. �3�. On the other
hand, for sufficiently late times,� becomes large and Eq.�4�
simply solves into

�� t ���t1/3��, �6�

where�3�3�BL �
�1 and���A/2�B . That is, the prediction

is that hole diffusion within the stripe�mechanism�B�� will
be dominant at late times. A different hypothesis, based on
the stripe evaporation picture, was shown in Ref. 26 to imply
��(t/L �)

1/3. This coincidence is not surprising since, as ar-
gued above, the coalescence of two particles’ stripes implies
the evaporation of the intermediate hole stripe and due to the
particle/hole symmetry in our system, both mechanisms
�stripe diffusion/coalescence and stripe evaporation� corre-
spond to the same physical process yielding the same behav-
ior. In order to uncover the close analogy between the two
pictures, one may notice that, to evaporate a particle stripe,
many of its particles must cross the surrounding hole stripes
and stick to the neighboring particle stripes�this is so since
the particle density in the gas phase remains almost con-
stant�. This particle migration process through the surround-
ing hole stripes is in fact what we have called ‘‘hole diffusion
within the stripe’’ in the presence of particle/hole symmetry.
Hence the fundamental mechanism involved in a stripe
evaporation is the diffusion of its constituents through the
neighboring stripes. This observation is key to understanding
the relation between the stripe’s evaporation and hole�par-
ticle� diffusion.

The effect of mechanism�A�—surface evaporation and
subsequent condensation—on growth is more subtle. In fact,
our theory predicts a crossover from thet1/4 regime to thet1/3

regime as time is increased. That is, the two mechanisms will
have a comparable influence att��crosswith

�cross�
�4�A�

3

�3�B�
4

L � . �7�

For timest��cross, mechanism�A� is dominant and thet1/4

behavior is expected, while mechanism�B� is dominant for
t��crossand the asymptotict1/3 growth law is then observed.
The crossover time�cross is a macroscopic, observable time.
Further, we may define the time�ssat which a single stripe is
reached by the condition that�(t)
 1

2 L� . One obtains

�ss�
L �

�B
� L�

3

24
�
�L�

2

4
�2�2L�

�8�3� ln
�B�2��1/2L��

L �
� ln

2��B

L �
� � . �8�

Hence our system is characterized by two different time
scales, namely,�crossand�ss. They depend on system size in
a different way. For large systems one generally obtains�ss
	�cross, so that the system converges, after a short, perhaps
unobservable transient time, to the relevantt1/3 behavior.
However, there are small systems for which�ss��cross.
These systems will reach the stationary state�a single stripe�
before having time to enter into the asymptotict1/3 regime.
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For these small systems, the only relevant behavior is thet1/4

one. Therefore, there is asize crossover betweent1/4

asymptotic behavior for small systems andt1/3 asymptotic
behavior for large ones. The condition�cross(T,L �)
��ss(T,L � ,L�) defines the crossover size.

Consider now the parameter ���cross(T,L �)/
�ss(T,L�,L �). It follows that thet1/3 behavior is dominant for
�
1. However, one also has that�(T,L�,L �)→0 for finite T
in the thermodynamic limit (L�,L �→�,L� /L ��const).
Consequently, thet1/3 growth law is the general one, namely,
the only one we should expect to observe in a macroscopic
system. Corrections to this should only occur at early times
in small systems. This is fully confirmed below.

One may also define a longitudinal length,26,27 say, l �
�ta �, where one expectsa ��1/3 �given that the growth is
more rapid longitudinally than transversely�. This length is
only relevant during the initial regime, until stripes become
well defined, with all of them extending the whole length of
L � . This condition may be taken as defining the onset of the
multistripe state, which may be characterized byl �(�ms)
�L � , from where it follows that�ms�L �

1/a � . Interesting
enough, this is on the macroscopic time scale, as for both
�crossand�ss �more precisely,�cross�L � and�ss�L �L�

3 ). The
fact that all these relevant times are on the macroscopic,
observable time scale confirms that, as argued above, the
single-stripe�and not the multistripe� state is the only stable
one in general. It is also to be remarked that, once the mul-
tistripe state sets in, the only relevant length is the transverse
one, l. Of course, this is compatible with the possible exis-
tence of two correlation lengths describing thermal fluctua-
tions at criticality.

In order to test our predictions, several measures of the
relevant length in computer simulations were monitored,
namely,
�i� the maximum width of the stripe,�max, averaged over

all stripes in the configuration. This maximun width is de-
fined as the distance in the direction perpendicular to the
field between the leftmost and the rightmost particles within
the stripe;
�ii � �M�M /L � , whereM�M (t) is the mass, or number

of particles belonging to the stripe, averaged over all stripes
in the configuration. This mass width is defined as the width
of a perfectly dense stripe withM particles;
�iii � �s�L�/2Ns , whereNs is the number of stripes in the

configuration.
After averaging over many independent evolutions, all

these quantities happen to behave similarly with time. Fur-
ther measures of the relevant length that we define in the
next section behave in the same way. We shall refer to this
common behavior, which is illustrated in Fig. 3, as�(t). �It
is noticeable that, before showing a common behavior, Fig. 3
reveals some significant differences between our measures of
�(t) at early times. This confirms the more difficult
description—not attempted here—which is required by the
initial regime.�

In Fig. 4 we illustrate our analysis and main results con-
cerning the�late� time evolution of �(t). The predictions
above are confirmed and, in particular, ‘‘ small’’ lattices—

Fig. 4�a�—happen to behave differently than ‘‘large’’
lattices—Fig. 4�b�. In both cases we plotted�(t) versusta�

for varying a� , looking for the best linear fit�(t)��ta�

��, excluding the initial time regime. The upper insets in
the figures show the chi square function associated to each
fit, namely,

�2�a����
i�1

� ��� t i����t i
a�����2

�t i
a���

, �9�

for a least-squares fit to� data points using parametersa� ,
�, and�. The main graphs confirm the existence of a com-
mon behavior for all the monitored measures of�(t) �indi-
cated by different symbols�. These graphs also demonstrate
that �(t)��ta���, with small �, during the whole time
regime of consideration. On the other hand, the upper insets
indicate thata� is very close to1

4 for ‘‘small’’ systems �in
fact, for L��128) while a�� 1

3 , as the system becomes
larger, say,L� 256, corresponds to a ‘‘large’’ lattice accord-
ing to familiar MC standards. As an alternative method to
analyze�(t), one may evaluate

ā� t ��
d logn�� t �

d lognt
. �10�

Our prediction is thatā(t)�a���a� /�(t), i.e., this should
provide the exponenta� by extrapolating to large�(t) �late
time�. The insets at the bottom of Figs. 4�a� and 4�b� show
the results forn�2. They are in agreement with the other
method, and again confirm our predictions.

As indicated above, the size crossover between thet1/4

and t1/3 asymptotic regimes is expected for a system size
(L � ,L�) such that�cross(T,L �)��ss(T,L� ,L �). In order to
make this condition explicit, we need to estimate the ampli-
tudes�A and �B in Eq. �4�; see Eqs.�7� and �8�. These

FIG. 3. Time evolution of the relevant length,�(t), as obtained
by different methods, namely, from the numberNs of stripes
�dashed line�, from the maximum width�max(squares) from the
mass�M(triangles), and from the peak of the structure function,
�S�2!/k�,max(circles); these quantities are defined in the main
text. The graphs here correspond to an average of over 600 inde-
pendent runs for the 128�128 lattice.
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amplitudes, which state the relative importance of surface
evaporation/condensation versus bulk hole diffusion, are
given, respectively, by �A�4q�1��y2�e�2�̄/T and �B
�2q�1
h . We note that, for a sufficiently flat interface�i.e.,
one that involves microscopic—but not macroscopic—
roughness�, ��y2��O(1) and�̄�5. On the other hand, the
excess energy associated with an isolated hole is 16, so that

h�exp(�16/T) is a rough estimate of the hole density. As
depicted in Fig. 5, it follows numerically, in full agreement
with our observations, thata�� 1

4 is to be observed only at
early times, earlier for larger systems; to be more specific,

the crossover forL ��64, for instance, is predicted forL�

�140, which confirms the above; see also Figs. 4�a� and
4�b�.

This behavior may be understood on simple grounds. The
surface/volume ratio is large initially and, consequently,
mechanism�A� �based on surface events� is then dominant.
This is more dramatic the smaller the system. That is, the
surface is negligible for macroscopic systems, in general,
and, as illustrated in Fig. 2, even if the surface is relevant at
very early times, its ratio to the volume will monotonically
decrease with time. This causes hole diffusion in the bulk
�mechanism�B�� to become dominant, more rapidly for
larger systems, since the liquid phase is trying to exhibit only
two surfaces. On the other hand, Ref. 26 studies the stripe
coarsening process in the infinitely driven lattice gas. Pure
t1/3 behavior is reported assuming the stripe evaporation
mechanism. This result is perfectly compatible with our re-
sults, given that the systems in Ref. 26 correspond to very
large values ofL� (800 and 960) and small values ofL � �8,
16, and 32�. For these shapes our theory also predicts the
�simple� t1/3 asymptotic behavior.

IV. CORRELATIONS AND THE STRUCTURE FACTOR

Consider now the Fourier transform of the pair-correlation
functionC(x,y ;t)��n0,0(t)nx,y(t)� wherenx,y stands for the
occupation variable at lattice siter��(x,y). This is the so-
called structure factor,S(k� ,t), wherek��(k � ,k�). Given that
the k � dependence is only relevant at early times, before the
multistripe state sets in, i.e., fort��ms, we shall setk ��0 in
the following. That is, our interest here is on

S�k� ;t ��
1

L �L�
	�

x,y
nx,y� t �exp� ik�y �	2

. �11�

As illustrated in Fig. 6, this function develops a peak atk�

�kmax(t) immediately after quenching. The peak then mono-

FIG. 4. �a� The main graph shows�(t)��S(t) versusta� for
a��

1
4 in the case of the ‘‘small’’ 64�64 lattice. A similar behavior

is obtained for any of the studied measures of� �see the main text
for definitions�, which are represented in the insets by different
symbols, namely,�max �squares�, �S �circles�, and �M �triangles�.
The upper inset shows the chi square function for varyinga� as
obtained from a series of fits; a well-defined minimum is exhibited
indicating thata�� 1

4 in this case. The lower inset shows theeffec-
tive exponent, d log2�/d log2t, as a function of 1/�(t); this extrapo-
lates to the same value ofa� . Same as�a� but demonstrating that
a��

1
3 for the ‘‘large’’ L��L ��256�64 lattice�one obtains a simi-

lar result for largerL �).

FIG. 5. The parameter���cross(T,L �)/�ss(T,L� ,L �), with the
characteristic times�cross and �ss defined in the main text, as a
function of L� for L ��64. This confirms our distinction between
‘‘small’’ and ‘‘large’’ lattices, as explained in the main text.
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tonically shifts towards smaller wave numbers with increas-
ing t; in fact, one expectsk�→0 ast→� in a macroscopic
system. The wavelength�S�2!/kmax turns out to be an ex-
cellent characterization of the relevant order, namely, it mea-
sures both the stripe width and the stripe separation during
phase segregation. In particular, we confirm that�S(t) has
the common behavior discussed above for length�(t); see
Figs. 3 and 4.

The fact that the DLG shows a uniquetime-dependent
relevant length,���l(t), has some important consequences.
For example, extrapolating from the equilibrium case�see
Sec. I�,7 one should probably expect dynamical scaling, i.e.,

S�k� ;t �"l� t �F�k�l� t �� �12�

for the anisotropic DLG in two dimensions. This is indeed
observed to hold during most of the relaxation and, in par-
ticular, during all of the segregation process after formation
of well-defined stripes. This is illustrated in Fig. 7 depicting
the scaling functionF. A time-dependent mean-field model
of a binary mixture in shear flow has recently been demon-
strated to exhibit a similar property, though involving two
lengths both behaving differently from�(t) above.18

The structure factor may be obtained by scattering, which
makes it an important tool in many studies. Analyzing fur-
ther the details of functionsS(k� ;t) and F(�) or, alterna-
tively, the universal function�(�)�S/�L, as observed in
computer simulations is therefore of great interest�the extra
L factor in the definition of�(�) is our finite-size scaling
ansatz�. Experimental studies often refer to the mean ‘‘radius
of gyration’’ of the grains as the slope of the straight portion
in a plot of ln�S(k,t)� versusk2.35 We checked the validity
under anisotropic conditions of this concept, which is in fact
quite useful in equilibrium even outside the domain of valid-
ity of its approximations.7 We confirm thatS(k� ;t) exhibits
the Guinier Gaussian peak, namely,

�����exp��const����max�
2� �13�

around the maximum�max. More intriguing is the behavior
of �(�) before the peak,���max. Figure 7 indicates that
scaling does not hold in this region even at the end of our

�otherwise long enough� simulations. This is so because
�(�) goes as
2L/�(t) at k��0, and thus depends on time
for very small values of�, breaking the scaling observed for
larger values of�. However, a detailed study of data reveals
that the scaling function near the origin tends with time to-
wards a common envelope�(�)��1�1/3 for �0��
��max; we do not have a simple explanation of this. In any
case, this behavior breaks down close to the origin,���0 ,
where�(�)→0 as�→0 andt→� for the infinite system.

The behavior after the peak,���max, may be predicted
on simple grounds. The�sphericalized� structure factor for
�equilibrium� isotropic binary mixtures is known to satisfy
the Porod law,S�k�(d�1) at large enoughk, whered is the
system dimension,7 i.e., S�k�3 in two dimensions. The
main contribution to the large-k tail comes from the short-
distance behavior ofC(x,y ;t). That is, the Porod’s region
for the DLG may be taken to correspond to#�
k�

�1
�(t)
where#� stands for a�transverse� thermal length that char-
acterizes the smallest, thermal fluctuations. Let two points,
r�0 and r�0�r�, r��(x,y). For anyx such that#�
x
�(t),
one roughly has that the productnr�0

(t)nr�(t) equals�1 if the

two points are on the stripe, and 0 otherwise, i.e., if either an
interface exists between them or else the two points belong
to the gas between stripes. Sincex
�(t), the probability
that r� crosses more than one interface is negligible. For a
half filled system, the probability thatr�0 lies at a particle
stripe is1

2 , and the probability that bothr�0 andr�0�r� belong
to the same stripe is roughly12 ��(t)�x�/�(t). Hence,

C�x,y ;t ��
1

2 � 1�
x

l� t � � , x
�� t �. �14�

By power counting, this implies theanisotropic Porod law
�in two dimensions�

FIG. 6. Time development of the structure factorS(k� ;t), as
defined in the main text, for a ‘‘large’’ latticeL��L ��256�256
during early and intermediate phase segregation. A peak grows with
time as it shifts towards the small values ofk� .

FIG. 7. The scaling with both time and size of the structure
function to show that�(�)�S(k� ;t)/lL, with ��k�lL�1, is well
defined and universal, i.e., the same at any time�excluding some
early evolution� and for any square lattice of sideL. This plot in-
cludes all data fort 104 MC steps and 64�64, 128�128, and
256�256 lattices. The broken lines illustrate the different kinds of
behavior of�(�t) that are discussed in the main text.
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S�k� ;t ��
1

�� t �k�
2

, #�
k�
�1
l� t �. �15�

Therefore,�(�)���2L�1, which is confirmed in Fig. 7.
This is in contrast with the�isotropic� Porod result. The dif-
ference is a consequence of the fact that the DLG clusters are
stripes that percolate in the direction of the field, instead of
the isotropic clusters of the LG. The short-distance pair-
correlation function for the latter is C(r�;t)� 1

2 �1
�
r
/�(t)�, from which one has that�(�)���3. It follows
that anisotropy may easily be detected by looking at the tail
of the structure factor.

The detailed analysis ofS(k� ;t) also reveals that, asL � is
increased in computer simulations, the anisotropic behavior
����2 crosses over to����3 for larger�; see Fig. 7. We
believe this reflects the existence of standard thermal fluc-
tuations. That is, very small clusters of particles occur in the
gas in the asymptotic regime whose typical size in the direc-
tion perpendicular to the field is of order#� . These very
small asymptotic clusters are rather isotropic, namely, they
do not differ essentially from the corresponding ones in equi-
librium binary mixtures. More specifically, forx�#� , one
may approximateC(r�;t)�1�
r
/#�(t), which implies the
��3 power-law tail for large�. On the other hand, according
to �5�, the mean stripe width grows as�(t)�(t/L �)

a with a
� 1

4 or a� 1
3 , depending on the value ofL� . Therefore, the

number of stripes at timet is proportional toL�L �
a/ta and,

for a given time, the number of stripes increases withL � as
L �

a . We also know that, at a given time, the number of small,
fluctuating clusters is proportional toL � . Hence the relative
importance of small clusters due to thermal fluctuations as
compared to stripes is proportional toL � . In fact, the��3

tail is observed for large enough values ofL � but not for
small lattices.

V. A CONTINUUM DESCRIPTION

The rigorous derivation of a general continuum analog of
the driven lattice gas is an open problem.21 Recent studies
led to the following proposal for a coarse-grained density,
$(r,t):36,37

% t$�r,t ����&�
2$�&�

4$�
#

6
&�

2$3�� �& �
2$�&�'�r,t �.

�16�

Here, the last term stands for a conserved Gaussian noise
representing the fast degrees of freedom, and�� , � �, and#
are model parameters. Compared to previous proposals,24,38

this Langevin-type equation amounts to neglect a nonlinear
current term,��&�$

2, that was believed to be essential�rel-
evant� at criticality. However, one may show that, at least in
the limit E→�, the coefficient� cancels out�due in this
case to a subtle saturation effect�.37 In fact, recent scaling
analysis has unambiguously confirmed that a particle current
is not relevant and that Eq.�16� captures the correct critical
behavior of the DLG.27,28 Consequently, an important ques-
tion is now whether Eq.�16� reproduces also the kinetic
behavior of the DLG as described in previous sections. We

present in this paper a confirmation that, as compared with
other approaches,24 Eq. �16� is indeed a proper continuum
description of the DLG kinetic relaxation. A more complete
study of the kinetic consequences of this equation will be
presented elsewhere.

In order to numerically integrate Eq.�16�, let us introduce
the indicesi, j�1, . . . ,N to represent, respectively, the two
components ofr�(x� ,x �). One thus makes a trivial discreti-
zation of the space, and then of the time by the Cauchy-Euler
method.39 The result is a set ofN2�1 coupled nonlinear
equations, namely,

$� i, j ;t��t ��$� i, j ,t ���t���&̃�
2$�&̃�

4$�
#

6
&̃�

2$3

�� �&̃ �
2$����t&̃�'� i, j ;t �. �17�

This equation is to be solved by the computer. With

this aim, we may write &̃�'(i, j ;t)��'(i�1,j ;t)�'(i
�1,j ;t)�/2�x� and $(i, j ;t)�$(i�x� , j�x � ;t) where
�x��L� /N and�x ��L � /N. The maximum value of�x�

is thus limited by the interface width. For Fig. 8, which con-
cerns a 256�256 lattice (N�256) we—rather arbitrarily—
used�x���x ��1.7, and�t�0.05, which produce a lo-
cally stable solution. The parameters�� , � � , and# are fixed
on the basis of its physical meaning. The mass terms� � and
�� represent temperatures along the longitudinal and trans-
verse directions, respectively, relative to the critical tempera-
ture, i.e.,���(T��TC

�). Given the anisotropy of phase seg-
regation, with longitudinal interfaces only,���0 and � �
�0. On the other hand,
��
 should be small enough to allow
for a relatively fast evolution. Our choices for Fig. 8 are
����0.25, � ��0.5, and#�1.

It is remarkable that, in spite of some apparent similarity,
the problem here differs from the one in the study of�stan-
dard� spinodal decomposition by means of the isotropic (E
�0) Cahn-Hilliard equation. In equilibrium,40 one usually
assumes that the influence of noise on growth, which is then
assumed to be directly driven by surface tension, is negli-
gible far from criticality. The noise term in Eq.�17� may be
expected to be important in a more general context, however.
That is, as described in Sec. III, the DLG develops striped
patterns in which surface tension smooths the interfaces but
has no other dominant role on the basic kinetic events. Con-
sequently, neglecting the noise in Eq.�17� would turn meta-
stable any striped geometry after coarsening of strings,
which is not acceptable�see Sec. III�.

Finally, it is interesting to notice that if a one-dimensional
structure is assumed, and the gradient in the direction paral-
lel to the field in Eq.�16� is eliminated, then this equation
reduces to the one-dimensional time-dependent Ginzburg-
Landau model in Ref. 41. There a ln(t) growth was found at
zero temperature and a crossover from ln(t) to t1/3 at finite
temperatures.
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VI. CONCLUSION

This paper presents a theoretical description of spinodal
decomposition in the DLG, and compares it with data from a
kinetic Monte Carlo study. This is also compared with the
kinetic implications of a Langevin, continuum equation that
had previously been shown to capture correctly the critical
behavior of the DLG. The resulting picture from these three
approaches, which is summarized below, should probably
hold for a class of highly-anisotropic phase segregation phe-
nomena. In fact, our results provide a method for analyzing
experiments that could be checked against laboratory realiza-
tions of the DLG, i.e., the case of phase segregation under
biased fields or other influences such as electric fields, grav-
ity, and elastic stresses.

Immediately after a deep quench, there is an early regime
in which anisotropic grains develop. They tend to coarsen to
form small strings that then combine into well-defined thin
stripes. Such nucleation and early coarsening�Fig. 1� seem
governed by surface tension at the string ends competing
with other both surface and bulk processes. This complicated
situation typically extends less than 103 MC steps in com-

puter simulations, which corresponds to a very short macro-
scopic time, so that it would be hardly observable in experi-
ments. As a matter of fact, most of the system relaxation
proceeds by coarsening of stripes until full segregation�Fig.
2�. Surprisingly enough, this regime, which has been studied
for more than a decade now,22–26happens to be theoretically
simpler than the corresponding one for the isotropic case.1–11

The evolution from many stripes to a single one mainly
proceeds by competition of two mechanisms:�A� evapora-
tion of a particle from one stripe surface and subsequent
deposition at the same surface, and�B� diffusion of a hole
within the bulk of the stripe. The first one dominates initially
�and lasts more for smaller systems�, when the surface/
volume ratio is relatively large. Mechanism�A� implies that
the relevant length�as defined in Fig. 3� increases with time
according to�(t)�t1/4. The surface/volume ratio decreases
with time, however, and mechanism�B� soon becomes domi-
nant. This implies�(t)�t1/3 which is the general prediction
for a macroscopic system�cf. Figs. 4 and 5�.42 This was
obtained before by assuming coarsening of two�liquid�
stripes by evaporation of the gas stripe placed between
them;26 see also Ref. 22. Note that thet1/3 law is precisely
the behavior which is acknowledged to be dominant under
isotropy, but this has a different origin in the equilibrium
case.4,5 Note also that surface tension determines evaporation
rates but has no other influence on mechanisms�A� and�B�.

The t1/3 growth law, Eq.�6�, is perfectly confirmed by the
DLG data�Fig. 4�b��. This indicates time-scale invariance. In
fact, such invariance was demonstrated for the isotropic case,
in which the situation is somewhat more involved�Sec. I�.
The invariance property may be better analyzed by looking
at the structure factor transversely to the drive,S(k� ,t) �Fig.
6�. This exhibitsdynamic scaling, i.e., it remains self-similar
during phase segregation.43 More specifically, �(�)
�S(k� ;t)/�L, with ��k��L�1, is universal, namely, the
same at any�sufficiently late� time t and for any square lat-
tice of sideL. Furthermore, the function�(�) has a well-
defined shape. In particular, it exhibits the Guinier Gaussian
peak, and this is followed by the anisotropic Porod decay,
�(�)���2 and then by a thermal tail�(�)���3 �Fig. 7�.
Also noticeable is the fact that the parameter to scale along
the S axis isJ(t)�� and not�2 as under isotropy.

Our results in this paper have two main restrictions, both
due to the great computational effort required by this
problem.21 First, they follow from an extensive analysis of
only one phase-diagram point, namely,
� 1

2 , E��, andT
�0.8TC

0 . However, our own observations�including the
brief investigation of other points�, together with an extrapo-
lation of the many results known for the isotropic case,
strongly suggest that the picture in this paper holds within a
large domain around the center of the miscibility gap.44 In
fact, the scaled structure factor for isotropic systems was
shown to be almost independent of density and temperature,
and even the substance investigated, in a wide region below
the coexistence line.10 Our consideration of only a two-
dimensional system does not seem to be a real restriction
either. That is, adding an extra�transverse� dimension should
not essentially modify the picture here.45

It would be interesting to look next in the laboratory for

FIG. 8. Series of snapshots as obtained from Eq.�17� for the
256�256 lattice with parameters as given in the main text. Time
�arbitrary units� is t�0, 10, 100, 200, 500, and 1000, respectively,
from left to right and from top to bottom.
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both time scale invariance andt1/3 growth under highly an-
isotropic conditions. In fact, there is some evidence of such
behavior in sheared fluids�Sec. I�, and one may think of
some more direct experimental realizations of the driven lat-
tice gas. In particular, coarsening striped patterns very simi-
lar to those observed in our system are found in some in-
triguing experiments on granular binary mixtures under
shaking.46 We think that the mechanisms we propose in this
paper should help the understanding of such experimental

results. In general, we hope our observations will motivate
both experiments and more complete theories.
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