
Northeastern University

Physics Dissertations Department of Physics

April 22, 2013

Statistical mechanics of temporal and interacting
networks
Kun Zhao
Northeastern University

This work is available open access, hosted by Northeastern University.

Recommended Citation
Zhao, Kun, "Statistical mechanics of temporal and interacting networks" (2013). Physics Dissertations. Paper 34. http://hdl.handle.net/
2047/d20003046

http://iris.lib.neu.edu/physics_diss
http://iris.lib.neu.edu/physics
http://hdl.handle.net/2047/d20003046
http://hdl.handle.net/2047/d20003046


Statistical Mechanics of Temporal and

Interacting Networks

A dissertation presented

by

Kun Zhao

to

The Department of Physics

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in the field of

Physics

Northeastern University

Boston, Massachusetts

April 22, 2013



Statistical Mechanics of Temporal and

Interacting Networks

by

Kun Zhao

ABSTRACT OF DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Physics

in the College of Science of

Northeastern University

April 22, 2013

ii



Abstract

In the last ten years important breakthroughs in the understanding of the topology

of complexity have been made in the framework of network science. Indeed it has

been found that many networks belong to the universality classes called small-world

networks or scale-free networks. Moreover it was found that the complex architecture of

real world networks strongly affects the critical phenomena defined on these structures.

Nevertheless the main focus of the research has been the characterization of single and

static networks.

Recently, temporal networks and interacting networks have attracted large interest. In-

deed many networks are interacting or formed by a multilayer structure. Example of

these networks are found in social networks where an individual might be at the same

time part of different social networks, in economic and financial networks, in physiolo-

gy or in infrastructure systems. Moreover, many networks are temporal, i.e. the links

appear and disappear on the fast time scale. Examples of these networks are social

networks of contacts such as face-to-face interactions or mobile-phone communication,

the time-dependent correlations in the brain activity and etc. Understanding the evolu-

tion of temporal and multilayer networks and characterizing critical phenomena in these

systems is crucial if we want to describe, predict and control the dynamics of complex

system.

In this thesis, we investigate several statistical mechanics models of temporal and inter-

acting networks, to shed light on the dynamics of this new generation of complex net-

works. First, we investigate a model of temporal social networks aimed at characterizing

human social interactions such as face-to-face interactions and phone-call communica-

tion. Indeed thanks to the availability of data on these interactions, we are now in the

position to compare the proposed model to the real data finding good agreement.

Second, we investigate the entropy of temporal networks and growing networks , to

provide a new framework to quantify the information encoded in these networks and

to answer a fundamental problem in network science: how complex are temporal and

growing networks.

Finally, we consider two examples of critical phenomena in interacting networks. In par-

ticular , on one side we investigate the percolation of interacting networks by introducing

antagonistic interactions. On the other side, we investigate a model of political election

based on the percolation of antagonistic networks . The aim of this research is to show

how antagonistic interactions change the physics of critical phenomena on interacting

networks.
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We believe that the work presented in these thesis offers the possibility to appreciate the

large variability of problems that can be addressed in the new framework of temporal

and interacting networks.



Dedicated to my parents, and my wife

v



Acknowledgements

First of all, I would like to express my deep gratitude to my advisor Prof. Ginestra

Bianconi, for her enduring guidance and tremedous help in my research and the writing

of this thesis.

I am indebted to my parents for raising me and supporting me in all my life. I am also

indebted to my wife Ching Ting Ren for loving me, encouraging me and giving me the

momentum towards my PhD in the last four years.

I would like to thank all of my collaborators: Dr. Alain Barrat, Juliette Stehlé, Dr.
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Chapter 1

Introduction

Complex networks describe a large variety of technological, social and biological systems

[7–14]. Therefore network science is now established as a new interdisciplinary research

field. In this context the role of physicists, using the powerful tools of statistical me-

chanics, has been extremely important [7–13]. Universal structural properties, such as

the small-world property and the scale-free degree distribution, have been observed in a

large variety of systems from the Internet to the protein interactions in the cell. More-

over, dynamical processes defined on networks show a rich interplay between network

structure and dynamics [12, 14]. Recently, the scientific community has demonstrated

significant interest in temporal networks and interacting networks.

In temporal networks [15] links are continuously created and annihilated. Human social

interactions such as face-to-face interactions or mobile-phone mediated interactions are

prominent examples of temporal networks. Recently, thanks to the advancement in

technology, new extensive data on social interactions has been collected. In order to

explain new fundamental observations made on the data, such as the bursty behavior

of human social interactions [16], new models need to be formulated. These models will

shed light on the basic mechanisms beyond social network dynamics and can be also

useful to test new hypothesis on a well-defined setting.

Interacting networks [17, 18] describe interconnected infrastructures, economic networks,

social networks, and biological networks. Recently, it has been shown that interacting

and interdependent networks are more fragile than single networks. Moreover it has been

shown that in this case the percolation transition can be first-order. Yet, understanding

how robust are interacting networks and how cascading failures might spread in the

system are topics of intense scientific debate.

1
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In this thesis, we investigate statistical mechanics of temporal and interacting networks,

to echo the increasing interest in this field and to answer some new relevant questions

raising in this context. In this chapter, we first review some basic notations of complex

networks. After that, we discuss some latest results on statistical mechanics of temporal

networks and interacting networks. Finally we give the outline of the thesis.

1.1 Brief overview of complex networks

A complex network is a complex system that can be represeted as a set of nodes and

links (also called vertices and edges). Mathematically, a network G, also called a graph

in graph theory, is defined by a pair of sets G = (V,E), where V is a set of nodes and

E is a set of links. It is also convenient to define a network by adjacency matrix. For

a undirected network of N nodes, the adjacency matrix A = {aij = 0, 1} is a N × N

matrix in which the index i and j represent the label of nodes. The matrix element

aij = 1 if a link is present between node i and j, otherwise aij = 0. For undirected

networks the adjacecy matrix A is symmetric where aij = aji. For weighted networks in

which links are associated with a specific weight, the adjacency element aij can be any

non-negative real number representing the weight of the link. In the rest of this thesis we

will mostly deal with undirect networks. Therefore a network in this thesis usually refers

to a undiected network unless there is an explicit notation. From the point of statistical

mechanics, random networks under specified constraints (e.g. fixed average degree) can

be treated as a statistical ensemble, where each member is a particular configuration

satisfying the constraints.

The study of complex networks has been a part of graph theory in mathematics for

a long time. The history of graph theory goes back to the 18th century when the

notable problem of the Seven Bridges of Königsberg was raised and solved by Leonhard

Euler. The Königsberg problem was to find a path crossing each of the seven bridges

in the city once and only once, which is also called Eulerian path. Over centuries the

framework of graph theory has been well developed by mathematicians. Nevertheless,

before 1950s most of the studies in graph theory have focused on regular graphs which

is defined as purely abstract representations in mathematics. Little attention was paid

to the organization principle of graphs in nature. In 1959, the model of random graphs

was first studied by Paul Erdős and Alfred Rényi, which is considered a significant

landmark in modern graph theory. The Erdős-Rényi random graph model is the first

model introducing the element of stochasticity in networks. The basic assumption of

this model is that links are generated by connecting node pairs in equal probability, i.e.

the generation of links between node pairs is completely random.
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Networks have also been studied extensively in sociology. The study of networks in

sociology is mostly based on the means of questionnaires or survey, asking participants

to elaborate their interactions with others. Such responses can be used to reconstruct a

social network in which nodes represent individuals and links represent the interactions

among them. The first attempt was given by Jacob Moreno in 1953, who introduced

the sociograms to describe relationships among children [19]. Structural properties of

social networks such as average path length and community centrality have also been

studied by experiments in social science. One of the most well-known work is the ”six

degrees of seperation” experiment conducted by Stanley Milgram in 1967 [20]. In Mil-

gram’s experiment, a group of people were asked to sent a package to a final person

who they did not know, through a friend or acquaintance who they thought would for-

ward the package closer to the final person. This experient recorded a median of five

intermediate acquaintance between the original sender and the final recipient, which

first experimentally demostrated the small-world property in human society. Nowadays,

modern technologies such as mobile sensors, communication devices and communication

softwares over Internet have been applied to gather data on human social networks.

In late 1990s, two significant works initiated a new era for complex networks. The first

was the small-world network model proposed by Duncan Watts and Steven Strogatz in

1998 [21]. The small-world network model generates a network by randomly rewiring a

fraction of links of a regular graph, and exhibits a combination of short average path

length and high clustering coeffecient. The second was the Barabási-Albert (BA) model

proposed by Albert-László Barabási and Albert Réka in 1999 which explains the scale-

free property of networks [22]. These two works attracted tremendous interest from

various fields and established complex networks as a new interdispinary science.

In this session, we briefly review some classical models and structural characteristics

of complex networks as an introduction of the thesis. We refer interested readers to

[7–9, 11, 13] for a detailed review of complex networks.

1.1.1 Structural Characteristics of networks

In this subsection we briefly recall some important structural characteristics of networks.

1.1.1.1 Degree distribution

Degree distribution is the first significant structural characteristics of networks. The

degree of a node in a network, sometimes called connectivity, is the number of links the



Chapter 1. Introduction 4

node has, or the number of neighbors the node has. The degree distribution P (k) of a

network is then defined to be the fraction of nodes in the network with degree k.

1.1.1.2 Clustering Coefficient

Clustering coefficient is a quantity that measures the tendancy of nodes to form clusters.

The clustering coefficient Ci of node i in a network is defined as Ci =
2Ei

ki(ki−1) , where ki

is the degree of i and Ei is the number of links between the neighbors of i. The avearge

clustering coefficient of a network C =
∑

i Ci

N is the average over the clustering coefficient

of all individual nodes.

1.1.1.3 Giant component

The giant component is an important structural property of a network. Let us define

a connected component of a network as a subset of mutually reachable nodes of the

network. A giant component is defined as the connected component that contains an

extensive number of nodes in the limit N → ∞, i.e. a giant component contains a

constant fraction of nodes of an infinite network.

1.1.2 Basic generating network models

In this subsection, we briefly review some important generating network models: random

network model, BA model, scale-free network model and configuration model.

1.1.2.1 Classical random network model

The most important classical random network model is the Erdős-Réyi model. An

Erdős-Réyi random network G(N,M) is generated by randomly placingM links between

N nodes. A variation of Erdős-Réyi model is the Gilbert model, which generates a

random network G(N, p) by making links present between nodes with probability p.

The degree distrbution of these two classical random network model is poissonian, i.e.

P (k) = e−⟨k⟩⟨k⟩k/k! where ⟨k⟩ is the average degree of the network.

1.1.2.2 Small-world network model

The small-world network model generates a network interpolating between a regular

graph and a random graph. The basic idea of small-world network model is to randomly
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rewire a fraction the links of a regular graph. The original model proposed by Watts

and Strogatz is constructed in one-dimension as follows: Starting with a ring of N

nodes, each link of the ring is rewired with probability p excluding the situation with

self-links and double links. The advantage of small-world model is that it can generate

a network with both short average path length, namely the small-world property, and

high clustering coefficient.

1.1.2.3 BA model

A number of models have been proposed to explain the widely observed scale-free de-

gree distribution of networks. The most important one is the Barabt’asi-Albert model

(BA model) based on preferential attachement [22]. The BA model decribes a growing

network evolving according to the following algorithm: Starting with a small connected

network with n0 nodes and m0 links, at each step a new node with degree m is added to

the system and the other end of each link is connected to another existing node of the

network with probability proportional to the degree of that node. A network generated

by the BA model has scale-free degree distrbution P (k) ∝ k−3. There are a number of

variants of the BA network model with different mechanism of preferential attachement

and growing process, such as Bianconi-Barabási model [23], Krapivsky-Redner model

[3, 4], Dorogovtsev-Mendes model [6], and etc. A more detailed review of these growing

network models is given in Chapter 3.

1.1.2.4 Configuration model

The configuration model [24] proposed by Béla Bóllabas is a generization of random

graph model and is widely used to generate uncorrelated networks with arbitry degree

distribution. The construction of the model is proposed as follows: (i) Generate N stubs

(a stub is a node attached by links with the the other end open) following specific degree

distribution. The sum of the degree sequence must be even. (ii) Randomly connect the

links of stub in pairs. The network generated by the configuration may have loops and

multiple links. Fortunately it has been shown that the effect of loops can be neglected

in the large network limit N → ∞, as long as the network has nodes with degree smaller

that the so-called structural cutoff.
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1.2 Temporal networks and social networks

In the last decade, large attention has been devoted to static networks and dynamical

processes defined on them. Nevertheless, most natural and artifical networks have sig-

nificant temporal structures in which nodes and links appear and disappear on various

time-scales. For example, the links representing social relationships in social networks

are aggregations of successive contacts or communication events, which are constantly

created or terminated between pairs of individuals. The temporal evolution of networks

may lead to notable consequences for the dynamical processes defined on them. The

traditional models of static networks are not capable of capturing the temporal prop-

erties of these networks. Therefore, the scientific community has recently focused the

attention on temporal networks.

Temporal networks, also called time-varying graphs in some literature, can be described

by various representations. Generally, one can define a temporal network by a discrete

sequence of graphs. Each graph of the sequence represents the structure of a temporal

network at the corresponding time step [25]. In most circumstances, the number of

nodes in the system is constant and only the variation of links, e.g. the contacts between

individuals in a social network, form the temporal network. It is convenient to define

such temporal network by sequences of time intervals [15]. In particular, considering a

graph G = (V,E), one can define a sequence of time intervals for each link e ∈ E, i.e.

Te = {(t1, t′1), . . . , (tn, t′n)} where the parentheses indicate the periods of activity, the

unprimed times mark the beginning of the interval and the primed quantities mark the

end [15].

Social networks are probably one of the most important examples of temporal networks.

Social networks evolve on many different timescales. Social relationships in static repre-

sentation are indeed aggregations of dynamical sequences of fast social interactions such

as face-to-face interactions, phone calls or email exchanges over a certain period of time.

Therefore social relationships are continuously changing, possibly in a way correlated

with the dynamical processes taking place during social interactions. In this context, an

important topic of investigation is to model the dynamics of social interactions, e.g. the

community formation [26–28] in social networks and the evolution of adaptive dynamics

of opinions and social ties through schematic models in which links can disappear or be

rewired at random [29–35].

Recently, new technologies have made possible the access to data sets that give new

insights into such link internal dynamics, characterized by sequences of events of differ-

ent durations. Traces of human behavior are often unwittingly recorded in a variety of

contexts such as financial transactions, phone calls, mobility patterns, purchases using
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credit cards, etc. Data have been gathered and analyzed about the mobility patterns

inside a city [36], between cities [37], as well as at the country and at worldwide levels

[38–41]. At a more detailed level, mobile devices such as cell phones make it possible to

investigate individual mobility patterns and their predictability [42, 43]. Mobile devices

and wearable sensors using Bluetooth and Wifi technologies give access to proximity pat-

terns of pairs of individuals [44–48], and even face-to-face presence can be resolved with

high spatial and temporal resolution [1, 49–51]. Finally, on-line interactions occurring

between individuals can be monitored by logging instant messaging or email exchange

[16, 52–57].

The combination of these technological advances and of heterogeneous data sources

allows researchers to gather longitudinal data that have been traditionally scarce in

social network analysis [58, 59]. Analysis of such data sets has clearly shown the bursty

nature of many human and social activities, revealing the inadequacy of many traditional

frameworks that posit Poisson distributed processes. In particular, the durations of

”contacts” between individuals, as defined by the proximity of these individuals, display

broad distributions, as well as the time intervals between successive contacts [1, 44, 48,

49, 51, 60]. Burstiness of interactions has strong consequences on dynamical processes

[25, 51, 61–64], and should therefore be correctly taken into account when modeling the

interaction networks. New frameworks are therefore needed, which integrate the bursty

character of human interactions and behaviors into dynamic network models.

1.3 Entropy of complex networks

Entropy is one of the most important concepts in statistical mechanics, and quantifies

the number of possible microscopic states of a system in equilibrium (the Boltzmann’s

definition). Various forms of entropy have been proposed in the context of statistical

mechanics. The most general one is the Gibbs entropy given by S = −kB
∑
pi log pi

where kB is the Boltzmann constant and pi is the probability of microscopic state. An

extension of the Gibbs entropy to quantum mechanics is the Von Neumann entropy.

In information theory entropy also plays a key role, which measures the uncertainty of

random variable. The most well-known definition is the Shannon entropy. For a discrete

random varible X with n possible values {x1, . . . , xn}, the Shannon entropy is given by

S = −
∑
P (xi) logP (xi) where P (xi) represents the probability of a specific value xi.

Shannon entropy is widely used in communication theory and coding theory, e.g. data

compression and signal transmission. It has been shown that the entropy in statistical

mechanics and the entropy in information theory are closely related.
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A complex network is a complex system incorporating abundant information on its topol-

ogy, structural characteristics and dynamics taking place on it. A fundamental problem

of complex networks is: how complex is a complex network? To solve this problem, we

need a new theory to measure and quantify the information encoded in complex net-

works. In this context, attention has been attracted to the entropy of complex networks.

The history of network entropy can go back to the concept of graph entropy. The classical

graph entropy has various definitions and most of them are based on the topological

structures of a graph, e.g. the symmetries, the chomatic structure and vertex-degree

inequility [65]. Another significant attempt to perform entropy measure on a graph

is the Körner graph entropy [66], which characterizes how much information can be

communicated in a setting where pairs of symbols may be confused. For more details of

graph entropy, we refer interested readers to [65, 67, 68].

Recently, entropy measures of complex networks have been investigated in the framework

of statistical mechanics. One successful approach is the definition of Gibbs entropy

on complex networks by Ginestra Bianconi [69–71]. The approach is based on the

microcanonical network ensemble which is a set of all possible networks that satisfy some

specific constraits such as fixed number of links, given degree sequence and community

structure. The Gibbs entropy is simply the logarithm of the number of networks in the

ensemble, which can be evaluated by efficient calculation schemes such as path-integral

and cavity method [69, 70, 72]. Other entropy measures in the context of complex

networks such as Von Newman entropy or Shannon entropy have been studied as well

[73]. The entropy of complex networks provides a way to quantify the complexity of

networks and has potential to play an important role in solving inference problems of

networks.

1.4 Percolation of complex networks

Percolation is one of the most important critical phenomena. A network is percolating

when it contains a giant component in the thermodynamic limit, i.e. N → ∞, where N

indicates the total number of nodes in the network.

In the last decade, percolation of single and non-interacting networks have been studied

extensively. Here we review some well-known results. Most of these results are based

on configuration model and can be obtained by the method of generating functions [74]

which is a powerful tool in handling percolation problem.

The classical percolation problem of random networks is to study the emergence of the

giant component in a network. A general condition for the phase transition at which the
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giant component first appears is given by ⟨k2⟩ > 2⟨k⟩, which is called the Molly-Reed

condition [75]. It has been known that such phase transition is countinuous and second-

order. For an Erdős-Réyi (ER) network, the condition is simply given by ⟨k⟩ > 1. For

a purely scale-free network with degree distribution P (k) ∝ kγ where γ is the scaling

component and k ∈ [m,M ], the situation is more interesting and depending on the

degree cutoff m and M . For instance, when m = 1 and M → ∞, the condition is given

by γ > 3.478..., i.e. there is no giant component in the network if γ > 3.478.... When

m ≥ 2, a giant component exists for every γ and the phase transition does not exist in

this case.

An important variant of the percolation of networks is the model of random failures or

breakdown of networks [76]. This model is aimed to study the robustness of networks

under random failures due to random error or external attack. In this model, a random

fraction 1 − p of nodes (including the links attached to them) are removed from the

network. The percolation problem is to study the emergence of the giant component in

the remaining network. If a giant component still exists after the removal, the network

is robust. Generally, for a random network with degree distribution P (k), the critical

fraction pc for percolation is given by pc = 1
κ−1 where κ = ⟨k2⟩/⟨k⟩. The size of giant

component S near the critical fraction pc follows a scaling law S ∝ (p−pc)β where β is a

scaling component. In particular for ER networks we have pc = 1/⟨k⟩ and β = 1/2. For

a purely scale-free network with degree distribution P (k) ∝ k gamma and k ∈ [m,M ], it

has been shown that the percolation properties are depending on the scaling exponent

γ and the the degree cutoff m and M . In fact, for γ ≤ 3, when M → ∞ the critical

pc vanishes and the percolation transition does not exist. For a finite system in which

M <∞, the critical pc does not vanish but usually maintains at an extremly low value

if M ≫ m. In this case the network is very robust since the giant component sustains

even that a large fraction of nodes are removed. For 3 < γ < 4, the critical pc exists and

there is a second-order phase transition alike the ER network.

Recently, attention has been addressed to percolation of interacting networks. Most real

networks do not live in isolation. In fact, they are coupled with other networks, and

forming a network of networks. Buldyrev et al. [17] studied percolation problem for

interdependent networks, where the functionality of a node in a network is dependent

on the functionality of other nodes. Therefore, a failure of one node in a network

may lead to a cascade of failures in the entire system. One can find various examples of

interdependent networks in real systems. For instance, the sites of the Internet depend on

the sites of the electrical-power network, and a failure of one site in the electrical-power

network may lead to consequent failure of depending sites of the Internet. In particular,

in [17] a system of two coupled interdependent networks A and B has been considered.

In this case the nodes in each network are coupled one-to-one, i.e the node in network A



Chapter 1. Introduction 10

depends on the node in network B, and vice versa. The authors of [17] have considered

an iterative process of cascading failures starting with randomly removing a fraction

1 − p of network A nodes and all the A-links that are connected to them. Due to the

interdependence between the networks, the nodes in network B that depend on removed

A-nodes are also removed together with the B-links that are connected to them. Finally

the networks may break into independent connected components (or clusters). The

nodes belonging to the giant component are considered remaining functional, while the

nodes belonging to small clusters are considered non-functional. The most remarkable

finding in this model is that, unlike the second-order transition occuring in percolation of

single network, there exists a critical pc at which the the fraction of functional component

undergoes a first-order transition, i.e. the fraction of nodes in the functional component

drops abruptly to zero when p goes below pc. The model reveals that interdependent

networks may be more fragile than a single network. A concise treatment of the model

was presented by Son et al. [77], who related the percolation of interdependent networks

to epidemic spreading. A detailed review of the percolation of interdependent networks

based on epidemic spreading is given in Chapter 4. We also refer interested readers to

[17, 78] for details of percolation of interdependent networks. One should note that, not

all percolation of interdependent networks are discountinous and some exceptions have

been found recently [79].

Percolation of complex networks is a broad topic. There are a number of notable percola-

tion models on complex networks, such as bootstrap percolation [80], k-core percolation

[81], explosive percolation [82] and etc. We can not cover all aspects of this topic but

we refer interested readers to [14] for a comprehensive review.

1.5 Outline

The thesis is organized as follows. In Chapter 2, we investigate the model of temporal

social networks. In particular, we model social interactions as temporal networks re-

producing the distribution of contact duration observed in the data. In Chapter 3, we

investigate the entropy of temporal and growing networks providing a way to quantify

the information encoded in their structure and dynamics. In Chapter 4, we investigate

the percolation of interacting and anatagonistic networks by introducing antagonistic

interactions between nodes of the coupled interacting networks. In Chapter 5 we give

the summary of the thesis.



Chapter 2

Model of Temporal Social

Networks

Temporal social networks describing human social interactions are characterized by het-

erogeneous duration of contacts, which can either follow a power-law distribution, such

as in face-to-face interactions, or a Weibull distribution, such as in mobile-phone com-

munication. In this chapter we propose a unified model of face-to-face interactions and

mobile phone communication based on a reinforcement dynamics, which explains the

data observed in these different types of social interaction. The chapter is based on the

author’s work [83–86]

2.1 Background

Complex networks theory [8, 9, 11, 12, 14, 87] has flourished thanks to the availability

of new datasets on large complex systems, such as the Internet or the interaction net-

works inside the cell. In the last ten years attention has been focusing mainly on static

or growing complex networks, with little emphasis on the rewiring of the links. The

topology of these networks and their modular structure [28, 88–90] are able to affect

the dynamics taking place on them [12, 14, 91, 92]. Only recently temporal networks

[1, 15, 25, 51, 61, 64], dominated by the dynamics of rewirings, are starting to attract

the attention of quantitative scientists working on complexity. One of the most beautiful

examples of temporal networks are social interaction networks. Indeed, social network-

s [93, 94] are intrinsically dynamical and social interactions are continuously formed

and dissolved. Recently we are gaining new insights into the structure and dynamics of

these temporal social networks, thanks to the availability of a new generation of dataset-

s recording the social interactions of the fast time scale. In fact, on one side we have

11
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data on face-to-face interactions coming from mobile user devices technology [44, 45],

or Radio-Frequency-Identification-Devices [1, 51], on the other side, we have extensive

datasets on mobile-phone calls [63] and agent mobility [39, 42].

This new generation of data has changed drastically the way we look at social networks.

In fact, the adaptability of social networks is well known and several models have been

suggested for the dynamical formation of social ties and the emergence of connected

societies [29–32]. Nevertheless, the strength and nature of a social tie remained difficult

to quantify for several years despite the careful sociological description by Granovetter

[93]. Only recently, with the availability of data on social interactions and their dynamics

on the fast time scale, it has become possible to assign to each acquaintance the strength

or weight of the social interaction quantified as the total amount of time spent together

by two agents in a given time window [1].

The recent data revolution in social sciences is not restricted to data on social interaction

but concerns all human activities [16, 56, 57, 95], from financial transaction to mobility.

From these new data on human dynamics evidence is emerging that human activity is

bursty and is not described by Poisson processes [16, 95]. Indeed, a universal pattern of

bursty activities was observed in human dynamics such as broker activity, library loans

or email correspondence. Social interactions are not an exception, and there is evidence

that face-to-face interactions have a distribution of duration well approximated by a

power-law [1, 60, 85, 96, 97] while they remain modulated by circadian rhythms [98].

The bursty activity of social networks has a significant impact on dynamical processes

defined on networks [62, 99].

In this chapter we compare these observations with data coming from a large dataset of

mobile-phone communication and show that human social interactions, when mediated

by a technology, such as the mobile-phone communication, demonstrate the adaptabili-

ty of human behavior. Indeed, the distribution of duration of calls does not follow any

more a power-law distribution but has a characteristic scale defining the weight of the

links, and is described by a Weibull distribution. At the same time, however, this distri-

bution remains bursty and strongly deviates from a Poisson distribution. We will show

that both the power-law distribution of durations of social interactions and the Weibul-

l distribution of durations and social interactions observed respectively in face-to-face

interaction datasets and in mobile-phone communication activity can be explained phe-

nomenologically by a model with a reinforcement dynamics [83–85, 96, 100] responsible

for the deviation from a pure Poisson process. In this model, the longer two agents in-

teract, the smaller is the probability that they split apart, and the longer an agent is non

interacting, the less likely it is that he/she will start a new social interaction. We observe
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here that this framework is also necessary to explain the group formation in simple an-

imals [101]. This suggests that the reinforcement dynamics of social interactions, much

like the Hebbian dynamics, might have a neurobiological foundation. Furthermore, this

is supported by the results on the bursty mobility of rodents [102] and on the recurrence

patterns of words encountered in online conversations [103]. We have therefore found

ways to quantify the adaptability of human behavior to different technologies. We ob-

serve here that this change of behavior corresponds to the very fast time dynamics of

social interactions and it is not related to macroscopic change of personality consistently

with the results of [104] on online social networks.

2.2 Temporal social networks and the distribution of du-

ration of contacts

Human social dynamics is bursty, and the distribution of inter-event times follows a

universal trend showing power-law tails. This is true for e-mail correspondence events,

library loans,and broker activity. Social interactions are not an exception to this rule, and

the distribution of inter-event time between face-to-face social interactions has power-law

tails [16, 95]. Interestingly enough, social interactions have an additional ingredient with

respect to other human activities. While sending an email can be considered an instan-

taneous event characterized by the instant in which the email is sent, social interactions

have an intrinsic duration which is a proxy of the strength of a social tie. In fact, social

interactions are the microscopic structure of social ties and a tie can be quantified as the

total time two agents interact in a given time-window. New data on the fast time scale

of social interactions have been now gathered with different methods which range from

Bluetooth sensors [45], to the new generation of Radio-Frequency-Identification-Devices

[1, 51]. In all these data there is evidence that face-to-face interactions have a duration

that follows a distribution with a power-law tail. Moreover, there is also evidence that

the inter-contact times have a distribution with fat tails.

If we want to characterize the universality of these distributions, a fundamental question

may be raised: how do these distributions change when human agents are interfaced with

a new technology? To answer this question, in this session we first report evidence of

distribution of human face-to-face interactions. Then we analyze a cellphone dataset

and report new evidence of distribution of mobile phone communication. We compare

these two distributions and show human social behaviors are highly adaptive.
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2.2.1 Evidence of distribution of human face-to-face interactions

Here we report a figure of Ref. [1] (Figure 2.1 of this chapter ) in which the duration of

contact in Radio-Frequency-Device experiments conducted by Sociopatterns experiments

is clearly fat tailed and well approximated by a power-law (straight line on the log-log

plot). In this figure the authors of Ref. [1] report the distribution of the duration

of binary interactions and the distribution of duration of a the triangle of interacting

agents. Moreover they report data for the distribution of inter-event time.

Figure 2.1: Probability distribution of the duration of human face-to-face interac-
tion. A) Probability distribution of duration of contacts between any two given person-
s. Strikingly, the distributions show a similar long-tail behavior independently of the
setting or context where the experiment took place or the detection range considered.
The data correspond to respectively 8700, 17000 and 600000 contact events registered
at the ISI, SFHH and 25C3 deployments. B) Probability distribution of the duration
of a triangle. The number of triangles registered are 89, 1700 and 600000 for the ISI,
SFHH and 25C3 deployments. C) Probability distribution of the time intervals between

the beginning of consecutive contacts AB and AC. This figure is from [1].
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2.2.2 Evidence of distribution of mobile phone communication

Here we analyze the call sequence of subscribers of a major European mobile service

provider. In the dataset the users were anonymized and impossible to track. We consid-

er calls between users who called each other mutually at least once during the examined

period of 6 months in order to examine calls only reflecting trusted social interaction-

s. The resulted event list consists of 633, 986, 311 calls between 6, 243, 322 users. We

performe measurements for the distribution of call durations and non-interaction times

of all the users for the entire 6 months time period. The distribution of phone call

durations strongly deviates from a fat-tail distribution. In Figure 2.2 we report these

distributions and show that they depend on the strength w of the interactions (total

duration of contacts in the observed period) but do not depend on the age, gender or

type of contract in a significant way. The distribution Pw(∆tin) of duration of contacts

within agents with strength w is well fitted by a Weibull distribution

τ∗(w)Pw(∆tin) =Wβ

(
x =

∆t

τ⋆(w)

)
=

1

xβ
e
− 1

1−β
x1−β

. (2.1)

with β = 0.47... The typical times of interactions between users τ∗(w) depend on the

weight w of the social tie. In particular the values used for the data collapse of Figure

3 are listed in Table 2.1. These values are broadly distributed, and there is evidence

that such heterogeneity might depend the geographical distance between the users [105].

The Weibull distribution strongly deviates from a power-law distribution to the extent

that it is characterized by a typical time scale τ(w), while power-law distribution does

not have an associated characteristic scale. The origin of this significant change in the

behavior of humans interactions could be due to the consideration of the cost of the

interactions (although we are not in the position to draw these conclusions (See Figure

2.3 in which we compare distribution of duration of calls for people with different type of

contract) or might depend on the different nature of the communication. The duration

of a phone call is quite short and is not affected significantly by the circadian rhythms

of the population. On the contrary, the duration of no-interaction periods is strongly

affected by the periodic daily of weekly rhythms. In Figure 2.4 we report the distribution

of duration of no-interaction periods in the day periods between 7AM and 2AM next

day. The typical times τ∗(k) used in Figure 5 are listed in Table 2.2. The distribution

of non-interacting times is difficult to fit due to the noise derived by the dependence on

circadian rhythms. In any case the non-interacting time distribution if it is clearly fat

tail.
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Figure 2.2: (A) Distribution of duration of phone-calls between two users with weight
w. The data depend on the typical scale τ⋆(w) of duration of the phone-call. (B)
Distribution of duration of phone-calls for people of different age. (C) Distribution of
duration of phone-calls for users of different gender. The distributions shown in the

panel (B) and (C) do not significantly depend on the attributes of the nodes.

Table 2.1: Typical times τ⋆(w) used in the data collapse of Figure 2.2.

Weight of the link Typical time τ⋆(w) in seconds (s)

(0-2%) wmax 111.6
(2-4%) wmax 237.8
(4-8%) wmax 334.4
(8-16%) wmax 492.0
(16-32%) wmax 718.8

Table 2.2: Typical times τ⋆(k) used in the data collapse of Figure 2.4.

Connectivity Typical time τ⋆(k) in seconds (s)

k=1 158,594
k=2 118,047
k=4 69,741
k=8 39,082
k=16 22,824
k=32 13,451
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Figure 2.3: Distribution of duration of phone-calls for people with different types of
contract. No significant change is observed that modifies the functional form of the

distribution.

2.3 Model of social interaction

In the previous section we have showed evidence that the duration of social interactions

is generally non-Poissonian. Indeed, both the power-law distribution observed for du-

ration of face-to-face interactions and the Weibull distribution observed for duration of

mobile-phone communication strongly deviate from an exponential. The same can be

stated for the distribution of duration of non-interaction times, which strongly deviates

from an exponential distribution both for face-to-face interactions and for mobile-phone

communication. Indeed, the non-Poissonian distribution has been observed from the da-

ta on email correspondence. and two important models have been proposed to explain

the bursty email correspondence. First, a queueing model of tasks with different prior-

ities has been suggested to explain bursty interevent time. This model implies rational

decision making and correlated activity patterns [16, 95]. This model gives rise to power-

law distribution of inter event times. Second, a convolution of Poisson processes due to

different activities during the circadian rhythms and weekly cycles have been suggested

to explain bursty inter event time. These different and multiple Poissong processes are

introducing a set of distinct characteristic time scales on human dynamics giving rise to

fat tails of interevent times [57].

Nevertheless, to explain the data on duration of contacts in human social interaction we
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cannot use any of the models proposed for bursty interevent time in email correspon-

dence. In fact, on one side it is unlikely that the decision to continue a conversation

depends on rational decision making. Moreover the queueing model [16, 95] cannot ex-

plain the observed stretched exponential distribution of duration of calls. On the other

side, the duration of contacts it is not effected by circadian rhythms and weekly cycles

which are responsible for bursty behavior in the model [57]. This implies that a new

theoretical framework is needed to explain social interaction data. Therefore, in order

to model the temporal social networks we have to abandon the generally considered as-

sumption that social interactions are generated by a Poisson process. In this assumption

the probability for two agents to start an interaction or to end an interaction is constant

in time and not affected by the duration of the social interaction.

To build a model for human social interactions we have to consider a reinforcement

dynamics, in which the probability to start an interaction depends on how long an

individual has been non-interacting, and the probability to end an interaction depends on

the duration of the interaction itself. Generally, to model the human social interactions,

we can consider an agent-based system consisting of N agents that can dynamically

interact with each other and give rise to interacting agent groups. In the following

subsections we give more details on the dynamics of the models. We denote by the state

n of the agent, the number of agents in his/her group (including itself). In particular

we notice here that a state n = 1 for an agent, denotes the fact that the agent is non-

interacting. A reinforcement dynamics for such system is defined in the following frame:

(i) The longer an agent is interacting in a group the smaller is the probability that

he/she will leave the group. (ii) The longer an agent is non-interacting the smaller is

the probability that he/she will form or join a new group. (iii) The probability that an

agent i change his/her state (value of n) is given by

fn(t, ti) =
h(t)

(τ + 1)β
(2.2)

where τ := (t − ti)/N , N is the total number of agents in the model and ti is the last

time the agent i has changed his/her state, and β is a parameter of the model. The

reinforcement mechanism is satisfied by any function fn(t, ti) that is decreasing with

τ but social-interaction data currently available are reproduced only for this particular

choice fn(t, ti).

The function h(t) in Eq.(2.2) only depends on the actual time in which the decision is

made. This function is able to modulate the activity during the day and throughout the

weekly rhythms. For the modelling of the interaction data we will first assume that the

function h(t) is a constant in time. Moreover in the following subsections we will show

that in order to obtain power-law distribution of duration of contacts and non-interaction
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Figure 2.4: Distribution of non-interaction times in the phone-call data. The dis-
tribution strongly depends on circadian rhythms. The distribution of rescaled time
depends strongly on the connectivity of each node. Nodes with higher connectivity k

are typically non-interacting for a shorter typical time scale τ⋆(k).

times (as it is observed in face-to-face interaction data) we have to take β = 1 while

in order to obtain Weibull distribution of duration of contacts we have to take β < 1.

Therefore, summarizing here the results of the following two sections, we can conclude

with the following statement for the adaptability of human social interactions.

In the following, we discuss two specific cases, the model of face-to-face interactions and

the model of phone-call communication, based on the framework given in this section.

2.4 Model of face-to-face interactions

Starting from given initial conditions, the stochastic dynamics of the model of face-to-

face interactions at each time step t is implemented as the following algorithm:

(1) An agent i is chosen randomly.

(2) The agent i updates his/her state ni = n with probability fn(t, ti).

If the state ni is updated, the subsequent action of the agent proceeds with the

following rules.

(i) If the agent i is non-interacting (ni = 1), he/she starts an interaction with an-

other non-interacting agent j chosen with probability proportional to f1(t, tj).
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Therefore the coordination number of the agent i and of the agent j are up-

dated (ni → 2 and nj → 2).

(ii) If the agent i is interacting in a group (ni = n > 1), with probability λ

the agent leaves the group and with probability 1 − λ he/she introduces an

non-interacting agent to the group. If the agent i leaves the group, his/her

coordination number is updated (ni → 1) and also the coordination numbers

of all the agents in the original group are updated (nr → n − 1, where r

represent a generic agent in the original group). On the contrary, if the agent

i introduces another isolated agent j to the group, the agent j is chosen with

probability proportional to f1(t, tj) and the coordination numbers of all the

interacting agents are updated (ni → n+1, nj → n+1 and nr → n+1 where

r represents a generic agent in the group ).

(3) Time t is updated as t→ t+1/N (initially t = 0). The algorithm is repeated from

(1) until t = Tmax.

We have taken in the reinforcement dynamics with parameter β = 1 such that

fn(t, t
′) =

bn
1 + (t− t′)/N

. (2.3)

In Eq. (2.3), for simplicity, we take bn = b2 for every n ≥ 2, indicating the fact the

interacting agents change their state independently on the coordination number n.

We note that in this model we assume that everybody can interact with everybody so

that the underline network model is fully connected. This seems to be a very reasonable

assumption if we want to model face-to-face interactions in small conferences, which

are venues designed to stimulate interactions between the participants. Nevertheless

the model can be easily modified by embedding the agents in a social network so that

interactions occur only between social acquaintances.

2.4.1 Pairwise interactions

We first consider a restricted version of the model, in which the agents can only interact

in pairs. This set-up is obtained by setting λ = 1 and by considering initial conditions

in which the agents interact at most in groups of size 2. In this case, each agent is thus

assigned a variable ni = 1, 2 indicating if the agent i is isolated (ni = 1) or interacting

with another agent (ni = 2).

As in the analysis of empirical data, the most immediate quantities of interest concern

the time spent by agents in each state, the duration of contacts between two agents, and
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the time intervals between successive contacts of an agent. To gain insight into these

temporal properties of the system, we can write rate equations for the evolution of the

numbers Nn(t, t
′) of agents in state n = 1, 2 at time t who have not changed state since

time t′. In the mean-field approximation, and treating time and numbers as continuous

variables, these equations are given by

∂N1(t, t
′)

∂t
= −2

N1(t, t
′)

N
f1(t, t

′) + π21(t)δtt′ ,

∂N2(t, t
′)

∂t
= −2

N2(t, t
′)

N
f2(t, t

′) + π12(t)δtt′ , (2.4)

where the transition rates πn,m(t) denote the average number of agents switching their

states from n to m (n → m) at time t. If the agents make their decisions according to

the reinforcement dynamics described by the probabilities fn(t, t
′) given by Eq. (2.3),

the dynamic equations (2.4) have a solution of the form

N1(t, t
′) = π21(t

′)

(
1 +

t− t′

N

)−2b1

,

N2(t, t
′) = π12(t

′)

(
1 +

t− t′

N

)−2b2

. (2.5)

Since the total number of isolated agents who change their state at time t is equal to

π12(t) and the total number of interacting agents who change their state is equal to

π21(t), it follows that π21(t) and π12(t) are given in terms of N1(t, t
′) and N2(t, t

′) by

the relations

π21(t) =
2

N

t∑
t′=1

f2(t, t
′)N2(t, t

′),

π12(t) =
2

N

t∑
t′=1

f1(t, t
′)N1(t, t

′). (2.6)

To solve the coupled set of equations (2.5) and (2.6), we assume self-consistently that

π21(t) and π12(t) are either constant or decaying in time as power laws. Therefore, we

assume

π21(t) = π̃21

(
t

N

)−α1

,

π12(t) = π̃12

(
t

N

)−α2

. (2.7)

To check the self-consistent assumption Eq. (2.7), we insert it in Eqs. (2.5) and (2.6) and

compute the values of the parameters α1, α2, π̃21 and π̃12 that determine the solution in

the asymptotic limit t → ∞. If α1 = α2 = 0, we obtain a stationary solution in which
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Figure 2.5: Phase diagram of the pairwise model of face-to-face interactions. The
white area indicates the stationary regime in which the transition rate is constant. The

colored (gray) area indicates the non-stationary phase.
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Figure 2.6: Evolution of the transition rate π21(t) in the different phase regions
of the pairwise model of face-to-face interactions. The simulation is performed with
N = 1000 agents for a number of time steps Tmax = N × 105, and averaged over 10
realizations. The simulations are performed in the stationary region with parameter
values b1 = b2 = 0.7 (circles) and in the non-stationary region with parameter values
b1 = 0.3, b2 = 0.7 (squares) and b1 = b2 = 0.1 (triangles). The lines indicate the

analytical predictions Eqs. (2.7)-(2.8).
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Figure 2.7: Probability distribution of the durations of contacts P2(τ) and of the
inter-contact durations P1(τ) in the stationary region, for the pairwise model. The
data is reported for a simulation with N = 1000 agents, run for Tmax = N × 105

elementary time steps, with parameter values b1 = 0.6, b2 = 0.8. The data is averaged
over 10 realizations.

π21(t) = π̃21 and π12(t) = π̃12, are independent of time. On the contrary if α1 > 0 or

α2 > 0, the system is non-stationary, with transition rates π21(t) and π12(t) decaying in

time. The system dynamics slows down. In Appendix A, we give the details of this self-

consistent calculation in the large N limit, which yields α1 = α2 = α and π̃21 = π̃12 = π̃,

with

α = max (0, 1− 2b2, 1− 2b1)

π̃ =
sin [2πmin (b1, b2)]

π
[1− δ(α, 0)]

+
(2b1 − 1)(2b2 − 1)

2(b1 + b2 − 1)
δ(α, 0). (2.8)

The analytically predicted dynamical behavior or the model can be summarized by the

phase diagram depicted in Figure 2.5 (that we discuss now in more detail), together with

the numerical simulations of the stochastic model displayed in Figure 2.6.

• Stationary region (b1 > 0.5 and b2 > 0.5) - In this region of the phase diagram,

the self-consistent equation predicts α = 0, so that a stationary state solution is

expected, where π12(t) = π̃ is given by Eq. (2.8). In this stationary state the

number of isolated agents and the number or interacting agents are constant on
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Figure 2.8: Probability distribution of the durations of contacts P2(τ) and of the
inter-contact durations P1(τ) in the non-stationary region of the pairwise model, with
b1 < 0.5 and b2 < 0.5. In this region we observe some deviations of the probabilities
P2(τ) and P1(τ) from the power-law behavior for large durations. The data are reported
for a simulation with N = 1000 agents run for Tmax = N × 105 elementary time steps,

with parameter values b1 = b2 = 0.1. The data are averaged over 10 realizations.

average, but the dynamics is not frozen, since π̃ > 0: agents continuously form

and leave pairs. The simulations shown in Figure 2.6 for b1 = b2 = 0.7 confirm

this analytical prediction.

• Non stationary region (b1 < 0.5 or b2 < 0.5) - In this region of the phase dia-

gram, the self-consistent equation predicts a non-stationary solution with π21(t)

and π12(t) decaying with t as a power-law of exponent α = max(1− 2b1, 1− 2b2).

Figure 2.6 shows such a decay for b1 = 0.3, b2 = 0.7 and for b1 = b2 = 0.1, which

is however truncated by finite-size effects for t larger than tc(N) ∝ N . Therefore

the system eventually becomes stationary with a very slow dynamics (very small

transition rates π21(t) and π12(t)).

Empirical studies often focus on the statistics of contact durations between individuals,

and of the time intervals between two contacts of a given individual. These quantities of

interest can be computed in our model, respectively, as the probabilities P2(τ) that an

agent remains in a pair during a time τ = (t− t′)/N , and P1(τ) that an agent remains

isolated for a time interval τ = (t − t′)/N . These probabilities are determined by the

numbers of agents in each state and the rates at which the agents change their state.

The probability distributions of the time spent in each state, integrated between the
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initial time and an arbitrary time t, are given by

Pn(τ) ∝
∫ t−Nτ

t′=0
fn(t

′ +Nτ, t′)Nn(t
′ +Nτ, t′)dt′ (2.9)

for n = 1, 2. Inserting the expression given by Eq. (2.5) for Nn(t, t
′) and the definition

of pn(t, t
′) given by Eq. (2.3) in Eq. (2.9), we obtain the power-law distributions

Pn(τ) ∝ (1 + τ)−2bn−1 (2.10)

for n = 1, 2. These analytical predictions are compared with numerical simulations in

Figure 2.7 for b1 = 0.6, b2 = 0.8 (stationary system) and in Figure 2.8 for b1 = b2 = 0.1

(non-stationary π21 and π12). Interestingly, even when the system is non-stationary, the

distributions Pn(τ) remain stationary.

2.4.2 Formation of groups of any size

In this subsection we extend the solution obtained for the pairwise model to the general

model with arbitrary value of the parameter λ, where groups of any size can be formed.

Therefore the coordination number ni of each agent i can take any value up to N − 1.

Extending the formalism used in the previous subsection, we denote by Nn(t, t
′) the

number of agents with coordination number n = 1, 2, . . . , N at time t, who have not

changed state since time t′. In the mean field approximation, the evolution equations

for Nn(t, t
′) are given by

∂N1(t, t
′)

∂t
= −2

N1(t, t
′)

N
f1(t, t

′)− (1− λ)ϵ(t)

×N1(t, t
′)

N
f1(t, t

′) +
∑
i≥2

πi,1(t)δtt′ ,

∂N2(t, t
′)

∂t
= −2

N2(t, t
′)

N
f2(t, t

′)

+[π1,2(t) + π3,2(t)]δtt′ ,

∂Nn(t, t
′)

∂t
= −nNn(t, t

′)

N
f2(t, t

′)

+[πn−1,i(t) + πn+1,n(t) + π1,n(t)]δtt′ , n ≥ 3. (2.11)

In these equations, the parameter ϵ(t) indicates the rate at which isolated nodes are

introduced by another agent in already existing groups of interacting agents. Moreover,

πmn(t) indicates the transition rate at which agents change coordination number from

m to n (i.e. m→ n) at time t. In the mean-field approximation the value of ϵ(t) can be
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expressed in terms of Nn(t, t
′) as

ϵ(t) =

∑
n≥2

∑t
t′=1Nn(t, t

′)f2(t, t
′)∑t

t′=1N2(t, t′)f2(t, t′)
. (2.12)

In the case of reinforcement dynamics described by the probabilities fn(t, t
′) given by Eq.

(2.3), and assuming that asymptotically in time ϵ(t) converges to a time-independent

variable, that is, limt→∞ ϵ(t) = ϵ̂, the solution to the rate equations (2.11) in the large

time limit is given by

N1(t, t
′) = N1(t

′, t′)

(
1 +

t− t′

N

)−b1[2+(1−λ)ϵ̂]

,

N2(t, t
′) = N2(t

′, t′)

(
1 +

t− t′

N

)−2b2

, (2.13)

Nn(t, t
′) = Nn(t

′, t′)

(
1 +

t− t′

N

)−nb1

for n ≥ 2,

with

N1(t
′, t′) =

∑
n≥2

πn,1(t
′),

N2(t
′, t′) = π1,2(t

′) + π3,2(t
′), (2.14)

Nn(t
′, t′) = πn−1,n(t

′) + πn+1,n(t
′) + π1,n(t

′) for n ≥ 3.

The transition rates πm,n(t) can be determined in terms of Nn(t, t
′) as shown in the

Appendix A. In order to solve the equations we make the further assumption that the

transition rates πmn(t) are either constant or decaying with time according to a power

law, that is.

πm,n(t) = π̃m,n

(
t

N

)−αm,n

. (2.15)

Self-consistent calculations (see Appendix A) determine the value of the quantities ϵ̂,

αmn, and π̃mn. For λ > 0.5 the self-consistent assumption Eq. (2.15) is valid and we

find, as in the case of pairwise interactions, that αm,n = α ∀(m,n), with

α = max

(
0, 1− b1

3λ− 1

2λ− 1
, 1− 2b2

)
. (2.16)

This solution generalizes the case of the pairwise model, which is recovered by setting

λ = 1. For λ ≤ 0.5 the self-consistent assumption breaks down and we will resort to

numerical simulations.
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Figure 2.9: Phase diagram of the general model of face-to-face interactions with
formation of groups of arbitrary size. The region behind the green surface corresponds
to the stationary phase [i.e., Region (I), with λ > 0.5, b2 > 0.5 and b1 >

2λ−1
3λ−1 ]. The

region in front of the green surface and above the blue one [Region (II)] corresponds to
a non-stationary system with decaying transition rates. Strong finite size effects with a
temporary formation of a large cluster are observed in the region below the blue surface

[i.e., Region (III) with λ < 0.5].

The probability distributions of the time spent in each state, integrated between the

initial time and an arbitrary time t, are given by

Pn(τ) ∝
∫ t−Nτ

t′=0
pn(t

′ +Nτ, t′)Nn(t
′ +Nτ, t′)dt′. (2.17)

Inserting the expression given by Eq. (2.13) for Nn(t, t
′) and the definition of pn(t, t

′)

given by Eq. (2.3) in Eq. (2.17), we obtain the power-law distributions

P1(τ) ∝ (1 + τ)−b1[2+(1−λϵ̂)]−1

Pn(τ) ∝ (1 + τ)−nb2−1 for n ≥ 2. (2.18)

The phase diagram of the model is summarized in Figure 2.9. We can distinguish

between three phases.

• Region (I) -The stationary region: b2 > 0.5, b1 > (2λ − 1)/(3λ − 1) and λ > 0.5-

In this region, the self-consistent solution yields α = 0: the transition rates πmn(t)

converge rapidly to a constant value (see Figure 2.10 for a comparison between numerics
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Figure 2.10: Transition rate π21(t) for the model of face-to-face interactions in the
presence of groups of any size, for different parameters λ, b1, b2 corresponding to the
different regions of the phase diagram. The straight lines correspond to the analytical
predictions. The simulation is performed with N = 1000 agents for a number of time

steps Tmax = N × 104. The data are averaged over 10 realizations.
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Figure 2.11: Distribution Pn(τ) of durations of groups of size n in the stationary
region for the model of face-to-face interactions. The simulation is performed with
N = 1000 agents for a number of time steps Tmax = N × 105. The parameter used are
b1 = b2 = 0.7, λ = 0.8. The data are averaged over 10 realizations. The dashed lines

correspond to the analytical predictions Eqs. (2.18).
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Figure 2.12: Distribution of time intervals between successive contacts of an individu-
al for the model of face-to-face interactions with λ = 0.8, b1 = 0.7 and b2 = 0.3 and 0.9.
The simulation is performed with N = 104 for a number of time steps Tmax = N ×105.

The data are averaged over 10 realizations.
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Figure 2.13: Average coordination number ⟨n⟩ vs λ for the model of face-to-face
interactions with b1 = b2 = 0.7. The simulation is performed with N = 2000 agents
for a number of time steps Tmax = N × 103. ⟨n⟩ is computed in the final state over 30
realizations. The solid line indicates the theoretical prediction given by Eq. (2.19).
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Figure 2.14: Distribution Pn(τ) of durations of groups of size 1 for the model of
face-to-face interactions in the non-stationary region, i.e. Region (II). The simulation
is performed with N = 1000 agents for a number of time steps Tmax = N × 105. The
parameter used are b1 = 0.3 and b2 = 0.7, λ = 0.8. The data are averaged over 10
realizations. The dashed lines correspond to the analytical predictions Eqs. (2.18).
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Figure 2.15: Average coordination number ⟨n⟩ for the model of face-to-face interac-
tions as a function of time in Region (II) of the phase diagram for different values of
the parameters λ, b1 and b2. The data is in very good agreement with the theoret-
ical expectations given by Eqs. (2.20) − (2.21). The simulations are performed with
N = 1000 agents for a number of time steps Tmax = N × 104. The data are averaged

over 10 realizations.
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and analytics for π21(t)) and the system reaches a stationary state. In Figure 2.11 we

compare the analytical solution given by Eqs. (2.18) with the numerical simulations

in the stability region, finding perfect agreement. As predicted by Eqs. (2.18), Pn(τ)

decays faster as n increases: larger groups are less stable than smaller ones, as found

in the empirical data sets. Figure 2.12 displays the distribution PAB−AC(τ) of time

intervals between the start of two consecutive contacts of a given individual, which is as

well stationary and displays a power-law behavior.

The average coordination number ⟨n⟩ is given by

⟨n⟩ = π21
2λ

∑
n≥2

n(n− 1)

nb2 − 1

(
1− λ

λ

)n−2

, (2.19)

where the detailed calculation and the value of π21(t) are given in Appendix A. This

expression diverges as λ → 0.5. In Figure 2.13 we show the perfect agreement between

the result of numerical simulations of ⟨n⟩ and the theoretical prediction.

• Region (II) -Non-stationary region: b2 < 0.5 or b1 < (2λ− 1)/(3λ− 1), and λ > 0.5

- The dynamics in this region is non-stationary and the transition rate is decaying with

time as a power-law, as shown in Figure 2.10 where we report π21(t) as a function

of t. Nevertheless, the distributions of lifetimes of groups of various sizes Pn(τ), and

of inter-contact times PAB−AC(τ), remain stationary. These distributions are shown in

Figure 2.14 and Figure 2.12. In this region, the average coordination number in the limit

t/N ≫ 1 remains small, even as λ → 0.5. In particular from the mean-field solution of

the dynamics (see appendix A) the theoretical solution of the model predicts that, for

λ > 0.5 and t→ ∞
⟨n⟩ = 2 for α = 1− 2b2, (2.20)

and

⟨n⟩ = 1 for α = 1− b1
3λ− 1

2λ− 1
. (2.21)

Figure 2.15 shows the agreement of this predicted behavior with simulation results for

several values of b1 and b2 and λ = 0.7. In this region, as λ→ 0.5 with fixed b1 and b2,

we have α = 1− 2b2 and ⟨n⟩ → 2. Therefore no diverging behavior is observed.

• Region (III) Strong dependence on the number of agents N and non-stationary dy-

namics: λ < 0.5 - In this region the self-consistent assumption given by Eq. (2.15)

breaks down, and we find numerically that the average coordination number ⟨n⟩ strong-
ly depends on the number of agents N and on time. In order to give a typical example

of the corresponding dynamical behavior, Figure 2.16 displays ⟨n⟩ as a function of time
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Figure 2.16: Average coordination number ⟨n⟩ for the model of face-to-face inter-
actions with λ = 0.2, b1 = b2 = 0.7. The simulations of a single realization are
performed with N = 250 and N = 500 agents, respectively, for a number of time steps

Tmax = N × 105.

for two single realizations of the model corresponding to two different values of N . Inter-

estingly, the distributions of lifetimes of groups of various sizes Pn(τ) remain stationary

even in this parameter region (not shown).

2.4.3 Heterogeneous model

In the previous section, we have assumed that all the agents have the same tendency

to form a group or to leave a group, that is, the probabilities pn do not depend on

the agent who performs a status update. Real social systems display however additional

complexity since the social behavior of individuals may vary significantly across the pop-

ulation. A natural extension of the model presented above consists therefore of making

the probabilities pn dependent on the agent who is updating his/her state. To this aim,

we assign to each agent i a parameter ηi that characterizes his/her propensity to form

social interactions. In real networks this propensity will depend on the features of the

agents [90]. In the model we assume that this propensity, that we call ”sociability”, is a

quenched random variable, which is assigned to each agent at the start of the dynamical

evolution and remains constant, and we assume for simplicity that it is uniformly dis-

tributed in [0, 1]. In this modified model, the probability pin(t, t
′) that an agent i with

coordination number n since time t′ changes his/her coordination number at time t is
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given by

f i1(t, t
′) =

ηi
1 + (t− t′)/N

,

f in(t, t
′) =

1− ηi
1 + (t− t′)/N

, for n ≥ 2. (2.22)

In this setup, the parameters (b1, b2), which did not depend on i in Eq. (2.3), are replaced

for each agent i by the values (ηi, 1− ηi): a large ηi corresponds to an agent who prefers

not to be isolated.

The agents’ heterogeneity adds a significant amount of complexity to the problem, and we

have reached an analytical solution of the evolution equations only in the case of pairwise

interactions (λ = 1). The general case can be studied through numerical simulations as

we discuss at the end of this section.

Let us denote by N1(t, t
′, η) the number of isolated agents with parameter ηi ∈ [η, η+∆η]

who have not changed their state since time t′. Similarly, we indicate by N2(t, t
′, η, η′)

the number of agents in a pair joining two agents i and j with ηi ∈ [η, η + ∆η], ηj ∈
[η′, η′ +∆η], who have been interacting since time t′. The mean-field equations for the

model are then given by

∂N1(t, t
′, η)

∂t
= −2

N1(t, t
′, η)

N
f1(t, t

′, η)

+ πη21(t)δtt′ ,

∂N2(t, t
′, η, η′)

∂t
= −N2(t, t

′, η, η′)

N
[f2(t, t

′, η) + f2(t, t
′, η′)]

+πηη
′

12 (t)δtt′ . (2.23)

With the expression for pn(t, t
′, η) given by Eqs.(2.22) we find

N1(t, t
′, η) = πη21(t

′)
(
1 +

t− t′

N

)−2η
,

N2(t, t
′, η, η′) = πηη

′

12 (t′)
(
1 +

t− t′

N

)−2+η+η′

. (2.24)

The transition rate πη21 gives the rate at which agents with ηi ∈ [η, η + ∆η] become

isolated, and πηη
′

12 is the rate at which pairs ij with ηi ∈ [η, η + ∆η], ηj ∈ [η′, η′ + ∆η]

are formed. These rates can be expressed as a function of N1(t, t
′, η) and N2(t, t

′, η, η′)

according to

πη21(t) =
∑
t′,η′

N2(t, t
′, η, η′)

N
[f2(t, t

′, η) + f2(t, t
′, η′)], (2.25)

πηη
′

12 (t) = 2
∑
t′,t′′

N1(t, t
′, η)N1(t, t

′′, η′)

C(t)N
f1(t, t

′, η)f1(t, t
′′, η′),
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where C(t) is a normalization factor given by

C(t) =
t∑

t′=1

∑
η

N1(t, t
′, η)f1(t, t

′, η). (2.26)

To solve this problem with the same strategy used for the model without heterogeneity

we make the self-consistent assumption that the transition rates are either constant or

decaying as a power law with time:

πη21(t) = ∆ηπ̃η21

( t
N

)−α(η)
, (2.27)

πηη
′

12 (t) = ∆η∆η′π̃ηη
′

12

( t
N

)−α(η,η′)
. (2.28)

In appendix A we give the details of the self-consistent calculation, which leads to the

analytical prediction

α(η) = max

(
1− 2η, η − 1

2

)
,

α(η, η′) = α(η) + α(η′) (2.29)

and the value of π̃η21 is given by

π̃η21 =


ρ(η)

B(1−2η,2η) η ≤ 1
2

ρ(η)

B(η− 1
2
,1)

η ≥ 1
2

. (2.30)

In order to check the validity of our mean-field calculation, we study the probability

distribution P1(τ) of the durations of inter-contact periods and the distribution P2(τ) of

the durations of pairwise contacts, which are given, when averaged for a total simulation

time Tmax, by

P1(τ) ∝
∫ Tmax−Nτ

0
dt

∫ 1

0
dηπη21(t)η(1 + τ)−2η−1,

P2(τ) ∝
∫ Tmax−Nτ

0
dt

∫ 1

0
dη

∫ 1

0
dη′πηη

′

12

× (2− η − η′)(1 + τ)η+η′−3, (2.31)

where ρ(η) is the probability distribution of η. In Figure 2.17 we compare the probabili-

ties of intercontact time P1(τ) and contact time P2(τ) averaged over the full population

together with the numerical solution of the stochastic model, showing a perfect agree-

ment. In Figure 2.18 moreover, we show the distributions P η
1 (τ) of the contact durations

of agents with ηi ∈ (η, η + ∆η). Power-law behaviors are obtained even at fixed socia-

bility, and the broadness of the contact duration distribution of an agent increases with
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Figure 2.17: Distributions of times spent in state 0 and 1 for the heterogeneous model.
The simulation is performed with N = 104 for a number of time steps Tmax = N ×105.
The data are averaged over 10 realizations. The symbols represent the simulation results
(circles for n = 1 and squares for n = 2). The dashed lines represent our analytical
prediction. In order to improve the readability of the figure we have multiplied P2(τ)

by a factor of 10−1.

the”sociability” of the agent under consideration.

As previously mentioned, the model can be extended by allowing the formation of large

groups, by setting λ < 1. The results of numerical simulations performed for a particular

value of λ are shown in Figure 2.19. Power law distributions of the lifetime of groups

are again found and, as in the basic model without heterogeneity of the agents, larger

groups are more unstable than smaller groups, as Pn(τ) decays faster if the coordination

number n is larger. As the parameter λ→ 0.5 there is a phase transition and the average

coordination number diverges. In Figure 2.20 we show that ⟨n⟩ − 1 ∝ (λ− 0.5)−δ with

δ = 1 within the statistical fitting error, similarly to what happens in the homogeneous

case. Overall, the main features of the model are therefore robust with respect to the

introduction of heterogeneity in the agents’ individual behavior.

2.5 Model of phone-call communication

To model cell-phone communication, we consider once again a system of N agents rep-

resenting the mobile phone users. Moreover, we introduce a static weighted network G,

of which the nodes are the agents in the system, the edges represent the social ties be-

tween the agents, such as friendships, collaborations or acquaintances, and the weights
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Figure 2.18: Distribution P η
2 (τ) of contact durations of individuals with sociability

η in the pairwise heterogeneous model. The simulations are performed with N = 1000
agents and Tmax = N × 105 time steps. The data are averaged over 10 realizations.
The data decays as a power-law P η

2 (τ) ∝ τ−ξ(η), and we report the exponents ξ(η) as
a function of η in the inset.
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Figure 2.19: Distribution Pn(τ) of the durations of groups of size n in the heteroge-
neous model with formation of groups of any size. The data are shown for simulations
of N = 1000 agents performed over Tmax = N × 105 time steps and λ = 0.8, averaged

over 10 realizations.
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Figure 2.20: ⟨n⟩−1 as a function of λ for the heterogeneous case where where ⟨n⟩ is the
average coordination number. The solid line indicates the best fit with ⟨n⟩ ∝ (λ−0.5)−δ

with δ = 0.996 in agreement with the exponent −1 within the statistical uncertainty.
The data correspond to simulations of N = 500 agents performed over Tmax = N ×103

time steps. The data are averaged over 10 realizations.

of the edges indicate the strengths of the social ties. Therefore the interactions between

agents can only take place along the network G (an agent can only interact with his/her

neighbors on the network G). Here we propose a model for mobile-phone communication

constructed with the use of the reinforcement dynamic mechanism. This model shares

significant similarities with the previously discussed model for face-to-face interactions,

but has two major differences. Firstly, only pairwise interactions are allowed in the case

of cell-phone communication. Therefore, the state n of an agent only takes the values

of either 1 (non-interacting) or 2 (interacting). Secondly, the probability that an agent

ends his/her interaction depends on the weight of network G. The stochastic dynamics

of phone-call communication at each time step t is then implemented as the following

algorithm.

(1) An agent i is chosen randomly at time t.

(2) The subsequent action of agent i depends on his/her current state (i.e. ni):

(i) If ni = 1, he/she starts an interaction with one of his/her non-interacting

neighbors j of G with probability f1(ti, t) where ti denotes the last time

at which agent i has changed his/her state. If the interaction is started,

agent j is chosen randomly with probability proportional to f1(tj , t) and the

coordination numbers of agent i and j are then updated (ni → 2 and nj → 2).
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(ii) If ni = 2, he/she ends his/her current interaction with probability f2(ti, t|wij)

where wij is the weight of the edge between i and the neighbor j that is

interacting with i. If the interaction is ended, the coordination numbers of

agent i and j are then updated (ni → 1 and nj → 1).

(3) Time t is updated as t→ t+1/N (initially t = 0). The algorithm is repeated from

(1) until t = Tmax.

Here we take the probabilities f1(t, t
′), f2(t, t

′|w) according to the following functional

dependence

f1(t, t
′) = f1(τ) =

b1
(1 + τ)β

f2(t, t
′|w) = f2(τ |w) =

b2g(w)

(1 + τ)β
(2.32)

where the parameters are chosen in the range b1 > 0, b2 > 0, 0 ≤ β ≤ 1, g(w) is a

positive decreasing function of its argument, and τ is given by τ = (t− t′)/N .

In order to solve the model analytically, we assume the quenched network G to be

annealed and uncorrelated. Here we outline the main result of this approach and the

details of the calculations are given in Appendix B. Therefore we assume that the network

is rewired while the degree distribution p(k) and the weight distribution p(w) remain

constant. We denote by Nk
1 (t, t

′) the number of non-interacting agents with degree k at

time t who have not changed their state since time t′. Similarly we denote byNk,k′,w
2 (t, t′)

the number of interacting agent pairs (with degree respectively k and k′ and weight of

the edge w) at time t who have not changed their states since time t′. In the annealed

approximation the probability that an agent with degree k is called by another agent is

proportional to its degree. Therefore the evolution equations of the model are given by

∂Nk
1 (t, t

′)

∂t
= −N

k
1 (t, t

′)

N
f1(t− t′)− ck

Nk
1 (t, t

′)

N
f1(t− t′) + πk21(t)δtt′

∂Nk,k′,w
2 (t, t′)

∂t
= −2

Nk,k′,w
2 (t, t′)

N
f2(t− t′|w) + πk,k

′,w
12 (t)δtt′ (2.33)

where the constant c is given by

c =

∑
k′
∫ t
0 dt

′Nk′
1 (t, t′)f1(t− t′)∑

k′ k
′
∫ t
0 dt

′Nk′
1 (t, t′)f1(t− t′)

. (2.34)

In Eqs. (2.33) the rates πpq(t) indicate the average number of agents changing from

state p = 1, 2 to state q = 1, 2 at time t. The solution of the dynamics must of course
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satisfy the conservation equation∫
dt′
[
Nk

1 (t, t
′) +

∑
k′,w

Nk,k′,w
2 (t, t′)

]
= Np(k). (2.35)

In the following we will denote by P k
1 (t, t

′) the probability distribution that an agent

with degree k is non-interacting in the period between time t′ and time t and we will

denote by Pw
2 (t, t′) the probability that an interaction of weight w is lasting from time

t′ to time t which satisfy

P k
1 (t, t

′) = (1 + ck)f1(t, t
′)Nk

1 (t, t
′)

Pw
2 (t, t′) = 2f2(t, t

′|w)
∑
k,k′

Nk,k′,w
2 (t, t′). (2.36)

As a function of the value of the parameter of the model we found different distribution

of duration of contacts and non-interaction times.

• Case 0 < β < 1. The system allows always for a stationary solution with

Nk
1 (t, t

′) = Nk
1 (τ) and Nk,k′,w

2 (t, t′) = Nk,k′,w
2 (τ). The distribution of duration

of non-interaction times P k
1 (τ) for agents of degree k in the network and the dis-

tribution of interaction times Pw
2 (τ) for links of weight w is given by

P k
1 (τ) ∝ b1(1 + ck)

(1 + τ)β
e
− b1(1+ck)

1−β
(1+τ)1−β

Pw
2 (τ) ∝ 2b2g(w)

(1 + τ)β
e
− 2b2g(w)

1−β
(1+τ)1−β

. (2.37)

Rescaling Eqs.(2.37), we obtain the Weibull distribution which is in good agree-

ment with the results observed in mobile-phone datasets.

• Case β = 1. Another interesting limiting case of the mobile-phone communication

model is the case β = 1dor which we have fk1 (τ) ∝ (1 + τ)−1 and fw2 (τ |w) ∝
(1+τ)−1. In this case the model is much similar to the model used to mimic face-to-

face interactions described in the previous subsection [85, 96], but the interactions

are binary and they occur on a weighted network. In this case we get the solution

Nk
1 (τ) = Nπk21(1 + τ)−b1(1+ck)

Nk,k′,w
2 (τ) = Nπk,k

′,w
12 (1 + τ)−2b2g(w). (2.38)
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and consequently the distributions of duration of given states Eqs. (2.36) are given

by

P k
1 (τ) ∝ πk21(1 + τ)−b1(1+ck)−1

Pw
2 (τ) ∝ πk,k

′,w
12 (1 + τ)−2b2g(w)−1. (2.39)

The probability distributions are power-laws.This result remains valid for every

value of the parameters b1, b2, g(w) nevertheless the stationary condition is only

valid for

b1(1 + ck) > 1

2b2g(w) > 1. (2.40)

Indeed this condition ensures that the self-consistent constraints Eqs. (2.34), and

the conservation law Eq. (2.35) have a stationary solution.

• Case β = 0 This is the case in which the process described by the model is a

Poisson process and their is no reinforcement dynamics in the system. Therefore

we find that the distribution of durations are exponentially distributed. In fact

for β = 0 the functions f1(τ) and f2(τ |w) given by Eqs.(2.32) reduce to constants,

therefore the process of creation of an interaction is a Poisson process. In this case

the social interactions do not follow the reinforcement dynamics. The solution

that we get for the number of non interacting agents of degree k, Nk
1 (τ) and the

number of interacting pairs Nk,k′w
2 (τ) is given by

Nk
1 (τ) = Nπk21e

−b1(1+ck)τ

Nk,k′,w
2 (τ) = Nπk,k

′,w
12 e−2b2g(w)τ . (2.41)

Consequently the distributions of duration of given states Eqs. (2.36) are given by

P k
1 (τ) ∝ e−b1(1+ck)τ

Pw
2 (τ) ∝ e−2b2g(w)τ . (2.42)

Therefore the probability distributions P k
1 (τ) and Pw

2 (τ) are exponentials as ex-

pected in a Poisson process.
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2.6 Conclusion

The goal of network science is to model, characterize, and predict the behavior of com-

plex networks. In this chapter, we have focused on modelling phenomenologically social

interactions on the fast time scale, such a face-to-face interactions and mobile phone

communication activity. We have found that human social interactions are bursty and

adaptive. Indeed, the duration of social contacts can be modulated by the adaptive

behavior of humans: while in face-to-face interactions dataset a power-law distribution

of duration of contacts has been observed, we have found, from the analysis of a large

dataset of mobile-phone communication, that mobile-phone calls are distributed accord-

ing to a Weibull distribution. Moreover, we have modeled this adaptive behavior by

assuming that the dynamics underlying the formation of social contacts implements a

reinforcement dynamics. Finally, we have concluded that the duration of social contacts

in humans has a distribution that strongly deviates from an exponential.



Chapter 3

Entropy of Temporal Networks

and Growing Networks

New entropy measures have been recently introduced for the quantification of the com-

plexity of networks. Nevertheless, most of these entropy measures apply to static net-

works or to dynamical processes defined on static networks. In this chaper, we investigate

entropy of temporal networks and growing networks in which nodes and links are not

static. In temporal networks, nodes and links are created and annihilated over time. In

growing networks, nodes and links are continuously added to the system. In particular,

as a solid example of temporal networks, we investigate the entropy of temporal social

networks formed by human contacts such as face-to-face interactions and phone calls.

Moreover, we investigate the entropy rate of growing network models, which quantifies

how many labeled networks are typically generated by the growing network models. This

chapter is based on the author’s work [85, 86, 100].

3.1 Background

One of the outstanding problems in statistical mechanics of complex networks is to quan-

tify the complexity of networks. Recently, new entropy measures have been introduced

to tackle this problem [69–73, 90, 106–117]. Methods for quantifying complexity are

not only valuable from the theoretical point of view, but may also lead to important

operational interpretations. In fact, it opens the way for a new information theory of

complex network topologies which will provide an evaluation of the information encoded

in complex networks.

42
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3.1.1 Entropy measures of social networks and human social behaviors

Networks encode information in their topological structures. In social networks [93,

94] this information is essential to build strong collaborations [118] that enhance the

performance of a society, to build reputation trust and to navigate [119] efficiently the

networks. Therefore to understand how social network evolve, adapt and respond to

external stimuli, we need to develop a new information theory of complex social networks.

Recently, attention has been addressed to entropy measures of email correspondence [52]

and mobility patterns [43]. It has been shown that mutual information for the data of

email correspondence can characterize the community structure of the networks and the

entropy of human mobility is able to set the limit of predictability of human movements

[43]. Still we lack methods to assess the information encoded in the dynamical social

interaction networks.

Social networks are characterized by complex organizational structures revealed by net-

work community and degree correlations [88]. These structures are sometimes correlated

with annotated features of the nodes or of the links such as age, gender, and other anno-

tated features of the links such as shared interests, family ties or common work locations

[28, 89]. It has been shown by studying social, technological and biological networks that

the network entropy measures can assess how significant are the annotated features for

the network structure [90].

Moreover social networks evolve on many different time-scales and relevant information

is encoded in their dynamics. Indeed social ties can appear or disappear depending on

the dynamical process occurring on the networks such as epidemic spreading or opinion

dynamics. Several models for adaptive social evolution have been proposed showing

phase transitions in different universality classes [29–32]. Social ties have in addition

to that a microscopic structure constituted by fast social interactions of the duration

of a phone call or of a face-to-face interaction. In fact, as discussed in the previous

chapter, most human social interactions in short-time scale can be modelled in the

framework of temporal social networks. Therefore, to develop a better way of assessing

the information encoded in human social behaviors, new tools of information theory such

as entropy measures for temporal social networks are needed.

3.1.2 Entropy measures of complex networks

Recently, various entropy measures of complex networks based on network ensembles

have been proposed. The entropy of network ensembles quantifies the number of graphs
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with given structural features such as degree distribution, degree correlations, communi-

ty structure or spatial embedding [69–72, 107–109, 120]. This quantity is very useful for

inference problems defined on networks and it has been successfully applied to the prob-

lem of assessing the significance of features for network structure [90]. Other entropy

measures of quantum mechanical nature have been derived by mapping the network

either to a density matrix or to a quantum state [73, 112–114]. These entropies, defined

on single networks, set a path for the application of tools of quantum information theo-

ry to describe the complexity of single networks and to introduce new kind of network

parameters (for example, by considering the notion of correlations and subsystems). En-

tropy rate of random walks on networks [115–117] are extensively studied as well. Such

entropy rate can predict how evenly the random walk spreads in the network and help

construct maximally entropic random walks for many applications.

3.1.3 Motivation

One should note that most of these studies on entropy measures of complex networks in

the last decade have been focusing on static networks or dynamical processes defined on

static networks, with little emphasis on networks in which nodes and links are not static

but time-varying, e.g. temporal networks or growing networks. In other words we still

lack a general framework for entropy measures of time-varying networks. In this chapter,

to fill the gap, we propose a new framework for entropy measures of temporal social

networks, which can be applied to most circumstances of human social interactions in

short-time scale. Moreover, we define and measure the entropy rate of growing network

models.

3.2 Entropy of temporal social networks

In this section we characterize the entropy of temporal social networks as a proxy to

characterize the predictability of the dynamical nature of social interaction networks.

This entropy quantifies how many typical distribution of configuration we expect at

any given time, given the history of the network dynamical process. We evaluate this

entropy on a typical day of mobile-phone communication directly from data showing

modulation of the dynamical entropy during the circadian rhythm. Moreover we show

that when the distribution of duration of contacts changes from a power-law distribution

to a Weibull distribution the level of information and the value of the dynamical entropy

significantly change indicating that human adaptability to new technology is a further

way to modulate the information content of dynamical social networks.
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3.2.1 Definition

In this subsection we will define the entropy of temporal social networks as a measure

of information encoded in their dynamics. We assume that the following stochastic

dynamics takes place in the network: according to this dynamics at each time step

t, different interacting groups can appear and disappear giving rise to the temporal

social network. The agents are embedded in a social network G such that interaction

can occur only by acquaintances between first neighbors of the network G. This is

a good approximation if we want to model social interactions on the fast time scale.

In the case of a small conference, where each participant is likely to discuss with any

other participant we can consider a fully connected network as the underlying network

G of social interactions. In the network G each set of interacting agents can be seen

as a connected subgraph of G, as shown in Figure 3.1. We use an indicator function

gi1,i2,...,in(t) to denote, at time t, the maximal set i1, i2,..., in of interacting agents in

a group. If (i1i2, . . . , in) is the maximal set of interacting agents in a group, we let

gi1,i2,...,in(t) = 1 otherwise we put gi1,i2,...,in(t) = 0. Therefore at any given time the

following relation is satisfied,

∑
G=(i,i2,...,in)|i∈G

gi,i2,...,in(t) = 1. (3.1)

where G is an arbitrary connected subgraph of G. Then we denote by

St = {gi1,i2,...,in(t′)∀t′ < t}

the history of the dynamical social networks, and p(gi,i2,...,in(t) = 1|St) the probability

that gi1,i2,...,in(t) = 1 given the history St. Therefore the likelihood that at time t the

dynamical social networks has a group configuration gi1,i2,...,in(t) is given by

L =
∏
G
p(gi1,i2,...,in(t) = 1|St)

gi1,i2,...,in (t). (3.2)

We denote the entropy of the dynamical networks as S = −⟨logL⟩|St
indicating the

logarithm of the typical number of all possible group configurations at time t which can

be explicitly written as

S = −
∑
G
p(gi,i2,...,in(t) = 1|St) log p(gi,i2,...,in(t) = 1|St). (3.3)

The value of the entropy can be interpreted as following: if the entropy is larger, the

dynamical network is less predictable, and several possible dynamic configurations of
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Figure 3.1: The dynamical social networks are composed by different dynamically
changing groups of interacting agents. In panel (A) we allow only for groups of size one
or two as it typically happens in mobile phone communication. In panel (B) we allow

for groups of any size as in face-to-face interactions.

groups are expected in the system at time t. On the other hand, a smaller entropy

indicates a smaller number of possible future configuration and a temporal network

state which is more predictable.

3.2.2 Entropy of phone-call communication

In this subsection we simplify the general expansion for the entropy S of temporal

networks given by Eq. (3.3) for the case of phone-call communication, we only allow

pairwise interaction in the system such that the product in Eq.(3.2) is only taken over

all single nodes and edges of the quenched network G which yields

L =
∏
i

p(gi(t) = 1|St)
gi(t)

∏
ij|aij=1

p(gij(t) = 1|St)
gij(t) (3.4)

with

gi(t) +
∑
j

aijgij(t) = 1. (3.5)

where aij is the adjacency matrix of G. The entropy then takes a simple form

S = −
∑
i

p(gi(t) = 1|St) log p(gi(t) = 1|St)

−
∑
ij

aijp(gij(t) = 1|St) log p(gij(t) = 1|St). (3.6)

3.2.3 Analysis of the entropy of a large dataset of mobile phone com-

munication

In this subsection we use the entropy of temporal social networks to analyze the infor-

mation encoded in a major European mobile service provider, making use of the same
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dataset that we have used to measure the distribution of call duration in Section 2. Here

we evaluate the entropy of the temporal networks formed by the phone-call communica-

tion in a typical week-day in order to study how the entropy of temporal social networks

is affected by circadian rhythms of human behavior.

For the evaluation of the entropy of temporal social networks we consider a subset of the

large dataset of mobile-phone communication. We selected 562, 337 users who executed

at least one call a day during a weeklong period. We denote by fn(t, t
′) the transition

probability that an agent in state n (n = 1, 2) changes its state at time t given that

he/she has been in his/her current state for a duration τ = t − t′. The probability

fn(t, t
′) can be estimated directly from the data. Therefore, we evaluate the entropy in

a typical weekday of the dataset by using the transition probabilities fn(t, t
′) and the

definition of entropy of temporal social networks. In Figure 3.2 we show the resulting

evaluation of entropy in a typical day of our phone-call communication dataset. The

entropy of the temporal social network is plotted as a function of time during one typical

day. The mentioned figure shows evidence that the entropy of temporal social networks

changes significantly during the day reflecting the circadian rhythms of human behavior.

More details of calculations in ths subsection are given in Appendix C.
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Figure 3.2: Mean-field evaluation of the entropy of the dynamical social networks of
phone calls communication in a typical week-day. In the nights the social dynamical

network is more predictable.
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3.2.4 Entropy modulated by the adaptability of human behavior

The adaptability of human behavior is evident when comparing the distribution of the

duration of phone-calls with the duration of face-to-face interactions, as it has been

discussed in Chapter 2. In the framework of the model for mobile-phone interactions

described in Chapter 2, this adaptability, can be understood, as a possibility to change

the exponent β in Eqs. (2.32) regulating the duration of social interactions.

Changes in the parameter β correspond to different values entropy of the dynamical

social networks. Therefore, by modulating the exponent β, the human behavior is able

to modulate the information encoded in temporal social networks. In order to show the

effect on entropy of a variation of the exponent β in the dynamics of social interaction

networks, we considered the entropy corresponding to the model of temporail social

networks described in chapter 2 as a function of the parameters β and b1 modulating

the probabilities f1(t, t
′), f2(t, t

′|w) Eqs.(2.32). In Figure 3.3 we report the entropy S

of the proposed model a function of β and b1. The entropy S, given by Eq.(3.6), is

calculated using the annealed approximation for the solution of the model and assuming

the large network limit. In the calculation of the entropy S we have taken a network of

size N = 2000 with exponential degree distribution of average degree ⟨k⟩ = 6, weight

distribution P (w) = Cw−2 and function g(w) = 1/w and b2 = 0.05. Our aim in

Figure 3.3 is to show only the effects on the entropy due to the different distributions

of duration of contacts and non-interaction periods. Therefore we have normalized

the entropy S with the entropy SR of a null model of social interactions in which the

duration of groups are Poisson distributed but the average time of interaction and non-

interaction time are the same as in the model of cell-phone communication. From Figure

3.3 we observe that if we keep b1 constant, the ratio S/SR is a decreasing function of

the parameter β. This indicates that the broader is the distribution of probability

of duration of contacts, the higher is the information encoded in the dynamics of the

network. Therefore the heterogeneity in the distribution of duration of contacts and

no-interaction periods implies higher level of information in the social network. The

human adaptive behavior by changing the exponent β in face-to-face interactions and

mobile phone communication effectively changes the entropy of the dynamical network.

More details of calculations in ths subsection are given in Appendix C.

3.2.5 Remarks

In the last ten years it has been recognized that the vast majority of complex systems can

be described by networks of interacting units. Network theory has made tremendous
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progresses in this period and we have gained important insight into the microscopic

properties of complex networks. Key statistical properties have been found to occur

universally in the networks, such as the small world properties and broad degree dis-

tributions. Moreover the local structure of networks has been characterized by degree

correlations, clustering coefficient, loop structure, cliques, motifs and communities. The

level of information present in these characteristic of the network can be now studied

with the tools of information theory. An additional fundamental aspect of social net-

works is their dynamics. This dynamics encode for information and can be modulated

by adaptive human behavior. In this section we have introduced the entropy of social

dynamical networks and we have evaluated the information present in dynamical data

of phone-call communication. By analysing the phone-call interaction networks we have

shown that the entropy of the network depends on the circadian rhythms. Finally we

have evaluated how the information encoded in social dynamical networks change if we

allow a parametrization of the duration of contacts mimicking the adaptability of human

behavior. Therefore the entropy of social dynamical networks is able to quantify how

the social networks dynamically change during the day and how they dynamically adapt

to different technologies.
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Figure 3.3: Entropy S of the phone-call communication model defined in Chapter 2
normalized with the entropy SR of a null model in which the expected average duration
of phone-calls is the same but the distribution of duration of phone-calls and non-
interaction time are Poisson distributed. The network size is N = 2000 the degree
distribution of the network is exponential with average ⟨k⟩ = 6, the weight distribution
is p(w) = Cw−2 and g(w) is taken to be g(w) = b2/w with b2 = 0.05. The value of
S/SR is depending on the two parameters β, b1. For every value of b1 the normalized

entropy is smaller for β → 1.
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3.3 Entropy of growing networks

In this section we define and evaluate the entropy rate of growing network models.

The literature in the field of growing network models generating scale-free networks is

very large [7, 8, 11, 13, 121]. By studying the entropy rate of these models we aim at

quantifying the number of typical networks that are generated by these models. Finally

this entropy rate is the number of networks that is possible to construct with the same

degree distribution. In order to allow for an analytic treatment of the problem, only tree

networks are considered in this section. Trees are networks in which no cycle is allowed.

The maximal number of possible tree networks generated by a growing network model

scales like N ! where N is the number of nodes (and links) in the network. The minimal

number of tree networks generated by a growing network model is one, corresponding

to the formation of a star or of a linear chain. The entropy rate of growing scale-free

networks lies in between these two limiting values. Undestanding the value of the entropy

of graphs is infomative because it describes the complexity of growing network models.

In fact the value of the entropy will quantify with a unique number the size of the space

of typical networks generated by the growing network model. The smaller is the entropy

rate of the networks the more complex the network structural properties implied by

the growing model. In particular it is essential to determine the scaling with N of the

entropy rate, and in the case in which the entropy rate is not constant but depends on

N it is important to evaluate the subleading terms that encode for the topology of the

networks also for other entropy measures [69, 70, 114].

The main model of growing scale-free networks is the Barabási-Albert (BA) model [22]

that generates scale-free networks with power-law exponent γ = 3. The BA networks are

known to have weak degree correlations due to their causal structure, while the growing

network model with initial attractiveness of the nodes [2] and the fitness model [23] have

more significant correlations. To quantify these correlations different measures have

been introduced such as the average degree of the neighbor of the nodes or the degree

correlation matrix. Still we lack a way to quantify how much information is encoded in

growing network models with respect to the networks constructed by the configuration

model with the same degree distribution.

Here we propose to quantify the number of typical tree graphs generated by the non-

equilibrium growing network models [2–6, 22, 23] as a proxy of their complexity. This

quantity can be used to measure the fraction of networks of given degree sequence that is

generated by growing network models and to quantify in this way the complexity of grow-

ing network models. Moreover growing network models as the Bianconi and Barabási

fitness model [5, 23] and the non-linear preferential attachment model of Krapivsky and

Redner [3, 4] or the growing network model with aging of the nodes [6] are known to
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undergo structural phase transitions as a function of their parameters. Interestingly

these phase transitions are characterized by a sharp drop of the entropy rate and strong

finite size effects indicating that the network is reduced to a more ordered state below

the structural phase transition.

The remainder of this section is structured as follows. In Section 3.3.1, we define the

Gibbs entropy of networks with a given degree distribution. In Section 3.3.2, we in-

troduce the necessary material for studying the entropy rate of growing trees. Firstly,

we recall the main growing network models. Then, we obtain min/max bounds to the

entropy. In Section 3.3.3, we study growing trees with stationary degree distribution.

In particular, we consider the BA model, initial attractiveness, the Bianconi-Barabási

fitness model, and networks with structural phase transitions. We draw some concluding

remarks in Section 3.3.4.

3.3.1 Gibbs entropy of networks with a given degree distribution

The Gibbs entropy Σ[{ki}] [69–72, 107] of a network ensemble with given (graphical)

degree sequence {ki} [122, 123] is given by

Σ[{ki}] =
1

N
logN [{ki}] (3.7)

where N [{ki}] is the number of networks with the specified degree sequence and N is

the number of labeled nodes i = 1, 2, . . . , N . The Gibbs entropy depends on the number

of links but also on the specific details of the degree sequence. In Table 3.1 we give

two illustrative examples for two degree sequence compatible with 5 links but defining

ensembles of networks with different entropy.

Degree
Sequence

Networks Entropy

Σ[{ki}] = 0

Σ[{ki}] ̸= 0

Table 3.1: The configuration of networks with degree sequence {1,1,1,1,5} (on top,
N [{ki}] = 1) and {1,2,2,2,3} (on bottom, N [{ki}] = 6).
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It turns out that the ensemble of networks having a given degree distribution is a type

of microcanonical network ensemble satisfying a large number of hard constraints (the

degree of each node is fixed). It is also possible to construct canonical network ensembles

similar to what happens in classical statistical mechanics when one distinguishes the

microcanonical and canonical ensembles according to the fact that the energy is perfectly

conserved or conserved in average. A canonical network ensemble with given expected

degree sequence is an ensemble of graphs in which the degree of each node is distributed

as a Poisson variable with given expected degree {ki}. The entropy of the canonical

network ensemble is the logarithm of the typical number of networks in the ensemble.

This entropy S[{ki}] is given by

S[{ki}] = − 1

N

∑
ij

pij log pij +
∑
ij

(1− pij) log(1− pij)

 (3.8)

where pij indicates the probability that a node i is linked to a node j. We can evalu-

ate the entropy of a maximally random network ensemble with given expected degree

distribuiton {ki} by maximizing the entropy S[{ki}] with respect to pij under the con-

ditions

ki =
∑
j

pij . (3.9)

In this way we get for the marginal probabilities pij [71]

pij =
θiθj

1 + θiθj
, (3.10)

where θi are related to the lagrangian multipliers, or “hidden variables” fixed by the

constraints given by Eqs. (3.9). In particular, for the uncorrelated network model in

which ki <
√
⟨k⟩N and pij =

kikj
⟨k⟩N , the Shannon entropy network ensemble takes a

direct form [70]

S[{ki}] =
1

2
⟨k⟩[log(⟨k⟩N)− 1]− 1

N

∑
i

(ln ki − 1)ki. (3.11)

The Gibbs entropy Σ of a microcanonical ensemble of networks with degree sequence

{ki} with ki = ki is given by [72]

Σ[{ki}] = S[{ki}]− Ω[{ki}] (3.12)

where Ω[{ki}] is the entropy of large deviations of the canonical ensemble

Ω[{ki}] = − 1

N
log[
∑
aij

p
aij
ij (1− pij)

1−aij
∏
i

δ(
∑
j

aij , ki)]. (3.13)
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where {aij} is the adjacency matrix of the network. In particular the matrix element

aij of the adjacency matrix is given by aij = 1 if a link is present between node i and

node j while aij = 0 otherwise. By replica methods and the cavity method [72, 107] it

is possible to derive the given expression for Ω[{ki}],

Ω[{ki}] = − 1

N

∑
i

log πki(ki), (3.14)

where πr(n) is the Poisson distribution with ⟨n⟩ = r. In particular, for the uncorrelat-

ed network model in which ki <
√

⟨k⟩N and pij =
kikj
⟨k⟩N , the Gibbs entropy network

ensemble takes a direct form [70]

Σ[{ki}] =
1

2
⟨k⟩[log(⟨k⟩N)− 1]− 1

N

∑
i

(ln ki − 1)ki +

− 1

2N

∑
i

log(2πki). (3.15)

We might as well define the Gibbs entropy Σ[{Nk}] of networks with given degree dis-

tribution {Nk}. Since the number of graphs with given degree distribution N [{Nk}] is
just given by

N [{Nk}] = N [{ki}]
N !∏
kNk!

(3.16)

it follows that

Σ[{Nk}] = Σ[{ki}]−
∑
k

Nk

N
log

(
Nk

N

)
. (3.17)

3.3.2 Entropy rate of growing trees

Many networks are non static but they are growing by the addition of new nodes and

links. A major class of growing networks are growing trees in which at each time a

new node and a new link is added to the network. In the last ten years, many growing

network models have been proposed. Special attention has been addressed to growing

network models generating scale-free networks. In fact these stylized models explain

the basic mechanism according to which many growing natural networks develop the

universally found scale free degree distribution. The fundamental model for scale-free

growing network is the BA model [22] which generates networks with degree distribution

P (k) ∼ k−γ and γ = 3. This model is based of two ingredients: growth of the network

and preferential attachment meaning that nodes with large degree are more likely to

acquire new links. Here we consider this model and other different significant variations

to this model including different additional mechanisms as initial attractiveness of the

nodes [2], fitness of the nodes [5, 23], non-linear preferential attachment [3, 4] and aging
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of the nodes [6]. Some of these models as explained below undergo structural phase

transitions to be studied by statistical mechanics methods.

3.3.2.1 Growing network models

In the growing scale-free network model we start from two nodes linked together, at each

time t = 1, 2, . . .

• we add a new node i = t+ 2;

• we link the new node to a node it of the network chosen with probability

Π(it) =
Ait

N
, (3.18)

where N =
∑t+1

i=1 Ai;

• the number of nodes in the network is N = t+ 2.

As a function of the choice of Aj different networks model are defined. In particular we

consider the following growing network models:

• If we take Ai = δi,1, we get a star graph;

• If we take Ai = δi,t+1, we get the linear chain;

• If we take Ai = 1, we get a maximally random connected and growing tree;

• If we take Ai = ki, where ki is the degree of the node i, we get the BA model [22];

• If we take Ai = ki − 1 + a, with a < 1, we get a generalized BA model with initial

attractiveness of the nodes [2];

• If we assign to each node a fitness value ηi from a distribution ρ(η) = 1 and

η ∈ (0, 1) and we take Ai = ηiki, we get the Bianconi-Barabási fitness model [23].

• If we take Ai = kγ
′

i , we get the non-linear preferential attachment model of

Krapivsky-Redner [3, 4]. This network model undegoes a gelation phenomenon

for γ′ > 1. Namely, there is an emergence of a single dominant node linked to al-

most every other node. For γ′ > 2, there is a finite probability that the dominating

node is the first node of the network.

• If we assign to each node a fitness value ηi = e−βϵi , with ϵi drawn from a distribu-

tion g(ϵ) ∝ ϵκ and κ > 0, and we take Ai = ηiki, we get as a function of β the so
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called ”Bose-Einstein condensation in complex networks”of Bianconi and Barabási

[5]. When this happens, for β > βc one node with high fitness is connected to a

finite fraction of other nodes in the network.

• If we take Ai = (t − ti)
−αki where ti indicates the time at which the node i has

joined the network, we get the preferential attachment model with aging of the

sites of Dorogovtsev-Mendes [6]. In this growing network the power-law exponent

γ of the degree distribution is diverging as γ ≃ 1
c1

1
1−α when α → 1−. For α > 1

the network is exponential and becomes more and more similar to a linear chain.

3.3.2.2 Entropy rate

The growing connected trees are fully determined by the sequence of symbol X =

(i1, i2, . . . , iN ) where it is the node linked at time t to the node i = t + 2. In order

to evaluate the entropy rate of growing networks it is sufficient to determine the entropy

rate of the sequence (i1, i2 . . . , it):

h(t,X ) = −
∑
it

P (it|i1, i2, . . . it−1) logP (it|i1, i2, . . . , it−1), (3.19)

where P (it|i1, i2, . . . it−1) is the conditional probability that the node it is chosen at time

t given the history of the process. The entropy of the process evaluating how many

networks are typically constructed by the growing network process is S({X})

S({X}) = −
∑

{i1,i2,...,it}

P (i1, i2, . . . it) logP (i1, i2, . . . , it). (3.20)

3.3.2.3 Maximal and minimal bound to the entropy rate of growing network

trees

It is instructive to study the limits of the entropy rate of connected growing trees. The

minimal entropy rate is given by the entropy rate of the star or of the linear chain.

Indeed by taking Ai = δ1,i we have that the entropy rate is zero. Indeed the growing

network model becomes deterministic and it gives rise to a unique star network with

the center on the node i = 1. The entropy rate of a linear chain Ai = δi,t+1 is also zero

by a similar argument and the model generates a unique linear chain network structure.

On the other hand the maximal entropy rate is given by the maximally random growing

connected trees that is generated by taking Ai = 1 and Πi = 1/(t+ 1). For this process

the entropy rate is given by

h(t,X ) = log(t+ 1) (3.21)
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Therefore this entropy rate increases logarithmically with time and the probability of

each tree with N = t+ 2 nodes is given by

P (N) =
1

(N − 1)!
(3.22)

Therefore S({X}) = log[(N − 1)!]. This is the maximal entropy of a growing connected

tree.

3.3.3 Growing trees with stationary degree distribution

For growing network models with stationary degree distributions there are simple rela-

tions between h(t,X ) and S({X}). Indeed let us define the entropy rate

H(X ) = lim
N→∞

1

N
[S({X})− log[(N − 1)!]. (3.23)

For a growing tree network with stationary degree distribution, by the recursive appli-

cation of chain rule P (i1, i2, . . . , it) = P (it|i1, i2, . . . it−1)P (i1, i2, . . . , it−1) we can easily

get

H(X ) = lim
N→∞

1

N
[
N−2∑
n=1

h(n,X )− log((N − 1)!)]. (3.24)

If the entropy rate of growing networks H is a constant, it means that the number of

graphs generated by the growing network model has a dominating term which goes like

N ! and a subleading term that is exponential with the number of nodes N . On the

contrary if H = −∞ it means that the number of networks generated by the growing

network model increases with the number of nodes in the network N at most exponen-

tially. Usually the typical number of labeled networks generated by growing network

models with convergent degree distribution is less than the number of networks with the

same degree distribution. In order to evaluate the ratio between these two cardinalities,

we introduce here the difference ∆ between the Gibbs entropy Σ[{Nk}] of the network

with the same degree distribution and the entropy of the networks generated by the

growing network model. Therefore ∆ is

∆ = lim
N→∞

{
Σ[{Nk}]−

1

N
log[(N − 1)!]−H(X )

}
. (3.25)

The larger the value of ∆ is, the smaller the fraction of networks generated by the

growing model compared with the networks generated by the configuration model. This

implies that the larger is ∆ the more complex the networks generated by the growing

models are. In fact these networks need the dynamics of the networks implicitly force
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the networks to satisfy more stringent set of structural conditions beyond the degree

distribution.

3.3.3.1 The entropy rate of the BA model

We consider the BA model, we take Ai = ki and Πi =
ki

2(N−1) therefore

P (it|i1, i2, . . . , it−1) =
kt

2(N − 1)
. (3.26)

The BA model, asymptotically in time has a degree distribution that converges to the

value Nk given by

Nk =
4N

k(k + 1)(k + 2)
, (3.27)

Therefore, asymptotically in time the entropy rate of the BA model is

h(t = N − 2,X ) → −
∞∑
k=1

Nk
k

2(N − 1)
log

(
k

2(N − 1)

)
. (3.28)

Hence, the entropy rate h(X ) increases in time as the logarithm of the number of nodes

in the network, but it has a subleading term which is constant in time and depends on

the degree sequence, i.e.

h(t = N − 2,X ) → log(N − 1) + log(2)

−
N−1∑
k=1

log(k)
2

(k + 1)(k + 2)

→ log(N − 1)− 0.51(0) (3.29)

The entropy rate H(X ) in the limit N → ∞ is therefore given by

H(X ) ≃ −0.51 . . . . (3.30)

We note here that the degree distribution Nk is known to have interesting finite size

effects[8, 124], in addition to the asymptotic scaling Eq. (3.27). Here we checked that

the value of the entropy rate is not modified by these corrections up to the significant

digit we have considered. Finally, in order to compare the number of networks generated

by the BA model with the network that we can construct with the same degree sequence,
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we evaluate the value of ∆ in the thermodynamic limit. This can be written as

∆ = lim
N→∞

{
1

N

N−1∑
t=1

log(N/t)

− 1

2N

∑
k

Nk[k log(k) + log(2πk)]

−
∑
k

Nk

N
log

(
Nk

N

)
+ 1

}
≃ 0.9(1) (3.31)

3.3.3.2 The entropy rate of the growing network model with initial attrac-

tiveness

If we take Ai = ki − 1 + a, the network generated is scale free with power-law exponent

γ = 2 + a [2]. The probability to choose the node it given the history of the process is

therefore given by

P (it|i1, i2, . . . , it−1) =
Ai

N
=

ki − 1 + a

(a+ 1)(N − 1)
. (3.32)

Asymptotically in time the degree distribution for trees converges to the value [2, 8]

Nk = N(1 + a)
Γ(1 + 2a)Γ(k + a− 1)

Γ(a)Γ(k + 1 + 2a)
. (3.33)

From this, the entropy rate h(t,X ) is asymptotically

h(t = N − 2,X ) →

−
∞∑
k=1

Nk
k − 1 + a

(a+ 1)(N − 1)
log

[
k − 1 + a

(a+ 1)(N − 1)

]
, (3.34)

which can be simplified as

h(t = N − 2,X ) → log(N − 1) + log(a+ 1)

−
N−1∑
k=1

log

[
(k − 1 + a)

Γ(1 + 2a)Γ(k + a)

Γ(a)Γ(k + 1 + 2a)

]
.

(3.35)
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Figure 3.4: The entropy rate H calculated for the growing network model with initial
attractiveness [2] as a function of a and evaluated by Eq. (3.36) using a maximal degree

equal to K = 107.

In the limit N → ∞, the entropy rate H(X ) is

H(X ) = log(a+ 1)

−
N−1∑
k=1

log

[
(k − 1 + a)

Γ(1 + 2a)Γ(k + a)

Γ(a)Γ(k + 1 + 2a)

]
. (3.36)

When a → 1, the solution reduces to the solution of the BA model. In Figure 3.4

we plot the value of H = H(X ) versus a calculated by Eq. (3.36) using an upper

cutoff for the degree ki < K∀i = 1, . . . N . As the parameter a → 0 the entropy rate

decreases indicating that the network model generates an exponentially smaller number

of networks. Also the Gibbs entropy of scale free networks decreases as long as the

power-law exponent converges toward 2, i.e. in the limit γ → 2. In order to evaluate the

change in the ratio of networks generated by the growing network model to the number

of possible networks with the same degree distribution, in Figure 3.5 we plotted ∆ as a

function of a. As a → 0 and γ → 2 the number of networks generated by the growing

network models are a smaller function of the total number of networks that is possible to

build with the same degree distribution. This is an indication and quantification of the

importance of correlations generated by the growing network model with given initial

attractiveness a.
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Figure 3.5: The value of ∆ calculated for the growing network model with initial
attractiveness [2] as a function of a evaluated for networks of N = 50000 nodes and

over 20 realizations of the process.

3.3.3.3 The entropy rate of the Bianconi-Barabási fitness model

If the kernel Ai is heterogeneous and specifically given by Ai = ηiki, the model is called

Bianconi-Barabási fitness model [23]. The probability to choose the node it given the

history of the process is therefore given by

P (it|i1, i2, . . . , it−1) =
Ai

N
=

ηiki
µ(N − 1)

, (3.37)

where µ(N − 1) =
∑N−1

i=1 ηiki. The degree distribution Nk(η) for nodes of fitness η,

asymptotically in time converges to [13]

Nk(η) =
Nµρ(η)

η

Γ(k)Γ(1 + µ/η)

Γ(k + 1 + µ/η)
, (3.38)

where ρ(η) is the distribution of η. Given the analytic solution of the model [13, 23], µ

is determined by the self-consistent relation∫ η0

0
ρ(η)(µ/η − 1)−1dη = 1 (3.39)
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We consider here the case of uniform distribution of the fitness, i.e. ρ(η) = 1 with

η ∈ (0, 1). Therefore the entropy rate is given by

h(t = N − 2,X ) →

−
N−1∑
k=1

∫ 1

0
Nk(η)

ηk

µ(N − 1)
log

[
ηk

µ(N − 1)

]
, (3.40)

which gives

H(X ) = −1.59 . . . (3.41)

3.3.3.4 Entropy rate for growing network models with structural phase

transitions

We have measured the entropy rate for three growing network models showing a phase

transition:

• The Krapivsky-Redner model [3, 4] with

h(t,X ) = −
t∑

i=1

kγ
′

i

N
log

(
kγ

′

i

N

)
(3.42)

and N =
∑t

i=1 k
γ′

i

• The Bianconi-Barabási model showing a Bose-Einstein condensation in complex

networks [5] with

h(t,X ) = −
∑
it

e−βϵiki
N

log

(
e−βϵiki

N

)
(3.43)

and N =
∑t

i=1 e
−βϵiki.

• The Dorogovtsev-Mendes model with aging of the nodes [6] with

h(t,X ) = −
∑
it

τ−α
i ki
N

log

(
τ−α
i ki
N

)
(3.44)

where τi = t− ti is the age of node i and N =
∑t

i=1 τ
−α
i ki.

In Figure 3.6 the entropy rate H(X ) is calculated by numerical simulations using

H(X ) =
1

N
[

N−2∑
n=1

h(n,X )− log((N − 1)!)]. (3.45)

for a network of sufficiently large size N for the three models as a function of the

parameters γ, β and α respectively. We show that at the transition point the scaling
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Figure 3.6: The entropy rate H is evaluated for the Kapivsky-Redner model [3,
4] (panel A), for the ”Bose-Einstein condesation in complex networks” of Bianconi-
Barabási with g(ϵ) = 2ϵ, and ϵ ∈ (0, 1), (κ = 1) [5] (panel B) and for the aging
model [6] of Dorogovtsev-Mendes (panel C). The data are averaged over Nrun different
realizations of the network. We took Nrun = 100 for simulations with N = 104 and
Nrun = 30 otherwise. Above the structural phase transition indicated with the solid

line, the entropy rate H strongly depends on N .

of H evaluated for a network of size N changes from constant to an N dependent

behavior. In particular we checked that in the three cases H ∝ log(N) indicating that

as the network grows the typical number of networks that are generated scales only

exponentially with N (and not like N !).

This behavior signifies a disordered-ordered phase-transition in the topology of the net-

work. In the Bose-Einstein condensation network model and in the Krapivsky-Redner

model, below the phase transition, the network is dominated by a hub node that grabs a

finite fraction of the nodes. In the aging model, below the phase transition, the network

develops a structure more similar to a linear chain.
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3.3.4 Remarks

In conclusion, we have studied growing network models and their entropy rate. We have

seen that the entropy rate of growing simple trees have maximal and minimal bound and

we have studied the entropy rate of scale-free tree networks. This entropy rate allows

us to calculate the number of typical graphs generated by growing scale-free network

models and to quantify their complexity by comparing this number to the total number

of graphs with the same degree distribution. Although we have focused on trees the

definition of entropy rate can be easily extended to growing network models with cycles.

However the probabilities of adding two or more links at a given time should explicetly

account for the fact that the new links must be distinct, fact which induces a small

correction to the simple preferential attachment. We have analyzed a variety of growing

network models and we have studied non-equilibrium growing network models showing

structural phase transitions. By numerical investigations, we have shown that when a

growing network model has a phase transition, the entropy rate changes its scaling with

the system size indicating the disorder-to-order transition. In the future, we believe that

an integrated view of information theory of complex networks will provide a framework

to extend quantitative measures of complexity to a large variety of network structures,

models and dynamics. The present work is a step in this direction.



Chapter 4

Percolation on Interacting

Networks

In the last decade, large attention has been addressed to the dynamical processes defined

on single networks. Recently, it has been shown that dynamical processes on interacting

networks can lead to new critical phenomena. For instance, new results on percolation

of interdependent networks have shown that the percolation transition can be first-

order. In this chapter, we introduce and investigate antagonistic interactions between

interacting networks. The percolation process on antagonistic networks may present not

only first-order transition but also a bistability of the equilibrium solution. Moreover,

as a pratical application of antagonistic networks, we investigate a model of political

election. This chapter is based on the author’s work [125–127].

4.1 Background

Percolation [75, 76, 128] is one of the most relevant critical phenomena [12, 14, 91, 92,

120, 129–142] that can be defined on a complex network. Investigating the properties of

percolation on single network reveals the essential role of the topology of the network in

determining its robustness. Indeed scale-free networks are found to be more robust to

random attacks than networks with a finite second moment of the degree distribution

⟨k2⟩ [75, 76]. Recently, large attention has been paid to the study of the percolation

transition on complex networks and surprising new phenomena have been observed. On

one side, new results have shown that the percolation can be retarded and sharpened by

the Ochlioptas process [82, 143–145]. On the other side, it has been shown that when

considering interacting networks, the percolation transition can be first-order [77, 146,

147]. This last result is extremely interesting because a large variety of networks are

64
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not isolated but are strongly interacting [17, 18, 77, 146–149, 149–151]. In these systems

one network function depends on the operational level of other networks. Examples

of investigated interacting networks go from infrastructure networks as the power-grid

[17] and the Internet to interacting biological networks in physiology [151]. Nodes in

interacting networks can be interdependent, and therefore the function or activity of a

node depends on the function of the activity of the linked nodes in the others networks.

Recent results have shown that interdependent networks are more fragile than single

networks [17, 18] with serious implications that these results have on an increasingly

interconnected world.

The chapter is organized as follows. In Section 4.2 we review the theory of percolation on

single random networks and interdependent networks. In Section 4.3 we characterize the

percolation phase diagram of two Poisson networks with purely antagonistic interactions.

In section 4.4 we characterize the percolation phase diagram in networks with a fraction

q of antagonistic nodes and a fraction 1− q of interdependent nodes. In Section 4.5 we

discuss a model of political election based on antagonistic networks. Finally in Section

4.6 we give the conclusion of the chapter.

4.2 Review of percolation on single networks and interde-

pendent networks

In this section we review the theory of percolation on single networks and interdependent

networks, based on the framework presented by Son et al. [77].

4.2.1 Percolation on single network

In the last decade percolation on single networks has been studied extensively. In this

section we will review the theory of percolation on single networks. In percolation theory,

one essential problem is to determine the existence and the size of the percolating cluster.

The percolating cluster in a single Poisson network emerges at a second order phase

transition when the average degree of the network is ⟨k⟩ = 1. Nevertheless, this result

can change significantly for networks with different degree distributions.
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To solve the percolation problem in a random network with degree distribution pk, it is

useful to define the following generating functions G0(x), G1(x):

G1(x) =
∑
k

kpk
⟨k⟩

xk−1

G0(x) =
∑
k

pkx
k. (4.1)

We denote by S the probability that a random node belongs to the percolating cluster,

and by S′ the probability that following a link we reach a node that belongs to the

percolating cluster. A node of degree k belongs to the percolating cluster if and only if

at least one of its neighbors belongs to the percolating cluster. Therefore the probability

Sk that a node of degree k belongs to the giant percolating cluster is given by

Sk = 1− (1− S′)k (4.2)

where k is the degree of the node. Averaging over all the nodes, we obtain the relation

S = [1−G0(1− S′)]. (4.3)

Similary, assuming the network is locally tree-like, the probability S′ can be found by

the following recursive equation

S′ = [1−G1(1− S′)]. (4.4)

These equations are the well known equations for the percolation transition on single

network [75, 76] with given degree distribution. A non trivial solution S′ > 0 emerges

continuously at a second order phase transition when

⟨k(k − 1)⟩
⟨k⟩

= 1. (4.5)

The percolating cluster will be present in the network as long as

⟨k(k − 1)⟩
⟨k⟩

> 1, (4.6)

which is also called the Molloy-Reed criteria. For Poisson networks, the percolation

condition Eq. (4.6) is equivalent to z = ⟨k⟩ = ⟨k(k − 1)⟩ > 1, which means to have a

Possoin network pecolating the average connectivity must be greater than one. For scale-

free networks with power-law degree distribution p(k) ∝ k−γ , the percolation condition

Eq. (4.6) implies that the network, as long as the power-law exponent γ ≤ 3, is always

percolating in the thermodynamic limit N → ∞. Indeed in this case the second moment
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of the degree distribution is diverging with the network size, i.e. ⟨k2⟩ → ∞ for N → ∞.

This is a crucial result in complex networks theory and implies that scale-free networks

with exponent γ ≤ 3 are more robust than any other network with finite second moment

of the degree distribution, i.e. with ⟨k2⟩ <∞.

4.2.2 Percolation on two interdependent networks

The percolation on interdependent networks was first studied in [17, 146] and then

further characterized in [77]. In this section we will review the theory of percolation

on two interdependent networks following the approach developed by Son et al [77].

We denote the two networks by network A and network B. For simplicity, we assume

both networks have the same number of nodes N . Every node is represented in both

networks. A node belonging to the percolating cluster of the interdependent networks

must statisfy the two following conditions:

• (i) at least one of the nodes reached by following the links in network A belongs

to the percolating cluster of the interdependent networks;

• (ii) at least one of the nodes reached by following the links in network B belongs

to the percolating cluster of the interdependent networks.

If we denote by S the probability that a node belongs to the percolating cluster of two

interdependent networks and by S′
A (S′

B) the probability that following a link of network

A (network B) we reach a node in the percolating cluster of the interdependent network

we have

S = [1−GA
0 (1− S′)][1−GB

0 (1− S′)] (4.7)

On locally tree-like random networks S′
A (S′

B) can by found by the recursive equation

S′
A = [1−GA

1 (1− S′
A)][1−GB

0 (1− S′
B)]

S′
B = [1−GB

1 (1− S′
B)][1−GA

0 (1− S′
A)] (4.8)

The percolation transition can now be also first-order [17, 77, 146, 147]. In the following

subsections we will show some simple cases.

4.2.2.1 Two Poisson networks with equal average degree

We start with the simplest example of two interdependent Poisson networks with the

same average degree z = ⟨k⟩A = ⟨k⟩B. For Poisson networks the generating functions
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are given by GA
0 (x) = GA

1 (x) = GB
0 (x) = GB

1 (x) = ez(x−1). Therefore Eqs. (4.7)-(4.8)

reduce to a single equation

S =
[
1− e−zS

]2
. (4.9)

We define g(S) = S − [1 − e−zS ]2 such that Eq. (4.9) is equivalent to g(S) = 0. This

equation has always the solution S = 0 but as a function for z = zc the curve g(S) is

tangential to the x axis and another non trivial solution emerge.

The point z = zc can be found by imposing the condition

g(S) = 0,

dg(S)

dS
= 0, (4.10)

identifying the point when the function g(S) is tangential to the x axis. Solving this

system of equations we get z = zc = 2.455407 . . . and Sc = 0.511699 . . . . In Figure 4.1

we show a plot of the function g(S) for different values of the average connectivity of the

network z below and above the first-order phase transition z = zc. For z < zc the only

solution to Eq. (4.9) is S = 0 for z = zc a new non trivial solution emerge with S = Sc.

Therefore at z = zc we observe a phase transition of the first-order in the percolation

problem.

Figure 4.1: Plot of the function g(S) for different values of average connectivity z.
At z = zc = 2.455 . . . a new non-trivial solution of the function g(S) = 0 indicates the

onset of a first-order phase transition.
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4.2.2.2 Two Poisson networks with different average degree

Another important example is the the case of two Poisson networks with different av-

erage degrees ⟨k⟩A = zA and ⟨k⟩B = zB investigated in [77]. For Poisson networks the

generating functions are given by G0(x) = G1(x) = ez(x−1). Therefore Eqs. (4.7)-(4.8)

reduce to a single equation since S = S′,

Ψ(S) = S − (1− ezAS)(1− ezBS) = 0 (4.11)

The critical line of discontinuous phase transition can be found by imposing the following

conditions

Ψ(S) = 0,

dΨ(S)

dS
= 0. (4.12)

In Figure 4.2 we plot the phase diagram of the percolation on these two interdependent

networks. In this phase diagram we have a large region (Region II) in which both net-

works are percolating (S > 0) and we observe a first-order percolation phase transition

on the critical line of the phase diagram.

Figure 4.2: Phase diagram of two interdependent Poisson networks with average
degree zA and zB respectively. In region I we have S = 0, in region II we have S > 0

and the critical line indicates the points where the first-order transition occurs.
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4.2.3 Antagonistic interactions and antagonistic networks

In interacting networks, we might not ont observe besides interdependent interactions

but also antagonistic interactions. If two nodes have an antagonistic interaction, the

functionality, or activity, of a node in a network is incompatible with the functionality,

of the other node in the interacting network. This new possibility [126], opens the way to

introduce in the interaction networks antagonistic interactions that generate a bistability

of the solutions.

4.3 Percolation on two antagonistic networks

In this section, we introduce antagonistic interactions in the percolation of two inter-

acting networks [126]. As in the case of interdependent networks we still consider two

networks of N nodes, denoted by network A and network B respectively. Every node

i is represented in both networks. In the case of two antagonistic networks, different

from the case of interdependent networks, if a node i belongs to the percolating cluster

of on one network it cannot belong to the percolating cluster of the other one. A node

i belonging to the percolating cluster of antagonistic network A (or B) must satisfy the

following two conditions:

• (i) at least one node reached by following the links in network A (or B) belongs

to the percolating cluster in network A (or B);

• (ii) none of the nodes reached by following the links in network B (or A) belongs

to the percolating cluster in network B (or A).

We denote by SA,SB the probability that a node in network A (network B) belongs to

the percolating cluster in network A (network B), and denote by S′
A(S

′
B) the probability

that following a link in network A (network B) we reach a node in the percolating cluster

of network A (network B), we have

SA = [1−GA
0 (1− S′

A)]G
B
0 (1− S′

B)

SB = [1−GB
0 (1− S′

B)]G
A
0 (1− S′

A) (4.13)

In the same time, on locally-tree like random networks the probabilities S′
A and S′

B can

be found by the following recursive equations

S′
A = [1−GA

1 (1− S′
A)]G

B
0 (1− S′

B)

S′
B = [1−GB

1 (1− S′
B)]G

A
0 (1− S′

A). (4.14)
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4.3.1 The stability of solution

The solutions to the recursive Eqs. (4.14) can be classified into three categories:

(i) The trivial solution in which neither of the network is percolating S′
A = S′

B = 0.

(ii) The solutions in which just one network is percolating. In this case we have either

S′
A > 0, S′

B = 0 or S′
B > 0, S′

A = 0. From Eqs. (4.14) we find that the solution

S′
A > 0, S′

B = 0 emerges at a critical line of second order phase transition, characterized

by the condition
dGA

1 (z)

dz

∣∣∣∣
z=1

≡ ⟨k(k − 1)⟩A
⟨k⟩A

= 1. (4.15)

Similarly the solution S′
B > 0, S′

A = 0 emerges at a second order phase transition

when we have ⟨k(k−1)⟩B
⟨k⟩B = 1. This condition is equivalent to the critical condition for

percolation in single networks, as it should, because one of the two networks is not

percolating.

(iii) The solutions for which both networks are percolating. In this case we have S′
A >

0, S′
B > 0. This solution can either emerge (a) at a critical line indicating a continuous

phase transition or (b) at a critical line indicating discontinuous phase transition. For

situation (a) the critical line can be determined by imposing, for example, S′
A → 0 in

Eqs. (4.14), which yields

S′
B = 1−GB

1 (1− S′
B),

1 =
⟨k(k − 1)⟩A

⟨k⟩A
GB

0 (1− S′
B). (4.16)

A similar system of equation can be found by using Eqs. (4.14) and imposing S′
B → 0.

For situation (b) the critical line can be determined imposing that the curves S′
A =

fA(S
′
A, S

′
B) and S′

B = fB(S
′
A, S

′
B), are tangent to each other at the point where they

intercept. This condition can be written as(
∂fA
∂S′

A

− 1

)(
∂fB
∂S′

B

− 1

)
− ∂fA
∂S′

B

∂fB
∂S′

A

= 0, (4.17)

where S′
A, S

′
B must satisfy the Eqs. (4.14).

Not every solution of the recursive Eqs. (4.14) is stable. Therefore, we check the stability

of the fixed points solutions of Eqs. (4.14) by linearizing the equations around each

solution. A solution is stable only if the eigenvalues of the Jacobian of Eqs. (4.14) are

less than one. Moreover, the eigenvalues λ1,2 of the Jacobian can be found by solving
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the characteristic equation |J − λI| = 0, which reads for our specific problem,(
∂fA
∂S′

A

− λ

)(
∂fB
∂S′

B

− λ

)
− ∂fA
∂S′

B

∂fB
∂S′

A

= 0. (4.18)

Assuming that the eigenvalues of the Jacobian corresponding to each solution of the

Eqs. (4.14) change continuously when we smoothly change the parameters determining

the topology of the networks, the change of stability of each solution will occur when

max(λ1, λ2) = 1. In the following we will discuss the stability of the solutions of type

(i)-(iii).

(i) Stability of the trivial solution S′
A = S′

B = 0. The solution is stable as long as the

following two conditions are satisfied: λ1,2 =
⟨k(k−1)⟩A/B

⟨k⟩A/B
< 1. Therefore the stability of

this solution change on the critical lines ⟨k(k−1)⟩A
⟨k⟩A = 1 and ⟨k(k−1)⟩B

⟨k⟩B = 1.

(ii) Stability of the solutions in which only one network is percolating. For the case

of S′
A = 0 S′

B > 0 the stability condition reads λ1 =
GB

1 (z)
dz

∣∣∣
z=1−S′

B

< 1 and λ2 =

⟨k(k−1)⟩A
⟨k⟩A GB

0 (1−S′
B) < 1. We note here that if λ2 > λ1 we expect to observe a change in

the stability of the solution on the critical line given by Eqs. (4.16). A similar condition

holds for the stability of the solution S′
A > 0, S′

B = 0.

(iii) Stability of the solution in which both networks are percolating S′
A > 0, S′

B > 0. For

characterizing the stability of the solutions of type (iii) we have to solve Eq. (4.18) and

impose that the eigenvalues λ1,2 are less then 1, i.e. λ1,2 < 1. We observe here that for

λ = 1 Eq. (4.18) reduces to Eq. (4.17). Therefore we expect to have a stability change

of these solutions on the critical line given by Eq. (4.17). In the following particular

cases that we have studied, we have always found that the critical lines determining the

stability of the phases are the same as the critical lines determining the emergence of

new solutions to the Eqs. (4.14).

4.3.2 Two Poisson networks

We consider the case of two Poisson networks with average connectivity ⟨k⟩A = zA and

⟨k⟩B = zB.

For Poisson networks, the generating functions are given by GA
1 (x) = GA

0 (x) = e−zA(1−x)

and GB
1 (x) = GB

0 (x) = e−zB(1−x). Therefore, taking into consideration Eqs.(4.13) and

Eqs. (4.14) we have S′
A = SA and S′

B = SB. Moreover the Eqs.(4.14) take the following
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form:

SA = (1− e−zASA)e−zBSB

SB = (1− e−zBSB )e−zASA . (4.19)

The system of equations (4.20) can be rearranged as

SB(SA) = − 1
ZB

log

(
SA

1− e−ZASA

)
, SA ̸= 0;∀SB, SA = 0

SA(SB) = − 1
ZA

log

(
SB

1− e−ZBSB

)
, SB ̸= 0;∀SA, SB = 0.

(4.20)

Now we discuss different scenarios of solution by plotting SB(SA) and SA(SB) on a

same coordination plane, as shown in Figure 4.3. These equations have always the

trivial solution SA = 0, SB = 0 but depending on the value of the average connectivity

in the two networks, zA, zB, other non trivial solutions might emerge. In the following

we characterize the phase diagram described by the solution to the Eqs. (4.20) keeping

in mind that in order to draw the phase diagram of the percolation problem we should

consider only the stable solutions of Eqs. (4.20). Here we summarize the phase diagram

in Figure 4.4

• Region I zA < 1, zB < 1. In this region there is only the solution SA = 0, SB = 0

to the Eqs. (4.20).

• Region II-A zA > 1, zB < ln(zA)/(1 − 1/zA). In this regions there is only one

stable solution to the percolation problem SA > 0SB = 0

• Region II-B zB > 1, zA < ln(zB)/(1 − 1/zB). In this regions there is only one

stable solution to the percolation problem SA = 0SB > 0

• Region III zA > ln(zB)/(1 − 1/zB) and zB > ln(zA)/(1 − 1/zA) In this region we

observe two stable solutions of the percolation problem with SA > 0, SB = 0 and

SA = 0, SB > 0. Therefore in this region we observe a bistability of the percolation

configurations.

We observe that in this case for each steady state configurations, only one of the two

networks can be percolating also in the region in which we observe a bistability of the

solutions.

In order to demonstrate the bistability of the percolation solution in region III of the

phase diagram we solved recursively the Eqs. (4.14) for zB = 1.5 and variable values
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Figure 4.3: Solution scenarios by plotting SB(SA) (blue line) and SA(SB) (red line)
in Eqs. (4.20) with differen ZA and ZB . (a) ZA ≤ 1, ZB ≤ 1. (b) ZA = 2, ZB = 0.8.
(c) ZA = 2, ZB = 1.2. (d) ZA = 2, ZB = 1.3863. (e) ZA = ZB = 2. (f) ZA = 2,
ZB = 6. The color dots in the figure represent the valid solutions for Eqs. (4.20).

of zA (see Figure 4.5). We start from values of zA = 4, and we solve recursively the

Eqs. (4.14). We find the solutions S′
A = S′

A(zA = 4) > 0, S′
B = S′

B(zA = 4) = 0.Then

we lower slightly zA and we solve again the Eqs. (4.14) recursively, starting from the

initial condition S′o
A = S′

A(zA = 4) + ϵ, S′o
B = S′

B(zA = 4) + ϵ, and plot the result. (The

small perturbation ϵ > 0 is necessary in order not to end up with the trivial solution

S′
A = 0, S′

B = 0.) Using this procedure we show that if we first lower the value of zA

and then again we raise it, spanning the region III of the phase diagram as shown in

Figure 4.5, the solution present an hysteresis loop. This means that in the region III

either network A or network B might end up to be percolating depending on the details

of the percolation dynamics.

4.3.3 Two scale-free networks

Here, we characterize the phase digram of two antagonistic scale-free networks with

power-law exponents γA, γB, as shown in Figure 4.6. The two networks have minimal

connectivity m = 1 and varying value of the maximal degree K.

The critical lines of the phase diagram depend on the value of the maximal degree K

of the networks. Therefore, the plot in Figure 4.6 has to be considered as the effective

phase diagrams of the percolation problem on antagonistic networks with a finite cutoff
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Figure 4.4: Phase diagram of two antagonistic Poisson networks with average degree
zA and zB respectively. In region I the only stable solution is the trivial solution
SA = SB = 0. In region II-A we have only one stable solution SA > 0, SB = 0,
Symmetrically in region II-B we have only one stable solution SA = 0, SB > 0. On the
contrary in region III we have two stable solutions SA > 0, SB = 0 and SA = 0, SB > 0

and we observe a bistability of the percolation steady state solution.

Region I S′
A = S′

B = 0
Region II-A S′

A > 0, S′
B = 0

Region II-B S′
B > 0, S′

A = 0
Region III either S′

A > 0, S′
B = 0 or S′

B > 0, S′
A = 0

Table 4.1: Stable phases in the different regions of the phase diagram of the percola-
tion problem on two antagonistic Poisson networks (Figure 4.4).

K. The phase diagram is rich, showing a region (Region III) in the figure where both

networks are percolating demonstrating an interesting interplay between the percolation

dynamics and the topology of the network.

A description of the stable phases in the different regions of the phase diagram is provided

by Table 4.2.

4.3.4 A Poisson network and a scale-free network

Finally we consider the case of a Poisson network (network A) with average connectivity

⟨k⟩A = zA, and a network B with scale-free degree distribution and power-law exponent

of the degree distribution γB. The scale-free network has minimal connectivity m = 1

and maximal degree given by K. In Figure 4.7 we show the phase diagram of the model

in the plane (γB, zA). The critical lines of the phase diagram are dependent on the

value of the cutoff K of the scale-degree distribution and therefore for finite value of
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Figure 4.5: Panels (a) and (b) show the hysteresis loop for the percolation problem
on two antagonistic Poisson networks with zB = 1.5. Panels (c) and (d) show the
hysteresis loop for the percolation problem on two antagonistic networks of different
topology: a Poisson network of average degree zA = 1.8 and a scale-free networks with
power-law exponent γB , minimal degree m = 1 and maximal degree K = 100. The
hysteresis loop is performed using the method explained in the main text. The value

of the parameter ϵ used in this figure is ϵ = 10−3.

K we observe an effective phase diagram converging in the K → ∞ limit to the phase

diagram of an infinite network. For these reasons we have to consider the phase diagrams

in Figure 4.7 as effective phase diagrams of the percolation problem on networks with

maximal degree K. The phase diagram includes two regions, (region III and region

V) with bistability of the solutions and two regions (region IV and region V) in which

the solution in which both networks are percolating is stable. In Table 4.3 we describe

the percolation stable solutions in the different regions of the phase diagram shown in

Figure 4.7.

In order to demonstrate the bistability of the percolation problem we solved recursively

the Eqs. (4.14) for zB = 1.8 (see Figure 4.13). We start from values of γB = 3, and we

solve the Eqs. (4.14) using the same method explained for the two antagonistic Poisson

networks. Using this procedure we show in Figure 4.13 that the solution present a second

order phase transition to a phase in which both networks are percolating and also an

hysteresis loop in correspondence of region V. This demonstrates the bistability of the
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Figure 4.6: The phase diagram of the percolation process in two antagonistic scale-free
networks with power-law exponents γA, γB. The minimal degree of the two networks
is m = 1 and the maximal degree K. Panel (a) show the effective phase diagram with
K = 100, the panel (b) show the phase diagram in the limit of an inifnite network

K = ∞.

Region I S′
A = S′

B = 0
Region II-A S′

A > 0, S′
B = 0

Region II-B S′
B > 0, S′

A = 0
Region III S′

A > 0, S′
B > 0

Table 4.2: Stable phases in the different regions of the phase diagram of the percola-
tion on two antagonistic scale-free networks (Figure 4.6).

solutions in region V and the existence of a phase in which both network percolate in

region IV and region V.

In order to demonstrate the bistability of the percolation problem we solved recursively

the Eqs. (4.14) for zB = 1.8 (see Figure 4.5). We start from values of γB = 3, and we

solve the Eqs. (4.14) using the same method explained for the two antagonistic Poisson

networks. Using this procedure we show in Figure 4.5 that the solution present a second

order phase transition to a phase in which both networks are percolating and also an

hysteresis loop in correspondence of region V. This demonstrates the bistability of the

solutions in region V and the existence of a phase in which both network percolate in

region IV and region V.
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Figure 4.7: Phase diagram of the percolation process on a Poisson network with
average degree ⟨k⟩A = zA interacting with a scale-free network of power-law exponent
γB , minimal degree m = 1 and maximal degree K. The panel on the left show the
effective phase diagram for K = 100 and the panel on the right show the effective phase

diagram for K = ∞.

Region I S′
A = S′

B = 0
Region II-A S′

A > 0, S′
B = 0

Region II-B S′
B > 0, S′

A = 0
Region III S′

A > 0, S′
B > 0

Region IV either S′
B > 0, S′

A = 0 or S′
A > 0, S′

B > 0
Region V either S′

A > 0, S′
B = 0 or S′

B > 0, S′
A = 0

Table 4.3: Stable phases in the phase diagram for the percolation on two antagonistic
networks: a Poisson network (network A) and a scale-free network (network B). (Figure

4.7)

4.4 Percolation on interdependent networks with a frac-

tion q of antagonistic nodes

In this section the percolation phase diagram when we allow for a combination of an-

tagonistic and interdependent nodes is explored. In particular the interplay between

interdependencies and antagonistic interactions is investigated. For simplicity, we con-

sider this problem in the settings of two interacting Poisson networks. For two Poisson

networks with exclusively interdependent interactions, the steady state of the perco-

lation dynamics has a large region of the phase diagram in which both networks are

percolating. In interdependent networks, a fraction q > qc = 2/3 of antagonistic interac-

tions is necessary in order to significantly reduce the phase in which both networks are
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percolating. This show that interdependent networks display a significant robustness in

presence of antagonistic interactions, and that also a minority of interdependent nodes

is enough to sustain two percolating networks.

As in the previous case we consider two networks of N nodes. We call the networks,

network A and network B respectively and every node i is represented in both networks.

If we indicate by SA(SB) the probability that a random node in network A (network

B) belongs to the percolating cluster in network A(network B), and if we indicate by

S′
A(S

′
B) the probability that following a link in network A (network B) we reach a node

in the percolating cluster of network A (network B), we have

SA = q[1−GA
0 (1− S′

A)]G
B
0 (1− S′

B) +

+(1− q)[1−GA
0 (1− S′

A)][1−GB
0 (1− S′

B)],

SB = q[1−GB
0 (1− S′

B)]G
A
0 (1− S′

A) +

+(1− q)[1−GB
0 (1− S′

B)][1−GA
0 (1− S′

A)]. (4.21)

In the same time, in a random networks with local tree structure the probabilities S′
A

and S′
B satisfy the following recursive equations

S′
A = q[1−GA

1 (1− S′
A)]G

B
0 (1− S′

B) +

+(1− q)[1−GA
1 (1− S′

A)][1−GB
0 (1− S′

B)],

S′
B = q[1−GB

1 (1− S′
B)]G

A
0 (1− S′

A) +

+(1− q)[1−GB
1 (1− S′

B)][1−GA
0 (1− S′

A)]. (4.22)

Region I SA = SB = 0
Region II-A SA > 0, SB = 0
Region II-B SA = 0, SB > 0
Region III SA > 0, SB > 0
Region IV SA = SB = 0 and SA > 0, SB > 0
Region V-A SA > 0, SB = 0 and SA > 0, SB > 0
Region V-B SA = 0, SB > 0 and SA > 0, SB > 0

Table 4.4: Stable phases in the different regions of the phase diagram of the percola-
tion on two antagonistic Poisson networks with a fraction q = 0.3 of antagonistic nodes

(Figure 4.8)
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Figure 4.8: Phase diagram two Poisson interdependent networks with a fraction q =
0.3 of antagonistic interactions.

4.4.1 Two Poisson networks

We consider the case of two interacting Poisson networks with average connectivities

zA = ⟨k⟩A and zB = ⟨k⟩B. We have seen that for the case of two fully antagonistic Pois-

son networks the stable percolation configurations correspond to states in which either

one of the two networks is percolating. Therefore with purely antagonistic interactions

the system is not able to sustain the coexistence of two percolating clusters present in

both networks. Here we want to generalize the above case to two interacting networks

with only a fraction q of antagonistic interactions. For two Poisson networks we have

GA
0 (x) = GA

1 (x) = ezA(x−1) and GB
0 (x) = GB

1 (x) = ezB(x−1) and therefore SA = S′
A and

SB = S′
B. The Eqs. (4.22), (4.21) can be explicitly written in terms of the average

connectivities of the two networks zA, zB as

SA = fA(SA, SB) =

= (1− e−zASA)[(2q − 1)e−zBSB + 1− q]

SB = fB(SA, SB) =

= (1− e−zBSB )[(2q − 1)e−zASA + 1− q] (4.23)

The solutions to the recursive Eqs. (4.23) can be classified into three categories:

• (i) The trivial solution in which neither of the network is percolating SA = SB = 0.
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Figure 4.9: Phase diagram two Poisson interdependent networks with a fraction q =
0.45 of antagonistic interactions.

Region I SA = SB = 0
Region II-A SA > 0, SB = 0
Region II-B SA = 0, SB > 0
Region III SA > 0, SB > 0

Table 4.5: Stable phases in the different regions of the phase diagram of the perco-
lation on two antagonistic Poisson networks with a fraction q = 0.45 of antagonistic

nodes (Figure 4.9).

Region I SA = SB = 0
Region II-A SA > 0, SB = 0
Region II-B SA = 0, SB > 0
Region III SA > 0, SB > 0

Table 4.6: Stable phases in the different regions of the phase diagram of the percola-
tion on two antagonistic Poisson networks with a fraction q = 0.6 of antagonistic nodes

(Figure 4.10)

• (ii) The solutions in which just one network is percolating. In this case we have

either SA > 0, SB = 0 or SA = 0, SB > 0. From Eqs. (4.23) we find that the

solution SA > 0, SB = 0 emerges at a critical line of second order phase transition,

characterized by the condition

zA =
1

q
(4.24)
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Figure 4.10: Phase diagram two Poisson interdependent networks with a fraction
q = 0.6 of antagonistic interactions.

Similarly the solution SB > 0, SA = 0 emerges at a second order phase transition

when we have

zB =
1

q
.

Therefore we observe the phases where just one network percolates, as long as

q > 0. This is a major difference with respect to the phase diagram (Figure 4.2)

of two purelly interdependent networks.

• (iii) The solutions for which both networks are percolating. In this case we have

SA > 0, SB > 0. This solution can either emerge (a) at a critical line indicating a

continuous phase transition or (b) at a critical line indicating discontinuous phase

transition. For situation (a) the critical line can be determined by imposing, for

example, SA → 0 in Eqs. (4.14), which yields

zB = ψ(zA, q)

= −
ln
([

1
zA

− (1− q)
]
/(2q − 1)

)
q
(
1−

[
1
zA

− (1− q)
]
/(2q − 1)

) . (4.25)

The function ψ(zA, q) for q < 0.5 is a decreasing function of zA defined for zA >

1/(1 − q), for q > 0.5 is an increasing function of zA defined for zA < 1/(1 − q).

For q = 0.5 the function ψ(zA, q) is not defined but has limit ψ(zA, q) → 0. A

condition similar to Eq. (4.25) can be found for zA, zB by using Eqs. (4.23) and
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imposing SB → 0. In particular we obtain the other critical line

zA = ψ(zB, q). (4.26)

For situation (b) the critical line can be determined imposing that the curves

SA = fA(SA, SB) and SB = fB(SA, SB), are tangent to each other at the point

where they intercept. This condition can be written as(
∂fA
∂SA

− 1

)(
∂fB
∂SB

− 1

)
− ∂fA
∂SB

∂fB
∂SA

= 0, (4.27)

where SA, SB must satisfy the Eqs. (4.23). This is the equation determines the

critical line of first-order phase transition points. We indicate this line in red in

the phase digrams of the percolation transition.

The condition for having a tricritical point is that Eq.(4.25) and Eq. (4.26) are

satisfied together with Eq. (4.27). If we impose that both Eq. (4.25) and Eq.

(4.27) are satisfied at the same point, the average connectivities zA and zB must

satisfy the following conditions

zB = ψ(zA, q)

zB = ϕ(zA, q) =

=
zA(2q − 1)

[1− zA(1− q)][2qzA(2q − 1) + 2− 3q]

(4.28)

If we impose that both Eq. (4.26) and Eq. (4.27) are satisfied at the same point,

the average connectivities zA and zB must satisfy the following conditions

zA = ψ(zB, q)

zA = ϕ(zB, q) =

=
zA(2q − 1)

[1− zA(1− q)][2qzA(2q − 1) + 2− 3q]

(4.29)

In general the systems of Eqs. (4.28) and Eqs. (4.29) have at most two solutions

each. One trivial solution to Eqs. (4.28) and Eqs. (4.29) is zA = zB = 1
q corre-

sponding to SA = SB = 0. In the following we will characterize the solutions to

Eqs. (4.28) as a function of the fraction of the antagonist interactions q. Similar

results can be drawn by studying the system of Eqs. (4.29).

– Case q < 0.4. The system of Eqs. (4.28) has two solutions, the trivial solution

zA = zB = 1
q and another non-trivial solution with zA <

1
q .
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– Case q = 0.4. The system of Eqs. (4.28) has only one trivial solution with

zA = zB = 1
q .Therefore the non-trivial tricritical point disappear.

– Case 0.5 < q < 0.4. The system of Eqs. (4.28) has two solutions, the trivial

solution zA = zB = 1
q and another non-trivial solution with zA > 1

q . It turns

out that this point is not physical because it is in the region in which the

coexistence phase SA > 0 and SB > 0 cannot be sustained by the system.

Therefore in this region we do not have a non-trivial tricritical point.

– Case 0.5 < q ≤ 2
3 . The system of Eqs. (4.28) has only the trivial solution

zA = zB = 1
q . Therefore the non-trivial tricritical point disappear.

– Case q > 2
3 . The system of Eqs. (4.28) has two solutions, the trivial solutions

zA = zB = 1
q and another non-trivial solution with zA >

1
q .

Figure 4.11: Phase diagram two Poisson interdependent networks with a fraction
q = 0.8 of antagonistic interactions.

4.4.2 The phase diagram as a function of q

As a function of the number of antagonistic interactions q the phase diagram of the

percolation problem change significantly.

• Case q < 0.4.

In Figure 4.8 we show the phase diagram for q = 0.3 which is a typical phase

diagram in the region 0 < q < 0.4. The stable phases in the different regions of
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Region I SA = SB = 0
Region II-A SA > 0, SB = 0
Region II-B SA = 0, SB > 0
Region III SA > 0, SB = 0 and SA = 0, SB > 0
Region IV SA > 0, SB > 0
Region V-A SA > 0, SB = 0 and SA > 0, SB > 0
Region V-B SA = 0, SB > 0 and SA > 0, SB > 0
Region VI SA > SB > 0 and SB > SA > 0

Table 4.7: Stable phases in the different regions of the phase diagram of the percola-
tion on two antagonistic Poisson networks with a fraction q = 0.8 of antagonistic nodes

(Figure 4.11).

the phase space are characterized in Table 4.4. From this table it is evident that

in regions IV, V-A and V-B we observe a bistability of the solutions.

In order to demonstrate the bistability of the percolation solution in region IV

and V-A, V-B of the phase diagram we solved recursively the Eqs. (4.23) for

zB = 4.0 (or zB = 2.8) and variable values of zA (see Figure 4.12). We start

from values of zA = 3, and we solve recursively the Eqs. (4.23). We find the

solutions SA = SA(zA = 3) > 0, SB = SB(zA = 3) = 0. Then we lower slightly zA

and we solve again the Eqs. (4.23) recursively, starting from the initial condition

So
A = SA(zA = 3) + ϵ, So

B = SB(zA = 3) + ϵ, and plot the result. (The small

perturbation ϵ > 0 is necessary in order not to end up with the trivial solution

SA = 0, SB = 0.) Using this procedure we show that if we first lower the value

of zA and then again we raise it, as shown in Figure 4.12, the solution present

an hysteresis loop. This means that in the region IV and V-A, V-B there is a

bistability of the solution.

• Case 0.4 < q < 0.5.

In Figure 4.9 we show the phase diagram for q = 0.45 which is a typical phase

diagram in the range 0.4 < q < 0.5. The stable phases in the different regions of

the phase space are characterized in Table 4.5. For this range of parameters we do

not observe a bistability of the solutions.

• Case 0.5 < q < 2
3 .

In Figure 4.10 we show the phase diagram for q = 0.6 which is a typical phase

diagram in the range 0.5 < q < 2
3 . The stable phases in the different regions of

phase space are characterized in Table 4.6. From this table it is evident that in

this case we do not observe bistability of the solutions. Moreover from the phase

diagram Figure 4.10 it is clear that also if the majority of the nodes are antagonistic

the interdependent nodes are enough to sustain a phase in which both networks

are percolating at the same time (Region III).
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• Case q > 2
3 .

In Figure 4.11 we show the phase diagram for q = 0.8 which is a typical phase

diagram in the range q > 2
3 . In Table 4.7 we characterize the stable phases in

the different regions of the phase diagram. Region III, V-A,V-B and VI show a

bistability of the solutions. In Figure 4.13 we show evidence that in these regions we

can observe an hysteresis loop if we proceed by calculating SA, and SB recursively

from Eqs. (4.23) using the same technique used to produce Figure 4.12. For q > 2
3

the regions in phase space where we observe the coexistence of two percolating

phases (Region IV, V-A, V-B and VI) are reduced and disappear as q → 1.

Figure 4.12: Hysteresis loop for q = 0.3.The hysteresis loop is performed using the
method explained in the main text. The value of the parameter ϵ used in this figure is

ϵ = 10−3. In panel (a) and (b) zB = 4.0. In panel (c) and (d) zB = 2.8.

4.5 A model of political election

So far we have discussed various cases of percolation on antagonsitic networks from

the theoretical point of view. In this section, as a practical example of percolation on

antagonistic networks, we propose a simple model of opinion dynamics that describes

two parties competing for votes during a political campaign. Every opinion, i.e., party,

is modeled as a social network through which a contagion dynamics can take place.

Individuals, on the other hand, are represented by a node on each network, and can be

active only in one of the two networks (vote for one party) at the moment of the election.

Each agent has also a third option [152–155], namely not to vote, and in that case she
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Figure 4.13: Hysteresis loop for q = 0.8. The hysteresis loop is performed using the
method explained in the main text. The value of the parameter ϵ used in this figure is

ϵ = 10−3. In panel (a) and (b) zB = 5.7. In panel (c) and (d) zB = 4.5.

will be inactive in both networks. Crucially, agents are affected by the opinion of their

neighbors, and the nodes tend to be active in the networks where their neighbors are

also active. Moreover, the chance of changing opinion decreases as the decision moment

approaches, in line with the observation that vote preferences stabilize as the election

day comes closer [156].

The aim of the model is to provide insights in the role of multiple social networks in

the voting problem through a simple and clear mathematical model, in the spirit, for

example, of recent work concerning the issue of ideological conflict [154]. We describe the

dynamics of social influence in the two networks, and we model the uncertainty reduction

preceding the vote through a simulated annealing process. Long before the election the

agents change opinions and can sustain a small fraction of antagonistic relations, but as

the election approaches their dynamics slows down, until they reach the state in which

the dynamics is frozen, at the election day. At that moment, the party winning the

elections is the one with more active nodes. Finally, we focus on the case in which

the networks sustaining each party are represented by two Poisson graphs, and address

the role of different average connectivities. This choice is consistent for example with

the data on social networks of mobile phone communication, which are characterized

by a typical scale in the degree (being fitted with a power-law distribution of exponent

γ = 8.4) [63].
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4.5.1 Parties as antagonistic social networks

We consider two antagonistic networks A,B representing the social networks of two

competing political parties. Each agent i is represented in each network and can choose

to be active in one of the networks. In particular σAi = 0 if agent i is inactive in network

A and σAi = 1 if agent i is active in network A. Similarly σBi = 0, 1 indicates if a node

is active or inactive in network B. Since ultimately the activity of an individual in a

network corresponds to the agent voting for the corresponding party, each agent can be

active only on one network on the election day (i.e. if σAi = 1 then σBi = 0 and if σBi = 1

then σAi = 0). Nevertheless we leave to the agent the freedom not to vote, in that case

σAi = σBi = 0. Moreover agents are influenced by their neighbors. Therefore, we assume

that, on the election day, if at least one neighbor of agent i is active in network A, the

agent will be active in the same network (network A) provided that it is not already

active in network B. We assume that a symmetrical process is occurring for the opinion

dynamics in network B. Hence, the mathematical constraints that our agent opinions

need to satisfy at the election day are:

σAi =

1− ∏
j∈NA(i)

(1− σAj )

 (1− σBi )

σBi =

1− ∏
j∈NB(i)

(1− σBj )

 (1− σAi ), (4.30)

where NA(i) (NB(i)) are the set of neighbors of node i in network A (network B).

Therefore at the election day people cannot anymore change their opinion. On the

contrary before the election we allow for some conflicts in the system, and in general the

constraints provided by Eqs. (4.30) will not be satisfied.

4.5.2 Dynamics of the model

To model how agents decide on their vote during the pre-election period we consider

the following algorithm. We consider a Hamiltonian that counts the number of the

constraints in Eq. (4.30) that are violated. Therefore we take a Hamiltonian H of the

following form

H =
∑
i

σAi −

1− ∏
j∈NA(i)

(1− σAj )

 (1− σBi )


2

+

∑
i

σBi −

1− ∏
j∈NB(i)

(1− σBj )

 (1− σAi )


2

. (4.31)
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Figure 4.14: The two competing political parties are represented by two networks.
Each agent is represented in both networks but can either be active (green node) in
only one of the two or inactive (red node) in both networks. Moreover the activity of

neighbor nodes influence the opinion of any given node.

The terms in the brackets can take on the values ±1, 0, therefore a natural choice of

Hamiltonian to count the number of constraint violations involves squares of these terms.

We start from given initial conditions, and we consider the fact that long before the

election the agents are free to change opinion. Therefore we model their dynamics as a

Monte Carlo dynamics which equilibrates following the Hamiltonian H with a relatively

high initial temperature, i.e. some conflicts are allowed in the system. As the election

day approaches, the effective temperature of the opinion dynamics decreases and the

agents tend to reduce to zero the number of conflicts with their neighbors. The opinion

dynamics described in this way is implemented with a simulated annealing algorithm.

The model just described is depicted in Figure 4.14. We start at a high temperature

T = 1 and we allow the system to equilibrate by NA +NB Monte Carlo steps where a

node is picked randomly in either of the networks with equal probability and its opinion

changed, then we slowly reduce the temperature by a multiplicative factor of 0.95 until we

reach the temperature state T = 0.01 where the Hamiltonian is H = 0, there are no more

conflicts in the network, and the probability of one spin flip is about e−1/0.01 ≃ 10−44.
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A

B

Figure 4.15: (Panel A) The size of the largest connected component SA in network
A at the end of the simulated annealing calculation as a function of the average con-
nectivity of the two networks: zA and zB respectively. The data is simulated for two
networks for N = 500 nodes and averaged 60 times. The simulated annealing algorith-
m is independent of initial conditions. The white line represent the boundary between
the region in which network A is percolating and the region in which network A is
not percolating. (Panel B) The schematic representation of the different phases of the
proposed model. In region I none of the networks is percolating, in region II network
B is percolating in region III network A is percolating in region IV both networks are

percolating.

It turns out that the Hamiltonian H has in general multiple fundamental states and the

simulated annealing algorithm always find one of these states. The final configuration

for the model just described is depicted in Figure 4.14.

4.5.3 Phase diagram

In Figure 4.15 we report the result of this opinion dynamics for two antagonistic net-

works A, B with Poisson degree distributions and different average connectivities zA,

zB, respectively. In particular we plot the size SA of the giant component of the per-

colating cluster in network A. Additionally we have characterized the finite size effects

(see Figure 4.16) and concluded that the phase diagram of the model is consistent with

the following scenario valid in the limit of large network sizes:
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Figure 4.16: We represent the fraction of nodes in the giant component SA of network
A and in the giant component SB of network B in different regions of the phase space.
In region II (zA = 1.5, zB = 4) the giant component in network A (SA ) disappears in
the thermodynamic limit while in region IV (zA = 2.5, zB = 4) it remains constant.
The giant component in network B remains constant in the thermodynamic limit both
in region II and region IV. Each data point is simulated for the two networks for N

nodes and averaged 200 times.

• Region (I) in Figure 4.15: The boundary of this region is defined by zA < 1, zB <

1. In this region both giant components in network A (SA) and network B (SB)

are zero, SA = 0, SB = 0, and therefore essentially agents never vote.

• Region (II) in Figure 4.15: In this region the giant component in network B e-

merges, SB > 0, SA = 0.

• Region (III) in Figure 4.15: In this region the giant component in network A

emerges, SA > 0, SB = 0.

• Region (IV) in Figure 4.15: In this region we have the pluralism solution of the

opinion dynamics and both giant component in network A and B are different from

zero, SA > 0, SB > 0.

In Regions II (III) the active agents in party B (party A) percolate the system while

agents in party A (party B) remain concentrated in disconnected clusters. Nevertheless,

if the average connectivity of the two antagonistic parties is comparable (Region IV),

the system can sustain an effective pluralism of opinions with both parties percolating in

the system. Therefore, we find the interesting result that if the connectivity of the two

parties is large enough,i.e. we are in region IV of the phase diagram (Figure 4.15B) the

pluralism can be preserved in the model and there will be two parties with a high number

of votes. In order for a party to win the election, it is necessary that the active agents

percolate in the corresponding network. The election outcome, nevertheless, depends

crucially on the total number of votes in network A, mA and the total number of votes

in network B, mB. In Figure 4.17 we plot the difference between the number of votes in



Chapter 4. Percolation on Interacting Networks 92

z
A

z B

1 2 3 4 5

1

2

3

4

5

−500

−250

0

250

500

Figure 4.17: The contour plot for the difference between the total number of votes
mA in party A (total number of agents active in network A) and the total number of
votesmB in party B (total number of agents active in network B). The data is simulated
for two networks for N = 500 nodes and averaged 90 times. It is clear that the larger
the difference in average connectivity of the two networks, the larger the advantage of

the more connected political party.

network A and the number of votes in network B. Very interestingly, we observe that the

more connected party (network) has the majority of the votes. It is also worth noting

that the final outcome of the election does not depend on the initial conditions. Overall,

this result supports the intuition that if a party has a supporting network that is more

connected it will win the elections, and is coherent with recent results concerning the

role of densely connected social networks on the adoption of a behavior [157].

4.5.4 Committed agents

Very recently, different models have focused on the role of committed agents in opinion

dynamics [154, 155]. Here to consider the role of committed agents in the network during

the election campaign, we perform a simulated annealing algorithm where a fraction

of the nodes always remain active in one of the two networks, never changing their

opinion. Figure 4.18 shows that in Region IV a small fraction of agents f ≃ 0.1 in the

less connected network can reverse the outcome of the election, indeed the probability

distribution P = P (mA−mB) of different realization of the dynamics is shifted towards

the committed minority party. Interestingly this finding fits perfectly with the results of

the radically different models proposed in [154, 155]. Thus the best strategy to win the

election is to build a well connected network and at the same time to have committed

agents to the party.

The opinion dynamics has a rich phase diagram. The results are that in the thermo-

dynamic limit the most connected network wins the election independent of the initial



Chapter 4. Percolation on Interacting Networks 93

−0.2 −0.1 0 0.1 0.2
0

0.05

0.10

0.15

0.20

0.25

(m
B
−m

A
)/N

P

0 0.5 1
0

500

1000

f
A

m

m
A

m
B

f
A
=0

f
A
=0.1

Figure 4.18: We represent the role of a fraction f of committed agents in reverting the
outcome of the election. In particular we plot the histogram of the difference between
the fraction of agents mB/N voting for party B and the fraction of agents mA/N
voting for party A for a fraction fA of committed agents to party A, with fA = 0 and
fA = 0.1 and average connectivities of the networks zA = 2.5, zB = 4. The histogram is
performed for 1000 realizations of two networks of size N = 1000. In the inset we show
the average number of agents in network A (mA) and agents in network B (mB) as a
function of the fraction of committed agents fA. A small fraction of agents (fA ≃ 0.1)
is sufficient to reverse the outcome of the elections. The data in the inset is simulated

for two networks for N = 1000 nodes and averaged 10 times.

condition of the system, in agreement with recent results on the persuasive role of a

densely connected social network [157]. However, for a large region of the parameters

the voting results of the two parties are very close and small perturbations could alter

the results. In this context, we observe that a small minority of committed agents can

reverse the outcome of the election result, thus confirming the results obtained in very

recent and different models [154, 155].

4.6 Conclusion

In this chapter, we first have investigated how much antagonistic interactions modify

the phase diagram of the percolation transition. The introduction of antagonistic in-

teractions between interacting networks introduces show important new physics in the

percolation problem. In fact the percolation process in this case show a bistability of
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the solutions. This implies that depending on the details of the percolation dynamics,

the steady state of the system might change. In particular we have demonstrated the

bistability of the percolation solution for the percolation problem on two antagonistic

Poisson networks, or two antagonistic networks with different topology: a Poisson net-

work and a scale-free network. Moreover, in the percolation transition between two

scale-free antagonistic networks and in the percolation transition between two antag-

onistic networks with a Poisson network and a scale-free networks, we found a region

in the phase diagram in which both networks are percolating, despite the presence of

antagonistic interactions.

In addition, we have investigated how much interdependencies and incompatibilities

modify the stability of complex networks and change the phase diagram of the percola-

tion transition. We found that interdependent networks are robust against antagonistic

interactions, and that we need a fraction q > qc = 2/3 of antagonistic interactions for

reducing significantly the phase diagram region in which both networks are percolating.

Nevertheless, we observe that even a small fractions of antagonistic nodes 0 < q < 0.4

might induce a bistability of the percolation solutions in same regions of the phase space.

Finally we have put forth a simple model for the opinion dynamics taking place during an

election campaign. We have modeled parties (or opinions) in terms of a social networks,

and individuals in terms of nodes belonging to these social networks and connecting

them. We have considered the case of antagonistic agents who have to decide for a

single party, or for none of them. We have described the quenching of the opinions

preceding the voting moment as a simulated annealing process where the temperature is

progressively lowered till the voting moment, when the individuals minimize the number

of conflicts with their neighbors. We have shown that there is a wide region in the

phase diagram where two antagonistic parties survive gathering a finite fraction of the

votes, and therefore the existence of pluralism in the election system. Moreover, we have

pointed out that a key quantity to get a finite share of the overall votes is the connectivity

of the networks corresponding to a different parties. Nevertheless connectivity is not

sufficient to win the elections, since a small fraction of committed agents is sufficient to

invert the results of the voting process. Though deliberately basic, this model provides

insights into different aspects of the election dynamics.

We believe that this chapter opens new perspectives in the percolation problem on

interdependent networks, which might include both interdependencies and antagonistic

interactions eventually combined in a boolean rule. In an increasingly interconnected

world understanding how much these different types of interactions affect percolation

transition is becoming key to answer fundamental question about the robustness of

interdependent networks.



Chapter 5

Summary

In this thesis, we have focused on statistical mechanics of temporal and interacting

networks, a new topic in network science with wide applications and significant impact

in a large variety of disciplines, from social science, to economy and biology. In this final

chapter, we summarize our work as follows.

In Chapter 2, we have investigated the modeling of temporal social networks. In par-

ticular, we have focused on modeling the human social interactions in short-time scale,

from face-to-face interactions to phone-call communication. By analyzing a large dataset

of mobile-phone communication, we have showed that the contact durations of mobile-

phone calls are distributed in a Weibull distribution, differing in this respect from the

power-law distribution observed in the contact durations of face-to-face interactions.

Therefore we have concluded that human social interactions are bursty and adaptive.

We have proposed a general model to capture the bursty and adaptive feature in human

social interactions based on a reinforcement dynamics. We believe that this chapter

will shed light on methodological analysis of large dataset on human contacts and phe-

nomenological modelling of human social dynamics.

In Chapter 3, we have investigated the entropy of temporal networks and growing net-

works. First, we have introduced the entropy of temporal social networks formed by

human social interactions, providing a way to extract information from temporal so-

cial networks. By applying entropy measures to a dataset of mobile-phone commu-

nication, we have shown that the entropy of the mobile-phone calls depends on the

circadian rhythms. Furthermore, we have evaluated how the entropy of the phenomeno-

logical model of human social interactions proposed in Chapter 2 changes according to

a parametrization of the duration of contacts mimicking the adaptability of human so-

cial interactions. We have shown that the entropy of temporal social networks is able

to quantify the information encoded in human social interactions, e.g. to capture the
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circadian rhythms and adaptability in human social interactions. Second, we have in-

troduced the entropy rate of growing trees that quantifies the number of typical graphs

generated by the growing network models. We have investigated the entropy rate of a

variety of classical growing network models and non-equilibrium growing network mod-

els showing structural phase transitions. We have shown that when a growing network

model has a phase transition, the entropy rate changes its scaling with the system size

indicating the disorder-to-order transition. Therefore in this chapter we have presented

new frameworks to evaluate the complexity of temporal networks and growing networks

and also to quantify the information encoded in these networks.

In Chapter 4, we have introduced the anatagonistic interactions between interacting

networks. We have shown that the percolation process on anatagonistic networks has

bistable solutions, indicating that the steady state of the system strongly depends on

the details of the percolation dynamics. In particular, we have investigated the perco-

lation problem on two antagonistic networks. For two antagonistic Poisson networks,

and two antagonistic networks with different topology: a Poisson network and a scale-

free network, we have demonstrated the bistability of the percolation solution. For two

scale-free antagonistic networks, and two antagonistic networks with different topology:

a Poisson network and a scale-free network, we have found a region in the phase diagram

in which both networks are percolating despite the presence of antagonistic interactions.

Moreover, we have investigated how much interdependencies and incompatibilities mod-

ify the stability of complex networks and change the phase diagram of the percolation

transition. We have found that interdependent networks are robust against antagonis-

tic interactions, and a fraction q > qc = 2/3 of antagonistic interactions is needed for

reducing significantly the phase diagram region in which both networks are percolat-

ing. Nevertheless, we have observed that even a small fractions of antagonistic nodes

0 < q < 0.4 might induce a bistability of the percolation solutions in same regions of

the phase space. Finally we have proposed a simple model for the opinion dynamics of

political election based on the percolation dynamics of anatagonistic networks. We be-

lieve that this chapter opens new perspectives in the percolation problem on interacting

networks.

In conclusion this thesis is aimed at characterizing the evolution of temporal networks,

the level of information present in these networks and some examples of critical phenom-

ena in interacting systems. On one side new phenomena are observed in these systems

that extend the results obtained on single networks. For example it is interesting to

notice that in order to model temporal social networks we have used a reinforcement

dynamics that is in spirit related to the preferential attachement in the BA model. More-

over, in order to characterize the information present in temporal and growing network

we can always use entropy measures but we need to specifically address the temporal
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nature of the networks. On the other side, we observed a totally new phenomenology on

the percolation problem when introducing antagonistic interactions between interacting

networks. In particular we have shown that the percolation steady state can be bistable.

This is in line with recent findings on the percolation transition that have shown how

the percolation transition, believed until now to be always continuous, can be strongly

affected when defined on interacting networks, becoming first order. We believe that

the work presented in this thesis offers good insight in the wide variety of new questions

that are raised in the emerging field of temporal and interacting complex networks.



Appendix A

Solution to the model of

face-to-face interactions

A.1 Self-consistent solution of the pairwise model

In this section we give the details of the self-consistent calculation that is able to solve

for the mean-field dynamics of the pairwise interaction model. As explained in Chapter

2, the rate equations Eqs. (2.4) for this model are solved together with the definition of

the transition rates π21(t) and π12(t) given by Eqs. (2.6) by making the self-consistent

assumption Eqs.(2.7). For convenience here we recall the rate equations Eqs. (2.4)

∂N1(t, t
′)

∂t
= −2

N1(t, t
′)

N
f1(t, t

′) + π21(t)δtt′ ,

∂N2(t, t
′)

∂t
= −2

N2(t, t
′)

N
f2(t, t

′) + π12(t)δtt′ , (A.1)

the transition equations Eqs. (2.6)

π21(t) =
2

N

t∑
t′=1

f2(t, t
′)N2(t, t

′),

π12(t) =
2

N

t∑
t′=1

f1(t, t
′)N1(t, t

′), (A.2)
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and the self-consistent assumption Eqs.(2.7)

π21(t) = π̃21

(
t

N

)−α1

,

π12(t) = π̃12

(
t

N

)−α2

. (A.3)

Inserting in the definition of π21(t) and π12(t) given by Eqs. (A.2) the structure of

the solution of the mean-field dynamical Eq. (2.5) and the self-consistent assumption

Eqs.(A.3), we get

π21(t) = 2π̃12
b2
N

t−1∑
t′=1

(
t′

N

)−α2
(
1 +

t− t′

N

)−2b2−1

. (A.4)

For large N we can evaluate (A.4) by going to the continuous limit. Therefore in Eq.

(A.4) we substitute the sum over time steps t′ with an integral over the variable y′ = t′/N .

The transition rate π21(y) = Nπ21(t), that is, the average number of agents that shift

from state 1 → 0 in the unit time y = t/N , can be evaluated by the following integral:

π21(y) = 2Nπ̃12b2y
−α2−2b2

∫ 1

0
x−α(1 + y−1 − x)−2b2−1dx

= 2Nπ̃12b1y
−α2f(α2, 2b2 + 1, y), (A.5)

where f(a, b, y) is given by

f(a, b, y) = y−(b−1)

∫ 1

0
x−a(1 + y−1 − x)−bdx. (A.6)

The asymptotic expansion of f(a, b, y) for y ≫ 1 is given by

f(a, b, y) =
1

b− 1
+B(1− b, 1− a)y1−b +O

(
1

y
+ y−b

)
, (A.7)

where B is the β function. Inserting (A.7) into (A.5) we get

π21(y) = Nπ̃12y
−α2 . (A.8)

This expression proves that the self consistent assumption given by Eq. (A.3) is valid.

In particular since we have assumed

π21(y) = Nπ̃21y
−α1π12(y) = Nπ̃12y

−α2
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these relations are consistent with the result of Eq. (A.8) obtained in the limit N →
∞, y ≫ 1 if

α1 = α2 = α

π̃21 = π̃12 = π̃. (A.9)

In order to find the expression for α and π̃ we use the conservation of the total number

of agents. Indeed we have

∑
t′

[
N1(t, t

′) +N2(t, t
′)

]
= N (A.10)

Using the Eqs. (2.5), (A.8) and (A.9) and substituting in Eq. (A.10) the sum over t′

with an integral over the variable x = y′/y, we get, in the limit N ≫ 1

Nπ̃y−α

[
y−(2b1−1)

∫ 1

0
x−α(1 + y − x)−2b1 dx

+y−(2b2−1)

∫ 1

0
x−α(1 + y − x)−2b2dx

]
= N , (A.11)

which yields

π̃y−α(f(α, 2b1, y) + f(α, 2b2, y)) = 1 (A.12)

Finally using the asymptotic expansion Eq. (A.7) we get the solution given by the Eqs.

(2.8) that we rewrite here for convenience

α = max (0, 1− 2b2, 1− 2b1)

π̃ =
sin [2πmin (b1, b2)]

π
[1− δ(α, 0)]

+
(2b1 − 1)(2b2 − 1)

2(b1 + b2 − 1)
δ(α, 0). (A.13)

A.2 Self-consistent solution of the general model

In this appendix we solve the general model in which groups of different size are allowed

and the parameter λ is arbitrary. The strategy that leads to the solution of the mean-

field equation of this dynamics is essentially the same as in the pairwise model but a

new phase transition occurs when λ < 0.5. The dynamical Eqs. (2.11) can be solved

as a function of the variables πmn(t) by Eqs. (2.13) and Eqs. (2.15) assuming self-

consistently that that ϵ(t) = ϵ̂ in the large time limit. In order to find the analytic

solution of the mean-field dynamics it therefore important to determine the relations

between the transition rates πmn(t) and the variables Nn(t, t
′). These relations are
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given by

π2,1(t) = 2λ
∑
t′

N2(t, t
′)

N
f2(t, t

′)

πn,1(t) = λ
∑
t′

Nn(t, t
′)

N
f2(t, t

′), n ≥ 3

πn+1,n(t) = nλ
∑
t′

Nn+1(t, t
′)

N
f2(t, t

′), n ≥ 2

π1,2(t) = 2
∑
t′

N1(t, t
′)

N
f1(t, t

′)

π1,n(t) = (1− λ)
∑
t′

Nn−1(t, t
′)

N
f2(t, t

′), n ≥ 3

πn,n+1(t) = n(1− λ)
∑
t′

Nn(t, t
′)

N
f1(t, t

′), n ≥ 2.

(A.14)

The coupled Eqs. (2.13), (2.15) and (A.14) can be solved by making the additional

self-consistent assumptions on the transition rates πmn(t) given by

πmn(y) = Nπ̃mny
−αmn (A.15)

where y = t/N and πmn(y) = Nπmn(t).

Applying the same technique as in Appendix A.1 we can prove that all the exponents

αm,n are equal and given by αm,n = α. Performing straightforward calculations we get

the following relations

nπ̃n,1 = λ[π̃n−1,n + π̃n+1,n + π̃1,n] for n ≥ 3

π̃2,1 = λ[π̃2,1 + π̃3,2]

π̃n,1 = (1− λ)π̃n−1,1 + λπ̃n+1,1 for n ≥ 4

π̃3,1 =
1− λ

2
π̃2,1 + λπ̃4,1

π̃2,1 = λπ̃2,1 + 2λπ̃3,1. (A.16)
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Therefore if the self-consistent assumption is valid, the number of agents Nn(t, t
′) in

state n since time t′, is given at time t by

N1(t, t
′) =

π2,1(t
′)

K

(
1 +

t− t′

N

)−b1[2+(1−λ)ϵ̂]

N2(t, t
′) =

π2,1(t
′)

λ

(
1 +

t− t′

N

)−2b2

Nn(t, t
′) =

nπn,1(t
′)

λ

(
1 +

t− t0
N

)−nb2

(A.17)

where the variable K is defined by

K =
π̃2,1∑
n≥2 π̃n,1

. (A.18)

Using the relations given by Eqs. (A.16) we find

π̃n,1 =
1

2
π̃2,1

(
1− λ

λ

)n−2

for n ≥ 3. (A.19)

Substituting Eq. (A.19) in the definition of K, Eq. (A.18), we find that K is only

defined for λ > 0.5. For λ < 0.5 the summation in Eq. (A.18) is in fact divergent and

there is a breakdown of the self-consistent assumption Eq. (A.15). For λ > 0.5 we can

perform the summation and we get

K =
2(2λ− 1)

3λ− 1

ϵ̂ =
1

2λ− 1
. (A.20)

Finally the value of α and π̃1,0 are found by enforcing the conservation law of the number

of agent N
t∑

t′=1

∑
n

Nn(t, t
′) = N. (A.21)

Therefore, in the large y limit y ≫ 1 we get the solution

α = max

(
0, 1− b1

3λ− 1

2λ− 1
, 1− 2b2

)
. (A.22)

The value of π̃2,1 depends on the value assumed by α.
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(1) For α = 0, the value of π̃2,1 is given by

π̃2,1 =

[
1

2(b1 − 2λ−1
3λ−1)

+
1

2λ

∑
n≥2

n

nb2 − 1

(
1− λ

λ

)n−2 ]−1

. (A.23)

(2) For α = 1− b1
3λ−1
2λ−1 , the value of π̃2,1 is given by

π̃2,1 =
2(2λ− 1)

3λ− 1

1

B(1− b1
3λ−1
2λ−1 , b1

3λ−1
2λ−1)

, (A.24)

where B(a, b) indicates the Beta function.

(3) For α = 1− 2b2, the value of π̃2,1 is given by

π̃2,1 =
λ

B(1− 2b2, 2b2)
(A.25)

where B(a, b) indicates the Beta function.

The average coordination number is defined by

⟨n⟩ =
t∑
t′

N∑
n=1

nNn(t, t
′). (A.26)

Substituting Eqs. (A.17) to the definition of ⟨n⟩, Eq. (A.26) and applying the same

transformation in Eq. (A.5) to evaluate the integral over t, we get

⟨n⟩ = 1 +

N∑
n=2

π̃n1
λ

(n− δn,2)y
−αf(α, nb2, y) (A.27)

where y = t/N and f(a, b, y) is defined in Eq. (A.6). Substituting the asymptotic

expansion Eq. (A.7) into (A.27), we get

⟨n⟩ = 1 +

N∑
n=2

π̃n1
λ

(n− δn,2)y
−α

[
1

nb2 − 1

+ B(1− nb2, 1− α)y1−nb2

]
. (A.28)

where B(a, b) indicates the Beta function. In the asymtotic limit y → ∞, using Eqs.

(A.19), (A.23)-(A.25) and counting only the leading terms in Eq. (A.28) to compute ⟨n⟩
for different value of α, we can recover Eqs. (2.19)-(2.21).
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A.3 Self-consistent solution of the heterogeneous model

for λ = 1

In this appendix we show the self-consistent calculations that solve analytically the

heterogeneous model with pairwise interactions.

We assume self-consistently that the transition rate πη21(t) and π
η,η′

12 decay in time as a

power-law, i.e. we assume

πη21(t) = ∆ηπ̃η21

( t
N

)−α(η)

πηη
′

12 (t) = ∆η∆η′π̃ηη
′

12

( t
N

)−α(η,η′)
(A.29)

Inserting this self-consistent assumption and the structure of the solution given by Eqs.

(2.24) in Eqs. (2.25) we can evaluate π̃η,η
′
in the limit N → ∞. Therefore we get,

π̃ηη
′

12 y −α(η,η′) =
2N

C(y)
ηπ̃η21y

−α(η)f(α(η), 2η + 1, y)

η′π̃η
′

21y
−α(η′)f(α(η′), 2η′ + 1, y) (A.30)

where f(a, b, y) is given by

f(a, b, y) = y−(b−1)

∫ 1

0
x−a(1 + y−1 − x)−bdx. (A.31)

The asymptotic expansion to f(a, b, y) for y ≫ 1 is given by

f(a, b, y) =
1

b− 1
+B(1− b, 1− a)y1−b +O

(
1

y
+ y−b

)
(A.32)

where B is the Beta function. Inserting (A.32) into (A.30), we get in the limit y ≫ 1

π̃ηη
′

12 y
−α(η,η′) =

N

2C(y)
π̃η21y

−α(η)π̃η
′

21y
−α(η′) (A.33)

Similarly, inserting (A.29) into the definition of C(y) given by Eq. (2.26) we get, in the

limit y ≫ 1

C(y) =
N

2

∫ 1

0
y−α(η)π̃η21dη (A.34)

where we make use of the asymptotic expansion (A.32). In the limit y ≫ 1, the integral

above can be calculated approximately by the saddle point method if π̃η21 changes with

η much slower than y−α(η). Therefore we have

2C(y)

N
= π̃η

⋆

21y
−γ (A.35)



Appendix A. Self-consistent solution for the model of face-to-face interactions 105

where γ and η⋆ are given by

γ = min
η
α(η)

η⋆ = argminηα(η). (A.36)

By comparing both sides of Eq. (A.33) and using Eq. (A.35) we get

π̃ηη
′

12 =
1

π̃η
⋆

21

π̃η21π̃
η′

21

α(η, η′) = α(η) + α(η′) + γ. (A.37)

Finally, in order to fully solve the problem we impose the conservation laws of this

heterogeneous model. In particular the total number of agent with value ηi ∈ (η, η+∆η)

is given by the following relation,

∑
t′

[N1(t, t
′, η) +

∑
η′

N2(t, t
′, η, η′)] = N∆(η). (A.38)

Inserting the self-consistent anzatz Eq. (A.29) for π12(t) and Eq. (A.33) into Eq. (A.38)

we get, in the continuous limit approximation valid for N ≫ 1,

π̃η21y
−α(η) =

[
θ(2η − 1)

2η − 1
+ θ(1− 2η)

×B(1− 2η, 1− α(η))y1−2η + I(η)

]−1

(A.39)

where

I(η) =
N

2C(y)

∫ 1

0

[
θ(1− η − η′)

1− η − η′
+ θ(η + η′ − 1)

× B(η + η′ − 1, 1− α(η′))yη+η′−1

]
× πη

′

21y
−α(η′)dη′. (A.40)

We compute I(η) defined in Eq. (A.40) by counting the leading term only. Therefore

we find

α(η) = max(0, 1− 2η, η − 1 + γ +D) (A.41)

with D given by

D = max
η

[η − α(η)]. (A.42)
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Solving the Eqs. (A.41) and (A.42) we get γ = 0 and D = 1
2 and η⋆ = 1/2. Therefore

we can determine the exponent α(η) and α(η, η′) that are given by

α(η) = max

(
1− 2η, η − 1

2

)
α(η, η′) = α(η) + α(η′). (A.43)

Moreover the constants π̃η21 are given, in the limit N ≫ 1 and y ≫ 1, by

π̃η21 =


ρ(η)

B(1−2η,2η) η ≤ 1
2

ρ(η)

B(η− 1
2
,1)

η ≥ 1
2 .

(A.44)

Solving equation (A.46), let γ +D ≤ 1
2 , then

α(η) =


1− 2η η ≤ 1

2

0 1
2 ≤ η ≤ 1− γ −D

η − 1 + γ +D η ≥ 1− γ −D

(A.45)

and

η − α(η) =


3η − 1 η ≤ 1

2

η 1
2 ≤ η ≤ 1− γ −D

1− γ −D η ≥ 1− γ −D

(A.46)

obviously, γ = 0 and D is reached either at η = 1
2 or η = 1− γ −D, so

D = max(
1

2
, 1−D) (A.47)

The only solution to the above expression is D = 1
2 . Similarly, for γ +D ≥ 1

2 ,

α(η) =

{
1− 2η η ≤ 2−γ−D

3

η − 1 + γ +D η ≥ 2−γ−D
3

(A.48)

η − α(η) =

{
3η − 1 η ≤ 2−γ−D

3

1− γ −D η ≥ 2−γ−D
3

(A.49)

Both γ and D are reached at η = 2−γ−D
3 , so

{
γ = 1− 2(2−γ−D)

3

D = (2− γ −D)− 1
(A.50)



Appendix B

Solution to the model of

cellphone communication

B.1 Dynamical social network for pairwise communication

We consider a system consisting of N agents representing the mobile phone users. The

agents are interacting in a social network G representing social ties such as friendships,

collaborations or acquaintances. The network G is weighted with the weights indicating

the strength of the social ties between agents. To model the mechanism of cellphone

communication, the agents can call their neighbors in the social network G forming

groups of interacting agents of size two. Since at any given time a call can be initiated

or terminated the network is highly dynamical. We assign to each agent i = 1, 2, . . . , N a

coordination number ni to indicate his/her state. If ni = 1 the agent is non-interacting,

and if ni = 2 the agent is in a mobile phone connection with another agent. The

dynamical process of the model at each time step t can be described explicitly by the

following algorithm:

(1) An agent i is selected randomly at time t.

(2) The subsequent action of agent i depends on his/her current state (i.e. ni):

(i) If ni = 1, he/she will call one of his/her non-interacting neighbors j of G with

probability f1(ti, t) where ti denotes the last time at which agent i has changed

his/her state. Once he/she decides to call, agent j will be chosen randomly in

between the neighbors of i with probability proportional to f1(tj , t), therefore

the coordination numbers of agent i and j are updated according to the rule

ni → 2 and nj → 2.
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(ii) If ni = 2, he/she will terminate his/her current connection with probability

f2(ti, t|wij) where wij is the weight of the link between i and the neighbor j

that is interacting with i. Once he/she decides to terminate the connection,

the coordination numbers are then updated according to the rule ni → 1 and

nj → 1.

(3) Time t is updated as t→ t+1/N (initially t = 0) and the process is iterated until

t = Tmax.

B.2 General solution to the model

In order to solve the model analytically, we assume the quenched network G to be

annealed and uncorrelated. Therefore we assume that at each time the network is rewired

keeping the degree distribution p(k) and the weight distribution p(w) constant. Moreover

we solve the model in the continuous time limit.Therefore we always approximate the

sum over time-steps of size δt = 1/N by integrals over time. We use Nk
1 (t0, t)dt0 to

denote the number of agents with degree k that at time t are not interacting and have

not interacted with another agent since time t′ ∈ (t0, t0 + 1/N). Similarly we denote

by Nk,k′,w
2 (t0, t)dt0 the number of connected agents (with degree respectively k and k′

and weight of the link w) that at time t are interacting in phone call started at time

t′ ∈ (t0, t0+1/N). Consistently with the annealed approximation the probability that an

agent with degree k is called is proportional to its degree. Therefore the rate equations

of the model are given by

∂Nk
1 (t0, t)

∂t
= −Nk

1 (t0, t)f1(t0, t)− ckNk
1 (t0, t)f1(t0, t) +Nπk21(t)δtt0

∂Nk,k′,w
2 (t0, t)

∂t
= −2Nk,k′,w

2 (t0, t)f2(t0, t|w) +Nπk,k
′,w

12 (t)δtt0 (B.1)

where the constant c is given by

c =

∑
k′
∫ t
0 dt0N

k′
1 (t0, t)f1(t0, t)∑

k′ k
′
∫ t
0 dt0N

k′
1 (t0, t)f1(t0, t)

. (B.2)

In Eqs. (B.1) the rates πpq(t) indicate the average number of agents changing from state

p = 1, 2 to state q = 1, 2 at time t. These rates can be also expressed in a self-consistent

way as

πk21(t) =
2

N

∑
k′,w

∫ t

0
dt0f2(t0, t|w)Nk,k′,w

2 (t0, t)

πk,k
′,w

12 (t) =
P (w)

CN

∫ t

0
dt0

∫ t

0
dt′0N

k
1 (t0, t)N

k′
1 (t′0, t)f1(t0, t)f1(t

′
0, t)(k + k′) (B.3)
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where the constant C is given by

C =
∑
k′

∫ t

0
dt0k

′Nk′
1 (t0, t)f1(t0, t). (B.4)

The solution to Eqs. (B.1) is given by

Nk
1 (t0, t) = Nπk21(t0)e

−(1+ck)
∫ t
t0

f1(t0,t)dt

Nk,k′,w
2 (t0, t) = Nπk,k

′,w
12 (t0)e

−2
∫ t
t0

f2(t0,t|w)dt
(B.5)

which must satisfy the self-consistent constraints Eqs. (B.3) and the conservation of the

number of agents with different degree∫
dt0
[
Nk

1 (t0, t) +
∑
k′,w

Nk,k′,w
2 (t0, t)

]
= Np(k). (B.6)

In the following we will denote by P k
1 (t0, t) the probability distribution that an agent

with degree k is non-interacting for a period from t0 to t and by Pw
2 (t0, t) the probability

that a connection of weight w at time t is active since time t0. It is immediate to see that

these distributions are given by the number of individual in a state n = 1, 2 multiplied

by the probability of having a change of state, i.e.

P k
1 (t0, t) = (1 + ck)f1(t0, t)N

k
1 (t0, t)

Pw
2 (t0, t) = 2f2(t0, t|w)

∑
k,k′

Nk,k′,w
2 (t0, t). (B.7)

B.3 Stationary solution with specific f1(t0, t) and f2(t0, t)

In order to capture the behavior of the empirical data with a realistic model, we have

chosen

f1(t0, t) = f1(τ) =
b1

(1 + τ)β

f2(t0, t|w) = f2(τ |w) =
b2g(w)

(1 + τ)β
(B.8)

with parameters b1 > 0, b2 > 0, 0 ≤ β ≤ 1 and arbitrary positive function g(w). In Eqs.

(B.8), τ is the duration time elapsed since the agent has changed his/her state for the

last time (i.e. τ = t− t0 ). The functions of f1(τ) and f2(τ |w) are decreasing function of

their argument τ reflecting the reinforcement dynamics discussed in the main body of the

paper. The function g(w) is generally chosen as a decreasing function of w, indicating

that connected agents with a stronger weight of link interact typically for a longer time.
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We are especially interested in the stationary state solution of the dynamics. In this

regime we have that for large times t ≫ 1 the distribution of the number of agents is

only dependent on τ . Moreover the transition rates πpq(t) also converge to a constant

independent of t in the stationary state. Therefore the solution of the stationary state

will satisfy

Nk
1 (t0, t) = Nk

1 (τ)

Nk,k′,w
2 (t0, t) = Nk,k′,w

2 (τ)

πpq(t) = πpq. (B.9)

The necessary condition for the stationary solution to exist is that the summation of self-

consistent constraints given by Eq. (B.2) and Eq. (B.2) together with the conservation

law Eq. (B.6) converge under the stationary assumptions Eqs. (B.9). The convergence

depends on the value of the parameters b0, b1, β and the choice of function g(w). In

particular, when 0 ≤ β < 1, the convergence is always satisfied. In the following subsec-

tions, we will characterize further the stationary state solution of this model in different

limiting cases.

B.3.1 Case 0 < β < 1

The expression for the number of agent in a given state Nk
1 (τ) and Nk,k′,w

2 (τ) can be

obtained by substituting Eqs. (B.8) into the general solution Eqs. (B.5), using the

stationary conditions Eqs. (B.9). In this way we get the stationary solution given by

Nk
1 (τ) = Nπk21e

b1(1+ck)
1−β

[1−(1+τ)1−β ]
= Nπk21m

k
1(τ)

Nk,k′,w
2 (τ) = Nπk,k

′,w
12 e

2b2g(w)
1−β

[1−(1+τ)1−β ]
= Nπk,k

′,w
12 mw

2 (τ). (B.10)

To complete the solution is necessary to determine the constants πk21 and πk,k
′w

12 in a

self-consistent type of solution.To find the expression of πk,k
′,w

12 as a function of πk21 we

substitute Eqs. (B.10) in Eq.(B.3) and we get

πk,k
′,w

12 (t) =
1

C
πk21P (w)

[
k

∫ t

0
dt0m

k
1(t0, t)f1(t0, t)

∫ t

0
dt′0N

k′
1 (t′0, t)f1(t

′
0, t)

+ k′
∫ t

0
dt0m

k
1(t0, t)f1(t0, t)

∫ t

0
dt′0N

k′
1 (t′0, t)f1(t

′
0, t)

]
. (B.11)

Finally we get a closed equation for πk21 by substituting Eq.(B.11) in Eq.(B.6) and using

the definition of c and C, given respectively by Eq. (B.2) and Eq. (B.2). Therefore we
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get

πk21

[ ∫ ∞

0
mk

1(τ)dτ +

∫ wmax

wmin

P (w)

∫ ∞

0
mw

2 (τ)dτdw

×
(
ck

∫ ∞

0
mk

1(τ)f1(τ)dτ +

∫ ∞

0
mk

1(τ)f1(τ)dτ

)]
= p(k). (B.12)

Performing explicitly the last two integrals using the dynamical solution given by Eqs.

(B.10), this equation can be simplified as

πk21 =

[ ∫ ∞

0
mk

1(τ)dτ +

∫ wmax

wmin

P (w)

∫ ∞

0
mw

2 (τ)dτdw

]−1

p(k). (B.13)

Finally the self-consistent solution of the dynamics is solved by expressing Eq. (B.2) by

c =

∑
k π

k
21(1 + ck)−1∑

k π
k
21k(1 + ck)−1

. (B.14)

Therefore we can use Eqs. (B.13) and (B.14) to compute the numerical value of πk21 and

c. Inserting in these equations the expressions for f1(τ), f2(τ |w) given by Eqs. (B.8)

and the solutions Nk
1 (τ), N

k,k′,w
2 (τ) given by Eqs. (B.10) we get

P k
1 (τ) ∝ b1(1 + ck)

(1 + τ)β
e
− b1(1+ck)

1−β
(1+τ)1−β

Pw
2 (τ) ∝ 2b2g(w)

(1 + τ)β
e
− 2b2g(w)

1−β
(1+τ)1−β

. (B.15)

The probability distributions P k
1 (τ) and P

w
2 (τ), can be manipulating performing a data

collapse of the distributions, i.e.

τ⋆1 (k)P
k
1

(
x1 =

τ

τ⋆1 (k)

)
= A1x1

−βe
−x1

1−β

1−β

τ⋆2 (w)P
w
2

(
x2 =

τ

τ⋆2 (w)

)
= A2x2

−βe
−x2

1−β

1−β (B.16)

with τ⋆1 (k) and τ
⋆
2 (w) defined as

τ⋆1 (k) =
[
b1(1 + ck)

]− 1
1−β

τ⋆2 (w) =
[
2b2g(w)

]− 1
1−β (B.17)

where A1 and A2 are the normalization factors. The data collapse defined by Eqs. (B.16)

of the curves P k
1 (τ), P

w
2 (τ) and are both described by Weibull distributions.
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B.4 Comparisons with quenched simulations

To check the validity of our annealed approximation versus quenched simulations, we

performed a computer simulation according to the dynamical process on a quenched

network. In Figure B.1 we compare the results of the simulation with the prediction

of the analytical solution. In particular in the reported simulation we have chosen

β = 0.5, b1 = 0.02, b2 = 0.05 and g(w) = w−1, the simulation is based on a number

of agent N = 2000 and for a period of Tmax = 105, finally the data are averaged over

10 realizations and the network is Poisson with average ⟨k⟩ = 6 and weight distribution

p(w) ∝ w−2. In Figure B.1, we show evidence that the Weibull distribution and the

data collapse of Pw
2 (τ) well capture the empirical behavior observed in the mobile phone

data (Figure 2.2). The distribution of the non-interaction periods P k
1 (τ) in the model

is by construction unaffected by circadian rhythms but follow a similar data collapse as

observed in the real data (Figure 2.4). The simulated data are also in good agreement

with the analytical prediction predicted in the annealed approximation for the parameter

choosen in the figure. As the network becomes more busy and many agents are in a

telephone call, the quenched simulation and the annealed prediction of P k
1 (τ) differs

more significantly.
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Figure B.1: Data collapse of the simulation of the proposed model for cell phone
communication. In the panel (A) we plot the probability Pw

2 (τ) that in the model a
pair of agents with strenght w are interacting for a period τ and in the panel (B) we
plot the probability P k

1 (τ) that in the model an agents of degree k is non-interacting
for a period τ The simulation data on a quenched networks are compared with the
analytical predictions (solid lines) in the annealed approximation. The collapses data
of Pw

2 (τ) is described by Weibull distribution in agreement with the empirical results
found in the mobile phone data.

B.4.1 Case β = 0

For β = 0 the functions f1(τ) and f2(τ |w) given by Eqs.(B.8) reduce to constants, there-

fore the process of creation of an interaction is a Poisson process and no reinforcement
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dynamics is taking place in the network. Assigning β = 0 to Eqs. (B.5), we get the

solution

Nk
1 (τ) = Nπk21e

−b1(1+ck)τ

Nk,k′,w
2 (τ) = Nπk,k

′,w
12 e−2b2g(w)τ . (B.18)

and consequently the distributions of duration of given states Eqs. (B.7) are given by

P k
1 (τ) ∝ e−b1(1+ck)τ

Pw
2 (τ) ∝ e−2b2g(w)τ . (B.19)

Therefore the probability distributions P k
1 (τ) and Pw

2 (τ) are exponentials as expected

in a Poisson process.

B.4.2 Case β = 1

In this section, we discuss the case for β = 1 such that fk1 (τ) ∝ (1+τ)−1 and fw2 (τ |w) ∝
(1 + τ)−1. Using Eqs. (B.1) we get the solution

Nk
1 (τ) = Nπk21(1 + τ)−b1(1+ck)

Nk,k′,w
2 (τ) = Nπk,k

′,w
12 (1 + τ)−2b2g(w). (B.20)

and consequently the distributions of duration of given states Eqs. (B.7) are given by

P k
1 (τ) ∝ πk21(1 + τ)−b1(1+ck)−1

Pw
2 (τ) ∝ πk,k

′,w
12 (1 + τ)−2b2g(w)−1. (B.21)

The probability distributions are power-laws.This result remains valid for every value of

the parameters b1, b2, g(w) nevertheless the stationary condition is only valid for

b1(1 + ck) > 1

2b2g(w) > 1. (B.22)

Indeed this condition ensures that the self-consistent constraits Eqs. (B.2), (B.2) and

the conservation law Eq. (B.6) have a stationary solution.
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B.5 Solution of the mean-field model on a fully connected

network

Finally, we discuss the mean-field limit on the model in which every agent can interact

with every other agent. In this case, social network is a fully connected network. There-

fore we use N1(t0, t) and N2(t0, t) to denote the number of agents of the two different

states respectively and the rate equations are then revised to

∂N1(t0, t)

∂t
= −2N1(t0, t)f1(t0, t) +Nπ21(t)δtt0

∂N2(t0, t)

∂t
= −2N2(t0, t)f2(t0, t) +Nπ12(t)δtt0 (B.23)

Since we will refer to this model only in the framework of a null model, we will only

discuss the case in which the dynamics of the network is Poissonian, i.e. when

f1(t0, t) = b1

f2(t0, t) = b2. (B.24)

The stationary solution of this model is given by exponentials, i.e.

N1(τ) = Nπ21e
−2b1τ

N2(τ) = Nπ12e
−2b2τ . (B.25)

Finally the distributions of duration of given states expressed by Eqs. (B.7) are given

by

P1(τ) ∝ e−2b1τ

P2(τ) ∝ e−2b2τ , (B.26)

which are exponential distributions as expected in a Poisson process.



Appendix C

Calculations of the entropy of

temporal social networks

C.1 Entropy of the temporal social networks of pairwise

communication

The definition of the entropy of temporal social networks of a pairwise communication

model, is given by Eq. (3.6) of the main body of the article that we repeat here for

convenience,

S = −
∑
i

P (gi(t) = 1|St) logP (gi(t) = 1|St)

−
∑
ij

aijP (gij(t) = 1|St) logP (gij(t) = 1|St) (C.1)

In this equation the matrix aij is the adjacency matrix of the social network and gij(t) =

1 indicates that at time t the agents i and j are interacting while gi(t) = 1 indicates that

agent i is non-interacting.Finally St = {gi(t′), gij(t′) ∀t′ < t} indicates the dynamical

evolution of the social network. In this section, we evaluate the entropy of temporal social

networks in the framework of the annealed model of pairwise communication explained

in detail in Chapter 2 and Appendix B. To evaluate the entropy of dynamical social

network explicitly, we have to carry out the summations in Eq. (C.1). These sums, will

in general depend on the particular history of the dynamical social network, but in the

framework of the model we study, in the large network limit will be dominated by their

average value. In the following therefore we perform these sum in the large network

limit. The first summation in Eq. (C.1) denotes the average loglikelihood of finding

at time t a non-interacting agent given a history St. We can distinguish between two

115
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eventual situations occurring at time t: (i) the agent has been non-interacting since a

time t−τ , and at time t remains non-interacting; (ii) the agent has been interacting with

another agent since time t−τ , and at time t the conversation is terminated by one of the

two interacting agents. In order to characterize situation (i) we indicate by P k
1→1(τ) the

probability that a non-interacting agent with degree k in the social network, that has

not interacted since a time τ , doesn’t change state. Similarly, in order to characterize

situation (ii), we indicate by P k,k′,w
2→1 (τ) the probability that a connected pair of agents

(with degrees k and k′ respectively, and weight of the link w) have interacted since time τ

and terminate their conversation at time t. Given the stationary solution of the pairwise

communication model, performed in the annealed approximation, the rates P k
1→1(τ) and

P k,k′,w
2→1 (τ) are given by

P k
1→1(τ) = 1− f1(τ)

N
− kf1(τ)

NC

∑
k′

∫
Nk′

1 (τ ′)f1(τ
′)dτ ′

= 1− (1 + ck)
f1(τ)

N

P k,k′,w
2→1 (τ) =

2f2(τ |w)
N

(C.2)

where the constant C is given by

C =
∑
k′

∫
k′Nk′

1 (τ ′)f1(τ
′)dτ ′ (C.3)

and f1(τ) and f2(τ |w) are given in Chapter 2. The variable Nk
1 (τ) indicates the number

of agents of connectivity k noninteracting since a time τ . This number can in general

fluctuate but in the large network limit it converges to its mean-field value given by

Eq. (B.10) The second term in the right hand side of Eq. (C.1), denotes the average

loglikelihood of finding two agents in a connected pair at time t given a history St. There

are two possible situations that might occur for two interacting agents at time t: (iii)

these two agents have been non-interacting, and to time t one of them decides to form a

connection with the other one; (iv) the two agents have been interacting with each other

since a time t− τ , and they remain interacting at time t. To describe the situation (iii),

we indicate by P k,k′

1→2(τ, τ
′) the probability that two non interacting agents, isolated since

time t− τ and t− τ ′ respectively, interact at time t. In order to describe situation (iv),

we denote by P k,k′,w
2→2 (τ) the probability that two interacting agents, in interaction since

a time t− τ , remain interacting at time t. In the framework of the stationary annealead

approximation of the dynamical network these probabilities are given by

P k,k′

1→2(τ, τ
′) =

f1(τ)f1(τ
′)

NC
(k + k′)

P k,k′,w
2→2 (τ) = 1− 2f2(τ |w)

N
. (C.4)
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Therefore, the entropy of temporal social networks given by Eq. (C.1) can be evaluat-

ed in the thermodynamic limit, and in the annealed approximation, according to the

expression

S = −
∑
k

∫ ∞

0
Nk

1 (τ)P
k
1→1(τ) logP

k
1→1(τ)dτ

−
∑
k,k′,w

∫ ∞

0
Nk,k′,w

2 (τ)P k,k′,w
2→1 (τ) logP k,k′,w

2→1 (τ)dτ

− 1

2

∑
k,k′

∫ ∞

0

∫ ∞

0
Nk

1 (τ)N
k′
1 (τ ′)P k,k′

1→2(τ, τ
′) logP k,k′

1→2(τ, τ
′)dτdτ ′

− 1

2

∑
k,k′,w

∫ ∞

0
Nk,k′,w

2 (τ)P k,k′,w
2→2 (τ) logP k,k′,w

2→2 (τ)dτ, (C.5)

with Nk
1 (τ) and N

k,k′,w
2 (τ) given in the large network limit by Eqs. (B.10) in Appendix

B.

C.2 Entropy of the null model

To understand the impact of the distribution of duration of the interactions and of the

distribution of non-interaction periods, we have compared the entropy S of the pairwise

communication model with the entropy SR of a null model. Here we use the exponential

mean-field model described in Section B.5 as our null model. In this model the agents are

embedded in a fully connected networks and the probability of changing the agent state

does not include the reinforcement dynamics. In fact we have that the transition rates

are independent of time (β = 0) and given by fR1 (τ) = bR1 and fR2 (τ) = bR2 . Following

the same steps for evaluating S in the model of pairwise communication on the networks,

it can be easily proved that the entropy SR of the dynamical null model is given by

SR = −
∫ ∞

0
NR

1 (τ)

[
1− 2bR1

N

]
log

[
1− 2bR1

N

]
dτ

−
∫ ∞

0
NR

2 (τ)
2bR2
N

log
2bR2
N

dτ

− 1

2

∫ ∞

0

∫ ∞

0
NR

1 (τ)NR
1 (τ ′)

2bR1
NCR

log
2bR1
NCR

dτdτ ′

− 1

2

∫ ∞

0
NR

2 (τ)

[
1− 2bR2

N

]
log

[
1− 2bR2

N

]
dτ (C.6)

where the constant CR is given by

CR =

∫ ∞

0
NR

1 (τ)dτ, (C.7)
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and where N1, N2 are given, in the large network limit by their mean-field value given by

Eq.(B.25). In order to build an appropriate null model for the pairwise communication

model parametrized by (β, b1, b2), we take the parameters of the null model bR1 and bR2

such that the proportion of the total number of agents in the two states (interacting or

non-interacting) is the same in the pairwise model of social communication and in the

null model. In order to ensure this condition we need to satisfy the following relation∑
k

∫∞
0 Nk

1 (τ)dτ∑
k,k′,w

∫∞
0 Nk,k′,w

2 (τ)dτ
=

∫∞
0 NR

1 (τ)dτ∫∞
0 NR

2 (τ)dτ
. (C.8)

In particular we have chosen bR1 = b1 and we have used Eq. (C.8) to determine bR2 .

C.3 Measurement of the entropy of a typical week-day of

cell-phone communication from the data

In this section we discuss the method of measuring the dynamical entropy from empirical

cellphone data as a function of time t in a typical weekday. This analysis gave rise to

the results presented in Figure 3.2 in Chapter 3. We have analyzed the call sequence of

subscribers of a major European mobile service provider. We considered calls between

users who at least once called each other during the examined 6 months period in

order to examine calls only reflecting trusted social interactions. The resulted event list

consists of 633, 986, 311 calls between 6, 243, 322 users. For the entropy calculation we

selected 562, 337 users who executed at least one call per a day during a working week

period. Since the network is very large we have assumed that the dynamical entropy

can be evaluate in the mean-field approximation. We measured the following quantities

directly from the sample:

• N1(τ, t) the number of agents in the sample that at time t are not in a conversation

since time t− τ ;

• N calls(τ, t) the number of agents in the sample that are not in a conversation since

time t− τ and make a call at time t;

• N called(τ, t) the number of agents in the sample that are not in a conversation since

time t− τ and are called at time t;

• M in(τ, t) the number of agents that at time t are in a conversation of duration τ

with another agent in the sample;

• Mout(τ, t) the number of agents that at time t are in a conversation of duration τ

with another agent outside the sample;
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• M end(τ, t) the number of calls of duration τ that end at time t.

Using the above quantities, we estimated the probability pcalls(τ, t) that an agent makes

a call at time t after a non-interaction period of duration τ , the probability pcalled(τ, t)

that an agent is called at time t after a non-interaction period of duration τ and the

probability π(τ, t) that a call of duration τ ends at time t,according to the following

relations

pcalls(τ, t) =
N calls(τ, t)

N1(τ, t)

pcalled(τ, t) =
N called(τ, t)

N1(τ, t)

π(τ, t) =
M end(τ, t)

M in(τ, t)/2 +Mout(τ, t)
. (C.9)

Since the sample of 562, 337 users we are considering is a subnetwork of the whole dataset

constituted by 6, 243, 322 users, in our measurement, an agent can be in one of three

possible states

• state 1: the agent is non-interacting;

• state 2: the agent is in a conversation with another agent of the sample;

• state 3: the agent is in a conversation with an agent outside the sample.

Therefore, to evaluate the entropy of the data, we can modify Eq.(C.1) into

S(t) = −
∑
i

P (gi(t) = 1|St) logP (gi(t) = 1|St)

−
∑
ij

aijP (gij(t) = 1|St) logP (gij(t) = 1|St)

−
∑
i

P (g′i(t) = 1|St) logP (g
′
i(t) = 1|St) (C.10)

where aij is the adjacency matrix of the quenched social network, gi(t) = 1 indi-

cates that the agent i is in state 1, gij(t) = 1 indicates that the agent is in state

2 interacting with agent j and g′i(t) = 1 indicates the agent i is in state 3. Finally

St = {gi(t′), gij(t′) g′i(t) ∀t′ < t} indicates the dynamical evolution of the social net-

work. To explicitly evaluate Eq. (C.10) in the large network limit where we assume that

the dependence on the particular history are vanishing, we sum over the loglikelihood of

all transitions between different states using the same strategy in the last section, which
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is

S(t) = −
∑
τ

N1(τ, t)P1→1(τ, t) logP1→1(τ, t)

−
∑
τ

M in(τ, t)P2→1(τ, t) logP2→1(τ, t)

−
∑
τ

Mout(τ, t)P3→1(τ, t) logP3→1(τ, t)

− 1

2

∑
τ,τ ′

N1(τ, t)N1(τ
′, t)P1→2(τ, τ

′, t) logP1→2(τ, τ
′, t)

− 1

2

∑
τ

M in(τ, t)P2→2(τ, t) logP2→2(τ, t)

−
∑
τ

N1(τ, t)P1→3(τ, t) logP1→3(τ, t)

−
∑
τ

Mout(τ, t)P3→3(τ, t) logP3→3(τ, t). (C.11)

where the probabilities of transitions between different states are given by

P1→1(τ, t) = 1− pcalls(τ, t)− pcalled(τ, t)

P2→1(τ, t) = P3→1(τ, t) = π(τ, t)

P1→2(τ, τ
′, t) =

(1− γ)

C

[
pcalls(τ, t)pcalled(τ ′, t) + pcalls(τ ′, t)pcalled(τ, t)

]
P2→2(τ, t) = P3→3(τ, t) = 1− π(τ, t)

P1→3(τ, t) = γ

[
pcalls(τ, t) + pcalled(τ, t)

]
(C.12)

and where C is given by

C =
∑
τ

N1(τ, t)p
called(τ, t). (C.13)

Finally in C.12 we have introduced a parameter γ ∈ [0, 1] to denote the portion of the

calls occurring between an agent in the sample and an agent out of the sample. For

simplicity, we assume that γ is a constant. Substituting Eq.(C.12) into Eq.(C.11), we

have performed the summation over τ to obtain the value of entropy as a function of t

presented in Figure 3.2 in Chapter 3 where we have taken γ = 0.8, consistently with the

data.
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