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Abstract

We comment on some recent, yet unpublished results concerning instabilities in complex systems and their applications. In
particular, we briefly describe main observations during extensive computer simulations of two lattice nonequilibrium models.
One exhibits robust and efficient processes of pattern recognition under synaptic coherent activity; the second example exhibits
interesting critical behavior and simulates nucleation and spinodal decomposition processes in driven fluids. 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Nature may be viewed as a collection ofcomplex
systems[1]. Consequently, a principal question is how
these systems, which typically consist of many simple
interacting units, develop qualitatively new and high-
level kinds of organization. This is the problem of con-
necting the microscopics of constituents with the co-
herent structures that characterize organisms and com-
munities. It may often be assumed that the fundamen-
tal laws of physics, such as Hamilton and Maxwell
equations, are individual properties of the units. Still,
it is only very rare that the origin and form of nat-
ural phenomena can be inferred from basic laws. What
is the relevance of fundamental physics to predict the
weather, to design new materials and drugs or to un-
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derstand the origin of life? It is remarkable that statisti-
cal physics recently addressed the problem of connect-
ing emergent behavior to the constituents’ properties
in a more indirect manner, too. That is, main concepts
in the theory of phase transitions, such as correlations,
criticality, scale invariance and self-similarity that
characterize the global behavior of the simplest model
cases happen to be ubiquitous in nature. This brings
many interesting, high-level phenomena to the atten-
tion of physicists, and the study of (nonequilibrium)
phase transitions has consequently been animated [2].

As a matter of fact, an important observation in na-
ture is that the complex systems of interest are often
open, and out of a thermodynamic equilibrium state.
Their simplest condition is that of a nonequilibrium
steady state. That is, a constant flux of some quantity
(matter, energy, . . . ) is typically involved and the state
is, in general, not determined solely by external con-
straints, but depends upon theirhistory as well. Un-
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der such a nonequilibrium condition, as the control
parameters—temperature or potential gradients, or re-
actant feed rates, for instance—are varied, the steady
state may become unstable and be replaced by another
(or, perhaps, by a periodic or chaotic state). Nonequi-
librium instabilities are attended by ordering phenom-
ena so analogous to those of equilibrium statistical me-
chanics that one may speak ofnonequilibrium phase
transitions.These are ubiquitous in physics and biol-
ogy, and have also been described in the social sci-
ences [2–5].

The simplest examples of nonequilibrium phase
transitions occur in lattice models. The analysis of
more realistic situations is presently confronted,
among other problems, with the lack of a general for-
malism, analogous to equilibrium statistical mechan-
ics. That is, nonequilibrium dynamics is not derivable
from an energy function. One must actually find time-
independent solutions of master or kinetic equations,
which is a formidable task in practice. Therefore, gen-
eral theoretical approaches are scarce. It is true that,
for cases in which fluctuations are of minor signifi-
cance, a macroscopic description, i.e. a set of partial
differential equations is often preferable to a lattice
model, for instance, in predicting a nonequilibrium
phase diagram. However, such macroscopic descrip-
tions imply mean-field behavior, while lattice models
exhibit a range of critical phenomena and other details
which are at least as interesting as in equilibrium [2].
The lack of theory also explains that most interesting
information has been gained by means of computer
simulations of the lattice models.

2. Neural cellular automata that efficiently
recognize a pattern

As a first example of a complex lattice system that
exhibits nonequilibrium phase transitions, let us con-
sider an artificial neural network that was introduced
and studied before [6]. This consists of a set ofN bi-
naryneurons,s = {sx = ±1; x = 1, . . . ,N}, evolving
in time by stochastic equations,

∂tPt (s,J)

= p
∑

x

[−�J(sx → −sx)Pt (s,J)

+�J(sx → −sx)Pt (sx,J)
]

+ (1− p)
∑
x,y

∑
J ′
xy

[−�(Jxy → J ′
xy)Pt (s,J)

+�(J ′
xy → Jxy)Pt (s,Jxy)

]
.

(1)

HereJ = {Jxy ∈ �; x,y = 1, . . . ,N} is the config-
uration of synaptic intensities, andsx (Jxy) stands fors
(J) after the changesx → −sx (Jxy → J ′

xy). The func-
tion�(Jxy → J ′

xy) is taken independent of the current

s, and�J(sx → −sx)= ϕ(2T−1sxhx), where

hx = hx(s,J)=
∑

y

Jxysy (2)

is a local field.
For p = 1, (1) reduces to the familiar Hopfield

model in which the neurons evolve in the presence of
a set of (frozen) synaptic intensities. It is assumed that
these in some way contain information from a set of
P stored patterns,ξ = {ξx = ±1; x = 1, . . . ,N}, e.g.,
the Hebb choiceJxy ∝ ∑P

µ=1 ξ
µ
x ξ

µ
y after appropriate

normalization. Under such conditions, the model as-
ymptotically tends to the equilibrium state for tem-
peratureT and energy function,H = ∑

x hxsx. This
state sometimes corresponds to a configuration closely
resembling one of the stored patterns; the system is
therefore said to exhibitassociative memory. How-
ever, this simple case is not sufficiently efficient for
applications; e.g., errors when recovering a given pat-
tern are large for most values ofN, P and T , and
the steady state may not be “pure” but correspond to a
mixture of two or more stored patterns.

Forp → 0, Eq. (1) transforms [2] into

∂tPt (s)=
∑

x

[
�(sx; x)Pt(sx)−�(s; x)Pt (s)

]
, (3)

where the transition probability per unit time is the
superposition

�(s; x)=
∫

dJf (J)ϕ
[
2T −1sxhx(s,J)

]
. (4)

For appropriate choices of this superposition, i.e. of
functionsf andϕ, this system behaves qualitatively
differents from the Hopfield case. That is, it can be
shown—analytically in some cases and, more gen-
erally, by computer simulations—that a second-order
(equilibrium) phase transition forp = 1 transforms for
p → 0 into a first-order (nonequilibrium) phase tran-
sition. This has some dramatic consequences concern-
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ing the recognition of a given pattern out of a deterio-
rated image of it. In particular, for a wide and practi-
cally interesting range ofN, P andT , mixture states
do not occur and the recovery process happens to be
rather robust and accurate [6].

This study induced us to investigate a cellular
automaton version of the original model. Firstly,
the functionϕ is properly determined; this choice
importantly affects in practice some of the system
properties, e.g., the nature of its phase transitions.
The simulation then proceeds by choosing at random
any of the stored patterns, sayµ, and updating all
the neurons in the lattice assuming the setJxy =
ξ
µ
x ξ

µ
y , i.e. the synaptic intensities corresponding to

the selected pattern. Next, this step is repeated again
and again. The draw is performed in such a way
that the time average for each localJxy gives Hebb’s
rule, 〈Jxy〉 ∝ ∑P

µ=1 ξ
µ
x ξ

µ
y (or, alternatively, any other

learning rule one may use in the system definition).
The preliminary results that are available at the time

of this writing reveal that this case exhibits a very ro-
bust and efficient process of pattern recognition. For
most parameter values, starting from a perturbed pat-
tern, the system rapidly transforms that configuration
into the stored pattern that is closest to it. Fig. 1 shows
the time evolution of the overlap between the actual
state of the system and one of the stored patterns at

Fig. 1. The time evolution of the overlap in our cellular automata
(two upper curves) is compared here with the Hopfield case (two
lower curves). Note that, on the time scale of the experiment, only
our system depicts a clear tendency towards saturation. See the text
for more explanations.

indicated temperature. This is in units of the respec-
tive model critical temperature, eitherT ∗

C = 0.1 and
T ∗∗
C = 1 for our system and for the Hopfield case, re-

spectively.Type1 here refers to the case in which the
system storesP = 150 patterns whose sites are gen-
erated completely at random, so that each site is inde-
pendent of the others;type2 is forP = 90 stored pat-
terns generated using the logistic map in the chaotic
region of its parameter space, so that some correla-
tion exits between sites. In both cases, our algorithm
rapidly detects the pattern which is closest to the initial
state. This behavior holds essentially for other values
of the parameters.

The reason behind thegood properties of our
system seems to be that, for appropriate dynamics, the
actual state only evolves noticeably at steps in which
synapses correspond to the selected pattern [7]. This
behavior opens the model to a wide range of possible
applications.

3. Spinodal decomposition and criticality in
driven fluids

The driven lattice gas (DLG) is ad-dimensional
(d = 2 in the following) lattice gas at temperature
T in which transitions in (against) one of the prin-
cipal lattice directions—say‖, to be referred to as
the field direction—are favored (unfavored). For pe-
riodic boundary conditions, this induces a net cur-
rent of particles along the field direction. At highT ,
the system is in a disordered state while, for half-
filled lattices (the only case of interest in this pa-
per), there is a second-order (nonequilibrium) criti-
cal point, below which the DLG segregates showing
anisotropic, stripe-like configurations parallel to the
field [2].

Establishing the universality class of the DLG is a
main issue not only concerning a better understanding
of these model properties but also much more gener-
ally, in relation to the theory of nonequilibrium phase
transitions and critical phenomena. In fact, the DLG is
recognized as one of the more intriguing model exam-
ples of nonequilibrium phenomena.

Recent field theory [8,9] motivated performing new
and extensive computer simulations. These focused
on the case of an “infinite” drive (particles along
the field direction are not allowed to go backwards)
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Fig. 2. Scaling ofS(k, t) for different times between 105 MCS and
106 MCS in a 128× 128 system at low temperature,T = 0.57TC.
Two lines of slope−2 and−3, are indicated.

for both large squares and rectangularL‖ × L⊥
lattices of different, appropriate sizes. It has thus been
demonstrated numerically that the DLG belongs to
the same universality class as a lattice gas under
a randomly fluctuating field [2] so that (using the
renormalization group jargon) the particle current—
which does not occur in the latter—is not arelevant
feature of the DLG. Main critical exponents follow
for both cases asβ = 0.33(1), ν‖ � 1.25 andν‖ �
2ν⊥. These important results (that have more recently
been confirmed independently [10]) can be interpreted
within the context of the existing field theory [8,9]. It
should be noted however, that the present form of this
theory does not fit well the results of further numerical
investigation of the same model. That is, studying
small values of the field suggests that the DLG has
no relation to the equilibrium lattice gas—so that one
cannot go perturbatively from the latter to the case of
small fields. There is some indication that the DLG
belongs to the same universality class withβ < 1/2
for any value of the field as long as the configurations
are stripped [11]. If this is confirmed, the chances are
that the DLG will again attract considerable attention
during the coming years.

In fact, in addition to the above issue on criticality,
there are further interesting questions concerning this
model. One is the nature of its kinetic behavior as a
configuration evolves from a disordered state to the
stripped one. Extending the arguments first checked

Fig. 3. In this figure we show�(t) versus tα for both
L⊥ × L‖ = 64× 64 (a) and 256× 64 (b), and whereα = 1/4 and
1/3 has been used, respectively. Notice that both plots follow a lin-
eal law of the form�(t)= atα + b. 1/4-behavior dominates the full
evolution of the smaller system, while the larger one reaches the
long time limit, thus showing 1/3-behavior. In the insets we show
χ2(α) for three different measures of the mean stripe width�(t). Its
minimum signals the experimental value of the growth exponentα.

for systems that evolve towards equilibrium [12] one
should perhaps expectself-similaritywith time of the
structure function. That is, as the system undergoes
nucleation and then cluster coagulation according to
a sort of spinodal decomposition, even though this
is strongly anisotropic and will eventually lead to a
nonequilibrium steady state, it seems reasonable to
assume the existence of a unique relevant length. One
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should expect this to be the length that characterizes
the (transverse) clustering process in the system, say
�(t). Consequently, quantities changing with time
should not depend explicitly on the time variable but
only through�(t). For example, the structure function
S(k, t) is expected to depict a scaled form̃s(k′),
independent oft, when plotted accordingly,

S(k, t) ∝ �(t)s̃
(
k�(t)

)
. (5)

This has recently been confirmed using the width
of the stripes as the relevant length, as shown in Fig. 2.
Moreover, we found that̃s(k) ∼ k−2 for large values
of k, which is the generalization of Porod’s law to
DLG. This power law behavior, as compared to the
k−3 tail observed in bidimensional equilibrium binary
mixtures, reflects the fact that coarsening in DLG is
effectively a unidimensional process which takes place
in the direction perpendicular to the field.

It has also been shown that�(t) ∼ t1/3, in general,
as in standard spinodal decomposition [13] though
the mechanisms leading to this behavior seem to be
different. More specifically, we found that�(t) =
a(t/L‖)1/3 + b for long enough times, wherea and
b are constants which depend on temperature, while
for intermediate times we observe�(t) ∼ (t/L‖)1/4
(see Fig. 3).

The analysis of all the above results on the dynam-
ics of DLG allows us to conclude that the particle cur-
rent does not play any important role in the late stage
coarsening of DLG, the anisotropy being the relevant
ingredient present in this process.

These facts motivate investigating experimentally
spinodal decomposition in samples under nonequilib-
rium anisotropic conditions, e.g., scattering studies of
fluids under shear.
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