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We study metastability in a nonequilibrium Ising-like ferromagnetic system, using both mean
field theory and simulations. In particular, we pay attention to the intrinsic coercive field, which
in this case is the magnetic field separating the metastable region from the unstable one. We find
that, under strong nonequilibrium conditions, the intrinsic coercive field exhibits reentrant behavior
as a function of temperature. This observation involves the presence of a non-linear cooperative
phenomenon between the thermal noise and the non-thermal (nonequilibrium) fluctuation source:
although both noises add independently disorder to the system, which involves the attenuation
or even the destruction of the existing metastable states, the combination of both noise sources
not always implies a larger disorder, giving rise to regions in parameter space where there are no
metastable states for low and high temperatures, existing however metastability for intermediate
temperatures. We argue that the observed noise enhanced metastability may be understood in terms

of multiplicative noise.

PACS numbers: xxx, XXX, XXX

INTRODUCTION

The concept of metaestability[1] is a cornerstone in
many different branches of Science. Metastability is ob-
served ubiquitously in Nature, and it usually determines
the system behavior. Some examples can be found in
the Standard Model vacuum[2], quark/gluon plasma[3],
superconductors and superfluids[4], electronic circuits[5],
globular proteins[6], magnetic systems|[7], supercooled
liquids][8], climate models [9], black holes and protoneu-
tronic stars[10], cosmology[11], etc. A better microscopic
understanding of this ubiquitous phenomenon is then of
great theoretical and technological interest, besides being
a formidable mathematical challenge.

A related problem of particular importance is that
posed by magnetic storage of information. In this case,
each individual domain composing a magnetic material
is oriented using a strong magnetic field, thus defining a
bit of information. A main concern is to retain the do-
mains’ orientations for as long as possible in the presence
of weak arbitrarily-oriented external magnetic fields. The
interaction with these weak external fields often produces
metastable states in the domains, and the resistance of
stored information depends on the properties of these
metastable states, including the details of their decay.

In general, the study of real magnetic systems with
many degrees of freedom is a formidably complicated
task. One is therefore forced to investigate simplified
models of real magnets that, while capturing their rele-
vant ingredients, are much more easily tractable. In this
way, there has been in last decades a huge amount of
works studying the problem of metastability in lattice
models of classical spins. The most studied model has

been the Ising model in two and three dimensions.[12, 13,
15-24] The general interest in this model is two-fold. On
one hand, it captures many of the fundamental features
of a wide class of real systems. On the other hand, many
of its equilibrium properties are analytically known in
one and two dimensions[14], which makes more easy any
theoretical approach to metastability in this model. In
this way, continuous theories based on nucleation mech-
anisms have been proposed which successfully describe
the evolution from the metastable state to the stable
one.[15, 16] Also the problem of metastability in the low
temperature limit has been exactly solved.[17] These the-
oretical results have been checked many times via com-
puter simulations.[18, 19] Likewise, the effects that open
borders[20, 21], quenched impurities[22] and demagnetiz-
ing fields[23] have on the properties of metastable states
in these systems have also been investigated.

With some exceptions[24], most works on metastabil-
ity in magnetic systems have been limited to equilib-
rium models. Although metastability is a dynamic phe-
nomenon not included in the Gibbs formalism,[1] so suc-
cessful on the other hand when describing equilibrium
states, it is possible to understand such phenomenon in
equilibrium systems extending dynamically Gibbs theory
using the thermodynamic potentials there defined.[15, 16]
However, most of the systems we find in Nature are out
of equilibrium: they are open systems, subject to ther-
mal or density gradients, mass and/or energy currents,
which suffer the action of external agents, contain im-
purities or are subject to several sources of non-thermal
noise, etc. In particular, this is the case for most natural
magnetic systems. As an example, it has been observed
that some properties of metastable states in certain meso-



scopic magnetic particles are highly affected by quantum
tunneling of individual spins,[25] which may be thought
as a pure nonequilibrium process since it breaks detailed
balance. Furthermore, there are nonequilibrium lattice
spin models which reproduce some of these results.[24]
Hence, if we want to understand metastability in real
(i.e., nonequilibrium) magnetic systems we must study
simplified nonequilibrium models. For nonequilibrium
systems there is no theory equivalent to equilibrium Sta-
tistical Mechanics that connects their microscopic prop-
erties with their macroscopic phenomenology. Study-
ing metastability in systems far from equilibrium we ad-
dress the problem of the existence of some nonequilibrium
functional controlling the relaxation from the metastable
state in a way similar to the equilibrium free energy.[26]

Summing up, in this paper we study metastability in
magnetic thin films under nonequilibrium conditions. On
the analogy of equilibrium systems, it seems sensible to
model these magnetic systems using an (oversimplified)
bidimensional kinetic Ising lattice with nearest neighbor
interactions and periodic boundary conditions. In ad-
dition, we will consider a (very) weak random dynamic
perturbation competing with the usual thermal spin flip
process. It has been shown that the presence of this
weak perturbation could explain some intriguing proper-
ties of some real magnetic materials, as for instance the
non-vanishing value of magnetic viscosity in the low tem-
perature limit.[24, 25] The impurity makes the system
to reach asymptotically a nonequilibrium steady state.
That is, we assume that a principal role of the micro-
scopic disorder which is generally present in actual speci-
mens consists in modifying the dynamics -in a way similar
to that of an external non-Hamiltonian agent.[27]

It is observed that, under the action of the dynamic
perturbation and a weak magnetic field oriented oppo-
site to the initial magnetization, the system is trapped
in a metastable state with, where it spends a long time
as compared to the typical relaxation time in the sys-
tem. However, fluctuations make the system to eventu-
ally evolve from the metastable well to the stable one,
where magnetization is oriented along the external field
direction. In this paper we are interested in the effects
that nonequilibrium conditions induce on some of the
static properties associated to metastability: localization
of the metastable and stable wells, the onset of insta-
bility, etc. In particular, we will pay attention to the
magnetic field strength for which the metastable state
becomes unstable. This field is known in this case as
intrinsic coercive field[267 ], h*, and it plays a role in
magnets equivalent to the spinodal curve for density-
conserved systems. The study of A* will allow us to
uncover a non-lineal cooperative phenomenon between
the thermal noise and the nonequilibrium fluctuations
(parametrized by the dynamic random perturbation) in
the strong nonequilibrium regime. In particular, we ob-
serve in this regime that while metastable states are not

observed in the low temperature limit, they do emerge
for intermediate temperatures, thus signaling a noise en-
hanced metastability.

The paper is organized as follows. In Section IT we
describe our model in detail, sumarizing some of its
properties. In Section III we briefly derive a first or-
der dynamic mean field approximation known as Pair
Approximation[27, 28], as applied to our ferromagnetic
model. Section IV is devoted to some results derived
from this approach for the static properties associated to
metastability in this system. In particular, in this section
we evaluate the intrinsic coercive field in mean field the-
ory. In Section V we introduce a method to measure the
intrinsic coercive field in Monte Carlo simulations of the
real system. There we also compare our measurements
with the predicted mean field result. Finally, Section
VI presents our conclusions, paying special attention to
the physical mechanism responsible of the observed co-
operative phenomenon between thermal and non-thermal
noises.

THE MODEL

The two-dimensional Ising model[29] is defined on a
square lattice A = {1,..., L}> C Z? of side L. On each
lattice node a spin variable is defined, s;, with i € [1, N],
N = L2. Each spin can take two different values, s; =
+1. The system is characterized by the Hamiltonian,

N

H(S) = —JZ SiSj — thl (1)

(6.7) =1

where J > 0 is the (ferromagnetic) coupling constant,
s = {s;,i =1,...,N} is the system’s configuration, and
h is an external magnetic field. The first sum runs over
all nearest neighbor pairs, (i,j), while the second sum
runs over all spins. We endow this kinetic model with
a single spin flip dynamics determined by the following
transition rate, consequence of the superposition of two
“canonical” drives,

‘ e—BAH(si7ni)
W(S%Sl)zp‘i'(l—p)m (2)
Here s’ stands for the configuration s after flipping the
spin at node i, 8 = 1/T is the inverse temperature, and
AH(si,n;) = H(s?) — H(s) = 25;[2J(n; — d) + h], where
n; € [0,4] is the number of up nearest neighbors of the
spin at node %, and d is the system dimension. We have
fixed Boltzmann constant to unity.

One can interpret the above dynamical rule as describ-
ing a spin flip process under the action of two competing
heat baths: with probability p the spin flip is performed
completely at random, independently of any energetic
consideration (we can interpret in this case that s is in



contact with a heat bath at infinite temperature), while
the spin flip is performed at temperature T (via the usual
Glauber rate) with probability (1 — p). The dynamics
we have chosen is a particular case of the general class
of competitive dynamics.[30] Any competitive transition
rate as the one written in (2) will produce in the sys-
tem what is called in literature dynamical frustration,[30—-
32] and the competition between both dynamics generi-
cally drives the system towards a nonequilibrium steady
state.[33] Moreover, the selected dynamical rule, eq. (2),
rests on realistic grounds. In fact, Glauber dynamics
can be derived from first principles for a system of %—
spin fermionic quantum particles, each one subject to
its own thermal bath.[34] On the other hand, the weak
dynamic perturbation parameterized by p emulates in a
vague sense the effect of quantum tunneling of individual
spins in real magnetic systems. In fact, the existence of
this small p # 0 allows the spins to flip independently of
any energetic constraint imposed by their surroundings
with a (very) low probability. This is roughly what quan-
tum tunneling produces in real spins: the spin is able to
flip by tunneling through the energy barrier which im-
pedes its classical (thermal) flipping. We also can inter-
pret in a more general way the dynamic random pertur-
bation parameterized by p as a generic source of disorder
and randomness, i.e. as a simplified representation of the
impure dynamic behavior typical of real systems.[24]

For p = 0, the rate (2) corresponds to the canoni-
cal Ising case which converges asymptotically towards
a Gibbs equilibrium state at temperature 7" and en-
ergy H. In this case the model for h = 0 exhibits a
second order phase transition at a critical temperature
T =T. ~ 22691J = T,,s.[14] For p # 0 the conflict in
(2) impedes canonical equilibrium, and as we mentioned
above the system then evolves towards a nonequilibrium
steady state whose nature essentially differs from a Gibbs
state at temperature T'. The system now, and always for
h = 0, exhibits a second order phase transition at a crit-
ical temperature T.(p) < T,pns for small enough values
of p. This critical point, which belongs to the Ising uni-
versality class[35, 36], disappears for values of p above
certain critical value pe.

Metastable states are characterized in general by their
long lifetime. This long decay time impedes in some
cases the application of straightforward Monte Carlo
schemes[37] when simulating the system metastable be-
havior. Therefore, we need to use in some cases ad-
vanced, faster-than-real-time algorithms which deal with
the above problem. Hence, whenever necessary, we
have used in this paper the Monte Carlo with Absorbing
Markov Chains (MCAMC) algorithm [38, 39], together
with the so-called slow forcing approzimation.[40]
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FIG. 1: Different examples of spin domains, each one charac-
terized by a different kind of partition P(A). External spins
are coloured in black, surface spins are gray, and internal spins
are white.

FORMULATION OF THE PAIR
APPROXIMATION

The approach we here describe, following references
[26, 30], is a generalization for the study of dynamic
problems of Kikuchi’s method[41] known as Cluster Vari-
ation Method. This method has been reformulated for the
study of some nonequilibrium systems by Dickman and
other authors[27, 28], with the name of Pair Approxi-
mation. It is a mean field approximation as far as it
neglects correlations actually present in the system, and
it builds, using this assumption, a set of equations for
averaged observables which describe the dynamical and
statical behavior of the system.

Our starting point is the master equation, which gov-
erns the system dynamics,

dP(s;t)
Tt =S [w

1EA

(s' = s)P(s';t) —w(s — s').P(s;t)

(3)
Here P(s;t) is the probability of finding the system in a
state s for time #, and w(s — s¢) is the above-described
transition rate. Let’s assume now that we perform a par-
tition IP of the lattice A, in such a way that domains g;
resulting from this partition will verify the following re-
strictions: ¢; € P(A) such that ¢; Ngy = @ if j # j'
and (J; ¢; = A. Subindex j indicates the domain lattice
position. Given a domain g;, its surface S; is formed by
all spins in the domain which have some nearest neigh-
bor outside the domain. Equivalently, the domain’s inte-
rior, Z;, is formed by all spins in the domain whose near-
est neighbor spins are also inside the domain.[42] Thus
gj = Z; US;. Fig. 1 shows an example. Let’s assume
now that we have a local observable A(s,;;j) which ex-
clusively depends on spins belonging to domain ¢; (we
denote these spins as s,;). The average of this observ-
able at time ¢ is,

e =Y Alsg;34)P(sit) (4)

Using egs. (3) and (4) we obtain a temporal evolution



equation for the average,[26]

d(A()) » :
Tt = Z Z AA(sy;;jii)w(s = s')P(s;t)  (5)
s i€q;
where we define AA(sy;; ;i) = A(s} ;7) — A(sy;57) We
can rewrite eq. (5) taking into account the definition of
surface and interior of domain g,

% - SZZGZI AA(qu;j;i)w(qu - S;)Q(qu;t)
+ Z Z AA(Sq]-Qj;i)w(s — si)P(s;t) (6)
s i€S;

where we have defined the projected probability,

Q(sq;it) = Y P(sst) (7)

S—S,.
a5

which is the probability of finding domain g; in a config-
uration sy; at time ¢. Writing w(s,; — s} ) in the first
term of right hand side in eq. (6) we stress the fact that
the probability of flipping a spin in the domain’s inte-
rior depends exclusively on the spins belonging to this
domain.

As a first approximation, we assume from now on
that our system is homogeneous, i.e. its properties do
not, depend on the selected point in the system. Hence
(A(G)) =(A4), ¢ =¢, Z; =7 and S; = S. Equivalently,
we suppose that the partition is regular, so all domains
are topologically identical. On the other hand, eq. (6)
shows two well-differentiated terms. The first one only
depends on what happens in the domain interior, while
the second one involves the domain’s surface, couples the
domain dynamics with its surroundings, and makes the
problem unapproachable in practice. Our second approx-
imation consists in neglecting the surface term in this
equation. This approximation involves that the domain
is kinetically isolated from the exterior[30]: the domain’s
exterior part does not induce any net variation on the
local observables defined inside the domain. Thus we
are neglecting in practice correlations larger than the do-
main size. Under both homogeneity and kinetic isolation
approximations, the equation we must study reduces to,

— = Z Z AA(sgi)w(sy = s)Q(s45t)  (8)

sq 1€

In order to go on, we must know the expression for the
projected probability Q(s,;¢). This probability can be
decomposed in terms of n—body correlation functions|26,
30]. Hence, in order to be coherent with the kinetic iso-
lation approximation, which neglects long range correla-
tions, we express the probability Q(s,;t) as a function of
a reduced number of correlation functions. In particular,
our third approximation consists in expressing all corre-
lations as functions of magnetization (s) and the nearest

neighbors correlation function, (s;s;), with ¢ and j near-
est neighbors sites inside the domain. This is equivalent
to writing Q(s,;t) as a function of p(s,s’), which is the
density of (s, s’) nearest neighbors pairs, and as a func-
tion of the density of s spins, p(s). We only have to define
now the domain ¢ that we are going to use in our study.
Since we only take into account nearest neighbors cor-
relations, we must choose a domain with only one spin
in its interior, and 2d spins (the nearest neighbors of the
interior spin) on the surface, being d the system dimen-
sion (in our particular case, d = 2). Fig. 1.b shows an
example of this domain type.

The probability of finding this domain in a configura-
tion defined by a central spin s and n up nearest neigh-
bors can be easily written,

2d — n —n
o 2ot 5o

(9)
Taking into account that p(+,—) = p(—,+) = p(+) —
p(+,+) and p(—, —) = 14+ p(+, +) —2p(+), and denoting
z = p(+) and z = p(+, +), we can write eq. (8) as,

Qssit) = Qo) = (

s () [achmat=42n( = 20t

—AA(—,n)(1 —2)' 2z — 2)"(1 + 2z — 22)*"w(—, n)le)

where w(s; — si) = w(s,n), and we have restricted to
local isotropic observables, i.e. to observables A(sy;t)
which depend on s, through the pair (s,n), so that
A(sg;t) = A(s,n).

We now write down two local microscopic observables,
Aj(s,n) and Ay (s,n), such that their configurational av-
erages correspond to x and z, respectively. We can check
that these observables are,

1
Al(san) = ;s
n 1+s
As(s,n) = 250> 2 (11)
Hence, (A4;(s,n)) = z and (Az(s,n)) = z. From
these expressions we can see that AA4;(s,n) = —s and

AAs(s,n) = —sn/2d. Applying eq. (10) to both observ-
ables we find,

da 2 (2A\T 4 oy » .
@ = 2 (e et
n=0

(1— )2z — 2)"(1 + 2 — 22) 20—, n()iQ)

dz 1 & /2d Cod o .
T = 24 <n>n[w1 2 (g — 2)207 " (+, n)

n=0

— (1—2)'2 (g — )" (1 + 2 — 22)%0 " (—, nojs)

These two equations are the basic equations in Pair Ap-
proximation. Hence, once defined the transition rate



w(s,n) (see eq. (2)), the general working method thus
consists in calculating both z(¢) and z(t) using the above
equations, and using eq. (10) and the results for z(¢) and
z(t) calculate any other local magnitude.

STATIC PROPERTIES

In a first step we can study the stationary solutions
of eqs. (12) and (13) as well as their stability for the
nonequilibrium ferromagnetic system. We have two non-
linear coupled differential equations,

dz
- F
dt 1(3772:)
dz
— F 14
= = Fya,2) (14)

where F(z,2) and F(z,z) are defined by egs. (12) and
(13), respectively, once we include in these equations the
explicit form of the transition rate, eq. (2). The station-
ary solutions of the previous coupled set of equations, x4
and z4, are the solutions of the system,

Fi(zs¢,25¢) =0 ) Fy(wst,256) = 0 (15)
Both stable and metastable states in a generic system are
locally stable under small perturbations. Hence we are
interested in locally stable stationary solutions of this
set of equations. In order to stablish a local stability
criterion, we perturb the steady solutions, x = x4 +
€z, 2 = Zst + €5, with €,,e, < 1, and analyze the time
evolution of the perturbed state. This standard analysis
yields the conditions,

OF, OF,

—— — ] <0 16
<6m>st+<62>st (16)
<8F1> <6F2> <6F1> <6F2>

- —-— | - = — ] >0

O st 0z st 0z st Ox st

This criterion, known as Hurwitz criterion[46], states the
necessary and sufficient conditions that a steady solution

of our set of non-linear differential equations must fulfill
in order to be locally stable under small perturbations.

Phase Diagram

We are also interested in simple necessary (although
not sufficient) conditions that locally stable steady states
must fulfill. For instance, if we perturb the stationary
state by only varying z and keeping untouched z, that
is, * = x5 + €; and z = zg, with €, < 1, we arrive to
the following solution once we apply standard stability
analysis,

(17)
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FIG. 2: Critical temperature for the nonequilibrium ferro-
magnetic system as a function of p in Pair Approximation

so the steady state defined by (zs,2s:) can be locally
stable only if (%)st < 0. It will be unstable if this
derivative is larger than zero. The condition

D0

defines a point (z%,25) of incipient instability or
marginal stability which signals the presence of an un-
derlying critical point or second order phase transition
for h = 0 between a disordered phase and an ordered
phase.[26, 30] Just at this critical point we have z¢, = £,
since it separates an ordered phase with non vanishing
spontaneous magnetization from a disordered phase with
zero spontaneous magnetization. This observation triv-
ially implies z = p(+,+) = p(—,—) = (1 + z — 2z) at
the critical point. We also have z§, = = at the critical
point.[47] Using these values for z¢, y 25, in eq. (18) once
we substitute there the explicit form of Fj (z, z), eq. (12),
and solving for temperatures, we find,

Wl

- (19)
=2

This equation yields the critical temperature for the
nonequilibrium model in first order mean field approx-
imation as a function of parameter p, which character-
izes the dynamic nonequilibrium perturbation present in
the system. We can also derive this expression from eqs.
(17), which define the general stability criterion, apply-
ing the marginal stability condition. Fig. 2 shows T.(p)
as a function of p. For p = 0 the critical temperature
T.(p) is just the Bethe temperature, Tgethe/J = 2.8854,
to be compared with the exact critical value for p = 0,
which is the Onsager temperature, T,,s/J = 2.2691. For
each value of p, temperature T,(p) signals the border, al-
ways in mean field approximation, between the ordered
phase at low temperatures (T' < T.(p)) and the disor-
dered phase at higher temperatures (" > T.(p)). There
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FIG. 3: Locally stable steady state magnetization as a func-
tion of temperature (in units of Onsager temperature) for dif-
ferent values of p and for h = 0. In particular, from top to bot-
tom, p = 0, 0.001, 0.005 and 0.01. Points are results obtained
from Monte Carlo simulations for a system with L = 53. Con-
tinuous lines are the solutions in Pair Approximation. Error
bars in computational results are much smaller than the sym-
bol sizes.

is a critical value of p, p., such that for larger values of
p there is no ordered phase for any temperature. This
value p. can be obtained from the condition T%.(p.) = 0,
yielding p. = & = 0.15625. On the other hand, the
phase transition we obtain in mean field approximation
obviously belongs to the mean field universality class, on
the contrary to the real nonequilibrium system, which

belongs to the Ising universality class.

Stable and Metastable States

After this brief parenthesis about the model critical
behavior, we turn back to study its locally stable steady
states in the ordered phase. These stationary states
(zst,2st) will be given by solutions of the set of non-
linear differential equations (15), subject to the Hurwitz
local stability condition, eqs. (17). Unfortunately, the
non-linearity of the set of eqs. (15) impedes any analyt-
ical solution, so we have to turn to numerical solutions.

In a first step we center our attention on the study
of stationarity for zero magnetic field, h = 0. In this
case, the system exhibits up-down symmetry, so we will
have two symmetrical branches of solutions in the ordered
phase, one of positive magnetization and another one
with negative magnetization. Moreover, we can prove
for h = 0 that if the pair (z4,zs) is a locally stable
steady solution of the set of eqs. (15), then the pair
(1 — 25,14 25t — 2w4) is also a locally stable steady so-
lution. If we solve the set of eqs. (15) using standard nu-
merical techniques[48] and we keep only those solutions
which fulfill Hurwitz criterion, we finally obtain the re-
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FIG. 4: Magnetization of the locally stable steady state
of positive magnetization as a function of temperature (in
units of Onsager temperature) for different values of p and
h = —0.1. From top to bottom, p = 0, 0.001, 0.005 and
0.01. Points are results obtained from Monte Carlo simula-
tions for a system of size L = 53. The continuous lines are
Pair Approximation solutions. Error bars associated to com-
putational results are much smaller than symbol sizes. In
the inset we show the results for the negative magnetization
branch.

sults shown in Fig. 3. There we compare the theoretical
predictions for the positive magnetization branch with
results obtained from Monte Carlo simulations for differ-
ent values of the dynamic random perturbation p. The
agreement between theory and computational results is
excellent for low and intermediate temperatures for all
studied values of p, failing gradually as we approach the
critical temperature. Furthermore, the differences be-
tween theory and simulations begin to be relevant for
temperatures higher than a 75% of the critical temper-
ature for each case. Such inaccuracy of Pair Approxi-
mation for temperatures close enough to the critical one
was expected a priori, since mean field theory neglects
long range correlations, which on the other hand grad-
ually arise as we approach the critical region. Fig. 3
shows also that, as we increase p for a fixed temperature,
the system’s magnetization decrease in absolute value.
Therefore, an increase of p is equivalent to an increase
of disorder in the system. On the other hand, the qual-
itative form of the curve mgj) (T, p) does not change for
p # 0 as compared to the equilibrium system (p = 0).
The Monte Carlo simulations whose results are shown
in Fig. 3 have been performed for a system with size
L = 53, subject to periodic boundary conditions, with
h = 0 and different values of T' and p. In order to measure
the magnetization of the positive magnetization steady
state, we put the system in an initial state with all spins
up. We let evolve this state with the dynamics (2) for
certain values of 7" and p. After some relaxation time,
the systems starts fluctuating around the steady state.
We then measure magnetization at temporal intervals At
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FIG. 5: Locally stable steady state magnetization for both
magnetization branches as a function of magnetic field h for
fixed T = 0.7T,ns and p = 0.005. The continuous line rep-
resents stable states, the dashed line represents metastable
states, and the dot-dashed line signals the discontinuous tran-
sition where metastable states disappear. This discontinuity
appears for a magnetic field h* (T, p).

larger than the correlation time, and we average over dif-
ferent measurements. The error associated to this aver-
age is the standard statistical error. A second method to
measure the stationary state magnetization is based on
the stable phase growth and shrinkage rates[38], which
we will define later on. Both methods yield equivalent
results.

We also can study the steady states for Ao < 0. In
particular, here we study the case h = —0.1. As op-
posed to the h = 0 case, now there is no up-down sym-
metry. Therefore the negative and positive magnetiza-
tion branches are here different. Moreover, the locally
stable steady state with positive magnetization is now
metastable. Numerically solving the set of eqs. (15) sub-
ject to the conditions (17) we obtain the results shown
in Fig. 4. In this figure we also show results from simu-
lations analogous to the ones described above, but with
h = —0.1, and where the initial state is defined with
all spins up (down) if we want to measure the positive
(negative) magnetization branch. Comparatively, these
results are very similar in spirit to the results obtained
for h = 0.

Hysteresis and the Intrinsic Coercive Field

An interesting question consists in knowing what hap-
pen to locally stable steady states as we change the mag-
netic field. In order to answer this question we numer-
ically solve again the set of eqs. (15) subject to Hur-
witz conditions for fixed temperature and dynamic ran-
dom perturbation p, varying the magnetic field between
h = —1 and h = +1. In particular, Fig. 5 shows the
result for T' = 0.77T,,s and p = 0.005. This curve forms
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FIG. 6: Schematic plot of the potential V(z) defined in the
main text, for fixed temperature and p, and for several dif-
ferent values of magnetic field h < 0. Notice that the local
minimum in the positive magnetization branch is attenuated
as |h| increases, up to its disappearance for large enough val-
ues of |hl.

what is generally known as a hysteresis loop. Hysteresis
is a property of many systems near a first order critical
point, and it is intimately related to metastability. A sys-
tem is said to exhibit hysteresis if its properties depend
on its previous history. Thus systems showing hysteresis
are systems with memory.

We observe in Fig. 5 that there is a magnetic field
h*(T,p) > 0 such that for all |h| > h*(T,p) metastable
states disappear. This magnetic field h*(T, p) is known
as intrinsic coercive field.[49] As we increase the abso-
lute value of the field, metastable states get weaker and
weaker. The reason underlies on the increase of the tran-
sition rate for spins in the metastable phase as we in-
crease the magnetic field strength, see eq. (2). Thus there
is a value of the magnetic field for which the metastable
state is no more metastable and transforms into an un-
stable state. Let’s assume that we are able to simplify
egs. (14) in such a way that we know z = z(z). Now we
can rewrite eq. (12) as,

dz _ oV (x) (20)

dt ox
where V(z) is a (nonequilibrium) potential which con-
trols the system evolution. Fig. 6 shows a schematic
plot of this potential for the ordered phase at fixed tem-
perature and p, and for several negative magnetic fields
of increasing absolute value. The effect of the magnetic
field is to attenuate the local minimum associated to the
metastable state. For magnetic fields |h| < h*(T,p) this
local minimum, although attenuated, exists. However,
for magnetic fields |h| > h*(T,p) the metastable mini-
mum disappears, and so the metastable state. Therefore,
for |h| > h*(T,p) the set of eqs. (15) has only one solu-
tion, with magnetization sign equal to that of the applied
field.
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FIG. 7: Intrinsic coercive field, h* (T, p), as a function of tem-
perature for different values of p. From top to bottom, p = 0,
0.01, 0.02, 0.03, 0.031, 0.032, 0.035, 0.04, 0.05 and 0.1. No-
tice that the qualitative change of behavior in the low tem-
perature limit appears for p € (0.031,0.032). Here we also
show, for |h| = 0.25, the temperatures 71 < T such that for
T, < T < T> there are metastable states for p = 0.05.

In order to calculate h*(T,p) we study how a
metastable state changes under small perturbations of
magnetic field. Let’s assume then that (z¢,z") is a
locally stable stationary state for parameters T, p and
ho, with magnetization opposed to the external mag-
netic field. If we slightly perturb this magnetic field,
h = ho + dh, also the locally stable stationary solution
will be modified, zf, = 2" 4+ €, and 2, = 2l + €.
Applying eqs. (14) to both z, and 2%, and taking into
account that they are also steady solutions, we obtain for
€z,

OF, OF, _ 0F: OF,
_ [ Oh 08z oh 0z

“=9R0F 0B OF Ly paer, Y
or 0z Oor 0Oz

This equation says that the metastable state magneti-
zation response after a small variation of the magnetic
field is proportional to such perturbation in a first ap-
proximation. However, the magnetization response will
be divergent when,

OF, 0F, OF, 0F; B
Oor 0z Oor 0z ]mh =0 (22)

o ko
st 2Zst »ho,Thp

When this condition holds, there will be a discontinu-
ity in the metastable magnetization as a function of h.
For fixed T and p we thus identify the magnetic field
ho for which condition (22) is fulfilled as the intrinsic
coercive field, h*(T,p). Unfortunately, we cannot ana-
lytically calculate h*(T,p), since we do not explicitely
know the metastable solutions z"? and 2" Solving again
the problem with standard numerical methods, we ob-

tain the results shown in Fig. 7. There we plot h*(T',p)

as a function of temperature for different values of the
nonequilibrium parameter p. The first conclusion we
draw from this family of curves is the existence of two
different low temperature limits for h*(T,p), depending
on the value of p. For small enough values of p (including
the equilibrium case, p = 0), the curve h*(T, p) extrap-
olates towards 2 in the limit 7' — 0. In particular this
is true for p € [0,0.031] (see Fig. 7). On the contrary,
for large enough values of p, namely p € [0.032, ), the
curve h*(T, p) extrapolates towards 0 in the limit 7" — 0.
There is a critical value for p, that we estimate here to be
me. & 0.0315, which separates both types of asymptotic
behaviors.

As we said before, the intrinsic coercive field h*(T', p)
signals the magnetic field strength above which there are
no metastable states. As we see in Fig. 7, for p < 7,
the behavior of h*(T,p) for the nonequilibrium system
is qualitatively similar to that of the equilibrium one:
h*(T,p < 7.) is a monotonously decreasing function of
T. Therefore, for p < 7., if we cool the system we need a
stronger magnetic field in order to destroy the metastable
state. This result agrees with intuition. In a metastable
state there are two competing processes: a net tendency
of the system to line up in the direction of the field, and
a net tendency in order to maintain the spin order, i.e.
in order to keep all spins oriented in the same direction
(whatever this direction is). A metastable state survives
a long time because the tendency towards maintaining
the order in the system overcomes the tendency to line
up along the field direction. Both the temperature 7" and
the nonequilibrium parameter p are ingredients which in-
troduce disorder in the system. Hence, if we drop tem-
perature, since in this way order grows in the system,
we would expect in this phenomenologic picture that the
magnetic field needed to destroy the metastable state
should be stronger, as we effectively check for p < 7.
In the same way, as p is increased, disorder grows in the
system, so h*(T,p) must decrease for a fixed tempera-
ture, as we again observe.

On the contrary, for p > m. the system exhibits an
unexpected behavior, difficult to understand using the
above phenomenologic picture. Let’s assume we fix the
magnetic field to be |h| = 0.25 and the nonequilibrium
parameter to be p = 0.05 > m.. As we can see in Fig. 7,
we can define two different temperatures, T} < T5, such
that if T < T} or T > T» the system does not exhibit
metastable states, while metastable states do exist if tem-
perature lies in the interval T' € (T1,T). The fact that
h*(T,p) extrapolates to zero in the low temperature limit
for p = 0.05 > 7. points out that the nonequilibrium pa-
rameter p = 0.05, which is the relevant source of disorder
and randomness at low temperatures, takes a value in
this case large enough in order to destroy on its own any
metastable state. In principle, following the above phe-
nomenologic picture, we would say that increasing in this
case temperature the metastable state should not ever ex-



|Class || Central spin|Number of up neighbors| AH |

1 +1 4 8J+2h
2 +1 3 4J+2h
3 +1 2 2h

4 +1 1 -4J+2h
5 +1 0 -8J+2h
6 -1 4 -8J-2h
7 -1 3 -4J-2h
8 -1 2 -2h

9 -1 1 4J-2h

10 -1 0 8J-2h

TABLE I: Spin classes for the two-dimensional isotropic Ising
model with periodic boundary conditions. The last column
shows the energy increment involved by a spin flip for each
class.

ist, because we add disorder to the system. However, we
observe that a regime of intermediate temperatures ex-
ists, T € (T1,T»), where metastable states emerge. This
observation involves the presence of a mon-linear coop-
erative phenomenon between the thermal noise (param-
eterized by T') and the non-thermal fluctuation source
(parameterized by p): although both noises add indepen-
dently disorder to the system, which involves the atten-
uation or even the destruction of the existing metastable
states, the combination of both noise sources, parame-
terized in the dynamics (2), not always implies a larger
disorder, giving rise to regions in parameter space (T',p)
where there are no metastable states for low and high
temperatures, existing however metastability for inter-
mediate temperatures. This counter-intuitive behavior
resembles in some sense the reentrant behavior of some
systems under the action of multiplicative noise, as for
instance the annealed Ising model[50], where a disordered
phase exists for low and high temperatures, but there is
an ordered phase for intermediate temperatures.[51] As
we will show below, arguments can be developed pointing
out that multiplicative noise is also at the roots of the
observed noise enhanced metastability in our nonequilib-
rium ferromagentic model.

Intrinsic Coercive Field from Monte Carlo
Simulations: Stable Phase Growth and Shrinkage
Rates

Now we want to check the above mean-field theoret-
ical prediction via computer simulations, so we need to
discern when the system exhibits a metastable state. In
order to establish a criterion, we must introduce the con-
cept of spin class. For a spin s in the lattice, the spin class
to which this spin belongs to is defined once we know the
spin orientation, s = +1, and its number of up nearest
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FIG. 8: Growth and shrinkage probabilities of the stable
phase, g(m)/N and s(m)/N respectively, for a system of size
L = 53, with T = 0.6T5ns, p = 0.005 and h = —0.1. The
continuous line represents g(m)/N, while the dashed line rep-
resents s(m)/N. The inset shows a detail of the positive mag-
netization (i.e. metastable, h < 0) region.

neighbors, n € [0,4]. Therefore, for the two-dimensional
isotropic (J, = J = J,) Ising model subject to periodic
boundary conditions there are 10 different spin classes,
schematized in Table I. All spins belonging to the same
spin class involve the same energy increment AH(s,n)
when flipped (see Table I), so the transition rate for a spin
to flip depends exclusively on the spin class i € [1,10] to
which the spin belongs to, w; = w(s,n), see eq. (2). If
ng(m) is the number of spins in the system that belong
to class k when the system has magnetization m, then
ng(m)wy will be the number of spins in class k& which
flip per unit time when we have n,, = N(1 4+ m)/2 up
spins. Since in our convention (see Table I) all classes
k € [1,5] are characterized by a central spin with s = +1
and n = 4,3,...,0 up nearest neighbors, the number of
up spins which flip per unit time when magnetization is
m will be,

g(m) =Y nx(m)wy (23)

Since we assume h < 0, this observable is the stable phase
growth rate, and it depends on system’s magnetization.
In a similar way, we define the stable phase shrinkage
rate,

10
s(m) = an (m)wy (24)
k=6

Now s(m) is the number of down spins which flip per
unit time when system’s magnetization is m.[43]

If we have a state with magnetization m, the rate of
change of magnetization will be,

= 2 [s(m) ~ g(m)] (25)



FIG. 9: Probability of finding a metastable state, as defined
in the main text, as a function of magnetic field h < 0 for
a system of size L = 53, with temperature T' = 0.77,,s and
p = 0, where we have performed N¢;, = 500 demagnetization
experiments for each value of h. Error bars are smaller than
symbol sizes.

Thus the system exhibits steady states for g(m) = s(m).
Fig. 8 shows g(m)/N and s(m)/N as measured in a
system with size L = 53, temperature T' = 0.67,,s,
p = 0.005 and h = —0.1, after averaging over 1000 dif-
ferent demagnetization experiments. These demagneti-
zation experiments begin with all spins up (such state
is metastable for the studied parameters) and finish once
the negative magnetization stable state has been reached.
There are three points where the curves g(m) and s(m)
intersect one each other. Two of these intersection points
appear in the positive magnetization region, and the
third one appears in the negative magnetization branch.
The points where g(m) = s(m) signal steady states of the
real system, whose magnetization can be deduced from
the intersection abscissa. We denote these magnetization
values as m_1, mg and m1, being m_; the magnetization
of the intersection point in the negative magnetization re-
gion, mg the magnetization of the intermediate intersec-
tion point, and m; the largest intersection point magneti-
zation. In order to discern local stability, we study what
happens if we slightly perturb the magnetization in these
steady states. If we perturb for instance the steady state
with the largest magnetization, m, in such a way that
the final state has magnetization m = my + dm, we can
see that if dm > 0 then g(mj +dm) > s(my + om), while
g(my + dm) < s(mq + dm) if dm < 0. In both cases, as
indicated by eq. (25), the system tends to counteract the
perturbation, coming back to the stationary state. Hence
the stationary state with the largest magnetization, my,
is locally stable under small perturbations. The arrows in
the inset of Fig. 8 represent the tendency of the system
immediately after the perturbation. We find something
analogous for the steady state with negative magnetiza-
tion, m_1, i.e. it is locally stable. Therefore the station-
ary state represented by m; signals the metastable state,

10

while the stationary state m_; signals the stable state in
this case (h < 0). The steady state myg is unstable under
small perturbations. This stationary solution signals the
crossover point between the region where the stable phase
tends to disappear (m > my), and the region where the
stable phase tends to grow (m < my). In fact, this point
defines the critical fluctuation needed in order to exit
the metastable state. This critical fluctuation controls
the demagnetization process. On the other hand, mea-
suring g(m) y s(m) in particular experiments, extract-
ing the stable and metastable state magnetizations, m_;
and my respectively, and averaging such measures over
many different experiments, we can obtain a measure of
the average stable and metastable state magnetizations.
This measure compares perfectly with the previously pre-
sented results (see Fig. 3 and 4, and complementary dis-
cussion).

It is clear from the previous discussion that if there
is a magnetization interval inside the metastable region
(in our case, the positive magnetization region) where
s(m) > g(m), that is, where the stable phase shrinkage
rate is larger than its growth rate, then a metastable
state will exists. On the other hand, when |h| > h*(T, p)
the metastable state will not exist. In this case it is ob-
served that the curve s(m) does not intersect g(m) in the
positive magnetization region. Hence the existence or ab-
sence of intersection between s(m) and g(m) in the posi-
tive magnetization region (for h < 0) allows us to decide
whether the system exhibits a metastable state or not. In
the above discussion we have treated all states with the
same magnetization as an single state. However, there
are many different microscopic states in the system which
are compatible with a fixed magnetization. These states
may exhibit very different properties. In particular, the
rates g(m) y s(m) depend not only on magnetization, but
on the population of all the spin classes. Thus, for a fixed
set of parameters T, p and h < 0, we can have experi-
ments where s(m) and g(m) intersect one each other in
the positive magnetization region, and for the same pa-
rameters we can observe other experiments where they
do not intersect. Therefore, instead of speaking about
the existence or absence of a metastable state, we must
speak about the probability of existence of a metastable
state. In this way we can define a method to measure
the intrinsic coercive field h*(T,p) in Monte Carlo sim-
ulations. For a fixed set of parameters T, p and h < 0,
we perform N, different demagnetization experiments,
starting from a state with all spins up. We measure on
each experiment the stable phase growth and shrinkage
rates, g(m) and s(m) respectively, as a function of mag-
netization. If n,,e of those N.,, experiments are such
that g(m) and s(m) intersect one each other in the posi-
tive magnetization region, we can define the probability
of existence of a metastable state as nmet (T, P, h)/Negp-
If we repeat such process for fixed values of tempera-
ture T' and nonequilibrium perturbation p, varying the
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FIG. 10: Monte Carlo results for the intrinsic coercive field,
h*(T,p), as a function of temperature for different values of p.
In particular, from top to bottom, p = 0, 0.01, 0.03, 0.0305,
0.0320, 0.0350, 0.04 and 0.05. Notice the change of asymptotic
behavior in the low temperature limit for p € (0.03,0.0305).
This figure is to be compared with Fig. 7.

magnetic field in a wide interval, we obtain the results
shown in Fig. 9. Here we observe that the metastable
state existence probability abruptly changes from +1 to
0 in a narrow magnetic field interval. Therefore we de-
fine in this case the intrinsic coercive field, h*(T, p), for
fixed T and p, as the magnetic field strength for which
Nmet (T, Py h*) /Negp = 0.5.

Fig. 10 shows h*(T, p), as measured from Monte Carlo
simulations using the above explained method, as a func-
tion of temperature for a system size L = 53, and for
varying values of p. Comparing this figure with Fig. 7,
we observe that Monte Carlo results confirm both quali-
tatively and quantitatively[52] the theoretical predictions
based on Pair Approximation. In this way we observe
that the low temperature asymptotic behavior of h*(T', p)
depends on the nonequilibrium parameter p. There is a
critical value 7w, for p which separates both asymptotic
behaviors. We estimate from Monte Carlo simulations
M ~ 0.03025 (see Fig. 10). This critical value has
to be compared with the result derived from Pair Ap-
proximation, 72%" ~ 0.0315. Hence we confirm that the
system exhibits, as we discussed above, a non-linear co-
operative phenomenon between the thermal noise (T'),
and the non-thermal noise (p), for p > 7., in such a
way that there are no metastable states for low and high
temperatures, but there is an intermediate temperature
region where metastable states emerge due to the non-
linear coupling between both noises.

ME QUEDO AQUIL LO QUE SIGUE HAY QUE
MEJORARLO/REVISARLO

11
DISCUSSION

INTRODUCIR AQUI DISCUSION SOBRE LA
PRESENCIA DE RUIDO MULTIPLICATIVO. LA DIS-
CUSION SE DIVIDIRIA EN VARIAS PARTES:

1. EL EFECTO FISICO DE P SE PUEDE ENTEN-
DER EN TERMINOS DE UNA TEMPERATURA
EFECTIVA.

2. LA TEMPERATURA EFECTIVA ASOCIADA A
CIERTO SPIN DEPENDE DEL ORDEN LOCAL
AL QUE ESTA SUJETO DICHO ESPIN.

3. DE ESTA MANERA, PODEMOS ESCRIBIR
DE FORMA HEURISTICA UNA ECUACION
DE CAMPOS DE TIPO LANGEVIN PARA
LA EVOLUCION DE NUESTRO SISTEMA.
ESTA ECUACION SERIA MUY PARECIDA
A LA TIPICA FI4 CON CAMPO MAG-
NETICO EXTERNO, PERO EL TERMINO
DE RUIDO GAUSSIANO, EN VEZ DE IR
MULTIPLICADO POR UNA AMPLITUD 1,
IRIA MULTIPLICADO POR UNA AMPLITUD
[1+mu*FI(x,t)**2]/2. DE ESTA MANERA, A
MAYOR ORDEN LOCAL (MAYOR VALOR
ABSOLUTO DE LA MAGNETIZACION LO-
CAL FI(xt)), MAS GRANDES SERAN LAS
FLUCTUACIONES DEL PARAMETRO DE OR-
DEN LOCAL, LO QUE FENOMENOLOGICA-
MENTE CONCUERDA CON LO QUE SE OB-
SERVA EN EL MODELO MICROSCOPICO. EL
PARAMETRO mu DE LA TEORIA DE CAMPOS
ESTA RELACIONADO CON EL PARAMETRO
P DEL MODELO MICROSCOPICO, DE MAN-
ERA QUE CUANDO P=0 (EQUILIBRIO A
TEMPERATURA T), DEBEMOS TENER QUE
mu=0, MIENTRAS QUE CUANDO P=1 (EQUI-
LIBRIO A TEMPERATURA INFINITA) mu
DEBE TOMAR UN VALOR MUY GRANDE, DE
MANERA QUE LA ECUACION DE LANGEVIN
PARA EL CAMPO FI(x,t) SEA BASICAMENTE
ALEATORIA (DE TIPO MOVIMIENTO BROW-
NIANO ?77).

4. LA INTRODUCCION DE LA AMPLITUD
[1+mu*FI(x,t)**2]/2 DA LUGAR A RUIDO
MULTIPLICATIVO EN EL SISTEMA, LO
QUE YA ES INTERESANTE DE POR SL
ESTO PUEDE DAR LUGAR A OTRO TRA-
BAJO COMPLETO, SI SOMOS CAPACES DE
ANALIZAR TEORICAMENTE (Y/O NUMERI-
CAMENTE) LA NUCLEACION EN ESTA TEO-
RIA DE CAMPOS (VER REVIEW DE NU-
CLEACION EN TEORIA DE CAMPOS DE
GUNTON, SAN MIGUEL Y SAHNI). SI TODO



VA BIEN, LOS RESULTADOS DEBEN CON-
CORDAR CON LOS RESULTADOS CONTRA-
INTUITIVOS QUE HEMOS OBSERVADO EN EL
MODELO MICROSCOPICO, Y DARIA MUCHA
SOLIDEZ A TODO NUESTRO ANALISIS.

5. OTRO PUNTO A FAVOR DE LA TEORIA
DE CAMPOS MODIFICADA ES QUE SIGUE
PERTENECIENDO A LA CLASE DE UNIVER-
SALIDAD DE ISING, TAL Y COMO SUCEDE
PARA EL MODELO MICROSCOPICO.

CONCLUSION

AQUI HAY QUE RECORTAR MUCHO BLA, BLA.
HAY QUE METER UNA PEQUENIA PARTE EX-
PLICANDO LOS PROBLEMAS QUE HAY PARA
DESCRIBIR LA DINAMICA DE LA TRANSICION
METAESTABLE-ESTABLE EN CAMPO MEDIO:
AUSENCIA DE FLUCTUACIONES E HIPOTESIS
DE HOMOGENEIDAD. EL PRIMER PROBLEMA
SE PUEDE SOLUCIONAR INTRODUCIENDO FLUC-
TUACIONES DE MANERA NATURAL EN LA TEO-
RIA DE CAMPO MEDIO: MEAN FIELD STOCHAS-
TIC DYNAMICS (CITAR TESIS AQUI). sIN EM-
BARGO, EL. PROBLEMA DE LA HOMOGENEIDAD
ES INSALVABLE EN CAMPO MEDIO, Y NOS HACE
CONCLUIR LA NECESIDAD DE UNA TEORIA DE
LA NUCLEACION DE NO EQUILIBRIO PARA ESTE
SISTEMA.

POR ULTIMO, SE RESUME TAMBIEN NUES-
TRA HIPOTESIS PLAUSIBLE SOBRE LA PRESEN-
CIA DE RUIDO MULTIPLICATIVO EN ESTE SIS-
TEMA, APUNTANDO SU RESPONSABILIDAD EN
EL EFECTO COOPERATIVO NO LINEAL OBSER-
VADO ENTRE EL RUIDO DE ORIGEN TERMICO
Y EL DE ORIGEN NO TERMICO. SE FINALIZA DI-
CIENDO QUE ESTE ULTIMO EXTREMO SERA ES-
TUDIADO EN UN TRABAJO PROXIMO.

In this paper we have studied the static properties
of metastable states in a nonequilibrium ferromagnetic
model using a first order dynamic mean field approxima-
tion.

In particular, we have applied the so-called Pair
Approximation[27, 28], a dynamic analogous of the equi-
librium Bethe-Peierls Approximation, to the problem of
metastability in our lattice spin system. This theory is
based on a mean field approximation for the master equa-
tion governing the system dynamics, once this stochastic
equation is reduced to local observables. The approxima-
tion is developed using three fundamental hypothesis. In
a first step, it neglects all fluctuations in the system, so
in this approach we only study the average behavior of
local observables. On the other hand, this theory also ne-
glects long range correlations. In particular, we only have
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into account nearest neighbor correlations. The last hy-
pothesis assumes that the system is homogeneous, which
implies that all points in the lattice behave in the same
way, independently from their positions.

Taking into account these hypothesis, and taking as
starting point the master equation, we obtain two cou-
pled non-linear differential equations for the dynamics
of z, the probability of finding an up spin in the sys-
tem, and z, the probability of finding a (+,+) nearest
neighbors pair in the system. We obtain numerically the
locally stable steady solutions of this set of differential
equations, both for zero magnetic field and h < 0. For
h = 0 we obtain theoretical predictions for the stationary
state magnetization as a function of temperature for dif-
ferent values of p. These predictions perfectly compare
with Monte Carlo results in the low and intermediate
temperature regime, although some differences between
theory and simulation appear for temperatures near to
the critical one, T.(p), since for these temperatures long
range correlations become important. As the value of
the nonequilibrium perturbation p is increased, the sta-
tionary state magnetization decreases in magnitude for
h = 0 for a fixed temperature, although the qualitative
shape of curves mgi) (T, p) is similar to those of the equi-
librium system. The critical temperature T.(p) signals a
second order phase transition in the nonequilibrium sys-
tems between a disordered phase for high temperatures
and an ordered phase for low temperatures. Applying the
marginal stability condition to the dynamic equations, we
are able to extract the phase diagram in first order mean
field approximation for the nonequilibrium model. The
phase diagram yields the critical temperature T.(p) as
a function of the nonequilibrium parameter p. The or-
dered phase disappears for all temperatures when p > p.,
where p, = % in this approximation. Finally, for the
locally stable steady magnetization for h < 0 we ob-
tain qualitatively similar results as compared with the
h = 0 case, although now the up-down symmetry which
held for h = 0 breaks up. The comparison of predicted
curves with Monte Carlo results for both magnetization
branches for A < 0 is also excellent.

On the other hand, the system exhibits hysteresis due
to the existence of metastable states. This implies that
the system keeps memory of the past evolution history.
In particular, using mean field approximation we calcu-
late the intrinsic coercive field h*(T,p), defined in this
case as the magnetic field for which the metastable state
becomes unstable. We observe that h*(T,p) shows two
different kinds of asymptotic behaviors in the low tem-
perature limit, which depend on the value of p. There is
a critical value for p, . & 0.0315, which separates both
behaviors. For p < . the intrinsic coercive field h*(T, p)
increases in magnitude as temperature decreases, in the
same way that in equilibrium systems. However, for
p > m. we predict that the intrinsic coercive field con-
verges towards zero in the limit 7' — 0, showing a maxi-



mum in magnitude for certain intermediate temperature.
This involves the existence of a mon-linear cooperative
phenomenon between the thermal noise (parameterized
by T') and the non-thermal noise (parameterized by p):
although both noise sources independently add disorder
to the system, which implies the attenuation, or even de-
struction of existing metastable states, the combination
of both noises parameterized in the microscopic dynamics
does not always involves a larger disorder, giving rise to
parameter space regions where there are no metastable
states for low and high temperatures, but metastable
states appear for intermediate temperatures. This theo-
retical prediction based on the mean field approximation
is fully confirmed via Monte Carlo simulations.

Finally, apart from the mean field investigations on
the static properties of both stable and metastable states
in the system, summarized in previous paragraphs, we
have also attempted a description of the dynamics of the
metastable-stable transition using Pair Approximation.
However, one of the basic hypothesis in this approxima-
tion, namely the hypothesis of suppression of fluctua-
tions, impedes any realistic description of this dynamic
process using Pair Approximation. The reason underlies
in that fluctuations constitute the basic mechanism which
gives rise to the metastable-stable transition. Therefore,
in order to describe the metastable state demagnetiza-
tion process, we relax the above hypothesis, including
fluctuations in the dynamic mean field theory. This can
be done in a natural way using the concepts of stable
phase growth and shrinkage rates, observables which are
defined in a simple manner in our approximation, and
the philosophy underlying MCAMC algorithms (see Ap-
pendix ??). In this way we write a mean field stochas-
tic dynamics, which includes fluctuations in a natural
way. From this extended theory we predict the dynamic
(and static) properties of the system. However, while
the static results obtained from the mean field stochastic
dynamics are equivalent to those obtained in Pair Ap-
proximation and reproduce the measured properties in
Monte Carlo simulations, the results on the dynamics of
the metastable-stable transition are remarkably different
from those obtained in simulations. This discrepancy is
due to the failure of another basic hypothesis of mean
field approximation: the homogeneity hypothesis. This
hypothesis implies that the exit from the metastable state
in the mean field stochastic dynamics approximation is
produced by coherent fluctuations of all spins in the sys-
tem, which is energetically punished. The metastable de-
magnetization process in the real system is, on the other
hand, an highly inhomogeneous process, where one or
several stable phase droplets nucleate in the metastable
bulk, since these compact structures minimize the system
free energy for a fixed magnetization. Thus, in order to
understand the dynamics of the metastable-stable tran-
sition we must therefore write an inhomogeneous theory
where the interface plays a very important role. This in-
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homogeneous theory, based on the droplet picture, will
be developed in Chapter ??. However, in order to write
such theory for the nonequilibrium system, we must first
understand the interfacial properties in the model, since
they will play a fundamental role in the droplet nucle-
ation process. We study this problem in the next chap-
ter.
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