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Abstract

We discuss the cellular automata approach and its extensions, the lat-

tice Boltzmann and multiparticle methods. The potential of these tech-

niques is demonstrated in the case of modeling complex systems. In par-

ticular, we consider applications taken from various elds of physics, such

as reaction-diusion systems, pattern formation phenomena, uid ows,

fracture processes and road trac models.
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1 The Cellular Automata approach

1.1 Introduction

Cellular automata (often termed CA) are an idealization of a physical system in
which space and time are discrete. In addition, the physical quantities (or state
of the automaton) take only a nite set of values. Since it has been invented by
von Neumann in the late 1940s, the cellular automata approach has been applied
to a large range of scientic problems (see for instance [1{14]).

The original motivation of von Neumann was to extract the abstract mecha-
nisms leading to self-reproduction of the biological organisms[15]. In other words
the problem is to devise a system having the capability (and the recipe) to pro-
duce another organism of equivalent complexity with only its own ressource.

Following the suggestions of S. Ulam[16], von Neumann addressed this ques-
tion in the framework of a fully discrete universe made up of cells. Each cell is
characterized by an internal state, which typically consists of a nite number of
information bits. Von Neumann suggested that this system of cells evolves, in
discrete time steps, like simple automata which only know of a simple recipe to
compute their new internal state. The rule, determining the evolution of this
system is the same for all cells and is a function of the states of the neighbor
cells. Similarly to what happens in any biological system, the activity of the cells
takes place simultaneously. However, the same clock drives the evolution of each
cell and the updating of the internal state of each cell occurs synchronously.

Such a fully discrete dynamical systems (cellular space) as invented by von
Neumann are now referred to as a cellular automaton.

After the work of von Neumann, other authors have followed the same line
of research and nowadays the problem is still of interest [17] and has lead to
interesting developments for new computer architectures [18].

Many other applications of CA's to physical science have been considered. In
1970, the mathematician John Conway proposed his famous game of life[19]. His
motivation was to nd a simple rule leading to complex behaviors. He imagined
a two-dimensional square lattice, like a checkerboard, in which each cell can be
either alive (state one) or dead (state zero). The updating rule of the game of
life is as follows: a dead cell surrounded by exactly three living cells gets back
to life; a living cell surrounded by less than two or more than three neighbors
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dies of isolation or overcrowdness. Here, the surrounding cells corresponds to the
neighborhood composed of the four nearest cells (north, south, east and west),
plus the four second nearest neighbors, along the diagonals. It turns out that the
game of life automaton has an unexpectedly rich behavior. Complex structures
emerge out of a primitive \soup" and evolve so as to develop some skills.

As for von Neumann rule, the game of life is a cellular automata capable of
universal computations: it is always possible to nd an initial conguration of
the cellular space reproducing the behavior of any electronic gate and, thus, to
mimic any computation process. Although this observation has little practical
interest, it is very important from a theoretical point of view since it assesses the
ability of CAs to be a non restrictive computational technique.

A very important feature of CAs is that they provide simple models of complex
systems. They exemplify the fact that a collective behavior can emerge out of
the sum of many, simply interacting, components. Even if the basic and local
interactions are perfectly known, it is possible that the global behavior obeys
new laws that are not obviously extrapolated from the individual properties, as
if the whole is more than the sum of all the parts. This properties makes cellular
automata a very interesting approach to model physical systems and in particular
to simulate complex and nonequilibrium phenomena.

The studies undertaken by S. Wolfram in the 1980s [20,12] clearly estalishes
that a CA (the famous Wolfram's rules) may exhibits many of the behaviors en-
countered in continuous systems, yet in a much simpler mathematical framework.
A further step is to recognize that CAs are not only behaving similarly to some
dynamical processes, they can also represent an actual model of a given physical
system, leading to macroscopic predictions that could be checked experimentally.
This fact follows from statistical mechanics which tells us that the macroscopic
behavior of many systems is quite disconnected from its microscopic reality and
that only symmetries and conservation laws survives to the change of observation
level: it is well known that the ows of a uid, a gas or even a granular media are
very similar at a macroscopic scale, in spite of their dierent microscopic nature.

An interesting example is the FHP uid model proposed by Frisch, Hass-
lacher and Pomeau in 1986[21] which can be viewed as a fully discrete molecular
dynamics and yet behaves as predicted by the Navier-Stokes equation when the
observation time and length scales are much larger than the lattice and automa-
ton time step.

Cellular automata uids like the FHP model (or lattice gas automata (LGA)
as these models are often termed), cannot directly compete with standard compu-
tational uid dynamics techniques for high Reynolds ows. However, they have
been very successful to model complex situations for which traditional comput-
ing techniques are hardly applicable. Flows in porous media [22{24], immiscible
ows and instabilities [25{28], spreading of a liquid droplet and wetting phe-
nomena [14,29], granular ows[30,31] microemulsion [32] erosion and transport
problems [14,33] are some examples pertaining to uid dynamics.
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Other physical situations, like pattern formation, reaction-diusion processes [34{
36], nucleation-aggregation growth phenomena, trac process [37{39] are very
well suited to the cellular automata approach.

The cellular automata paradigm presents some weaknesses inherent to its
discrete nature. Lattice Boltzmann (LB) models have been proposed to remedy
some of these problems, using real-valued states instead of Boolean variables. It
turns out that LB models are indeed a very powerful approach which combines
numerical eciency with the advantage of having a model whose microscopic
components are intuitive.

This paper is organized as follows. In the remaining of section 1 a precise
denition of a cellular automata is given. We present some argument to justify
the approach and, nally, the advantages and drawbacks of the method are out-
lined. In section 2, a sampler of CA rules are presented in order to illustrate
the methodology and give an account of the large variety of possible applica-
tions. Section 3 shows, for the case of a uid, how to derive rigorously the
macroscopic behavior of a cellular automata model, starting from its Boolean
dynamics. Section 4 discusses the lattice Boltzmann (LB) method and presents
an application to compute deposition patterns in snow transport. Section 5 is
devoted to reaction-diusion systems and some examples of pattern formations.
In section 6 we introduce multiparticles models that concile some of the advan-
tages of the CA and LB approaches. Finally, section 7 proposes a LB model for
wave propagation in heterogeneous media, as well as its application to model a
fracture process and wave localization.

1.2 Denition

In order to give a denition of a cellular automaton, we rst present a simple
example. Although it is very basic, the rule we discuss here exhibits a surprisingly
rich behavior. It has been proposed initially by Edward Fredkin in the 1970s [40]
and is dened on a two-dimensional square lattice.

Each site of the lattice is a cell which is labeled by its position ~r = (i; j) where
i and j are the row and column indices. A function  t(~r) is associated to the
lattice to describe the state of each cell at iteration t. This quantity can be either
0 or 1.

The cellular automata rule species how the states  t+1 are to be computed
from the states at iteration t. We start from an initial condition at time t = 0
with a given conguration of the values  0(~r) on the lattice. The state at time
t = 1 will be obtained as follows

(1) Each site ~r computes the sum of the values  0(~r
0) on the four nearest

neighbor sites ~r0 at north, west, south and east. The system is supposed
to be periodic in both i and j directions (like on a torus) so that this
calculation is well dened for all sites.
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(2) If this sum is even, the new state  1(~r) is 0 (white) and, else, it is 1 (black).

The same rule (steps 1 and 2) is repeated over to nd the states at time t =
2; 3; 4; :::.

From a mathematical point of view, this cellular automata parity rule can be
expressed by the following relation

 t+1(i; j) =  t(i+ 1; j)   t(i 1; j)   t(i; j + 1)   t(i; j  1) (1)

where the symbol  stands for the exclusive OR logical operation. It is also the
sum modulo 2: 1  1 = 0  0 = 0 and 1  0 = 0  1 = 1.

When this rule is iterated, very nice geometric patterns are observed, as shown
in gure 1. This property of generating complex patterns starting from a simple
rule is generic of many cellular automata rules. Here, complexity results from
some spatial organization which builds up as the rule is iterated. The various con-
tributions of successive iterations combine together in a specic way. The spatial
patterns that are observed reect how the terms are combined algebraically.

(a) (b) (c)

Figure 1: The  rule on a 256  256 periodic lattice. (a) initial conguration.
(b) and (c) congurations after tb = 93 and tc = 110 iterations, respectively.

This example shows that despite the simplicity of the local rule, the global be-
havior of a CA model can be quite complex. In the present case, the mechanisme
yielding these complex patterns can be unraveled by working out how succes-
sive iterations combine several copies of the initial conguration, all shifted by a
dierent amount[14].

Based on this example we now give a denition of a cellular automata. For-
mally a cellular automata is made of

(i) A regular lattice of cells covering a portion of a d-dimensional space.

(ii) A set (~r; t) = f1(~r; t);2(~r; t); :::;m(~r; t)g of boolean variables attached
to each site ~r of the lattice and giving the local state of each cell at the
time t = 0; 1; 2; :::.
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(iii) A rule R = fR1; R2; :::; Rmg which species the time evolution of the states
(~r; t) in the following way

j(~r; t+ ) = Rj((~r; t);(~r + ~1; t);(~r + ~2; t); :::;(~r + ~q; t)) (2)

where ~r + ~k designate the cells belonging to a given neighborhood of cell
~r.

The example discussed in the previous section is a particular case in which
the state of each cell consists of a single bit 1(r; t) =  t(~r) of information and
the rule is the addition modulo 2.

In the above denition, the rule R is identical for all sites and is applied simul-
taneously to each of them, leading to a synchronous dynamics. It is important
to notice that the rule is homogeneous, that is it cannot not depend explicitly on
the cell position ~r. However, spatial (or even temporal) inhomogeneities can be
introduced anyway by having some j(~r) systematically 1 in some given locations
of the lattice to mark particular cells on which a dierent rule apply. Boundary
cells are a typical example of spatial inhomogeneities. Similarly, it is easy to
alternate between two rules by having a bit which is 1 at even time steps and 0
at odd time steps.

The neighborhood (i.e. the spatial region around each cell used to compute
the next state) is usually made of the adjacent cells of the central cell. It is
often restricted to the nearest or next to nearest neighbors, otherwise the com-
plexity of the rule is too large. For a two-dimensional cellular automaton, two
neighborhoods are often considered: the von Neumann neighborhood which con-
sists of a central cell (the one which is to be updated) and its four geographical
neighbors North, West, South and East. The Moore neighborhood contains, in
addition, the second nearest neighbor North-East, North-West, South-East and
South-East, that is a total of nine cells.

According to the above denition, a cellular automaton is deterministic. The
rule R is some well dened function and a given initial conguration will always
evolve identically. However, as we shall see later, it may be very convenient for
some applications to have a certain degree of randomness in the rule. For instance,
it may be desirable that a rule selects one outcome among several possible states,
with a probability p. Cellular automata whose updating rule is driven by some
external probabilities are called probabilistic cellular automata. On the other
hand, those which strictly comply with the denition given above, are referred
to as deterministic cellular automata.

Probabilistic cellular automata are a very useful generalization because they
oer a way to adjust the parameters of a rule in a continuous range of values,
despite the discrete nature of the cellular automata world. This is very convenient
when modeling physical systems in which, for instance, particles are annihilated
or created at some given rate.

7



1.3 CA as a model of the physical world

A natural way to describe a physical system is to propose a model of what we
think is happening. During this process we usually retain only the ingredients we
believe to be essential in order to capture the behavior we are interested in. Using
an appropiate mathematical machinery, such a model can then be expressed in
terms a set of equations whose solution gives the desired answers on the system.
The description in terms of equations is very powerful and corresponds to a rather
high level of abstraction. For a long time, this methodology has been the only
tractable way for scientists to address a problem.

Another approach which has been made possible by the advent of fast com-
puters is to stay at the level of the model. The idea is that all the information
is already contained in the model and that a computer simulation will be able to
answer any possible question on the system by just running the model for some
time. Thus there is no need to use a complicated mathematical tool to obtain
a high level of description. We just need to express the model a way which is
suitable to an eective computer implementation. In the framework of CAs, this
last step is usually very intuitive and require little development time.

The degree of reality of the model depends on the level of description we
expect. When we are interested in the global or macroscopic properties of a
system (and this is the case here), we already mentioned that, except for the
symmetries and conservation laws, the microscopic details are often not relevant.
It is therefore a clear advantage to invent a much simpler microscopic reality,
which is more appropriate to our numerical means of investigation.

A cellular automata model can be seen as a ctitious universe which has its
own microscopic reality but, nevertheless, has the same macroscopic behavior
as the real system we are interested in. The example we shall give in the next
section will illustrate this statement.

1.4 Limitations, advantage, drawbacks and Extension

Modeling a system at a microscopic level of description has signicant advan-
tages. The interpretation of the cellular automata dynamics in terms of simple
microscopic rules oers a very intuitive and powerful approach to model phe-
nomena that are very dicult to include in more traditional approaches (such
as dierential equations). For instance, boundary conditions are often naturally
implemented in a cellular automata model because it has a natural interpreta-
tion at this level of description (e.g. particles bouncing back on an obstacle).
For instance, the phenomena of wetting of a solid substrate by a spreading liquid
illustrates the diculty to dene appropriate boundary conditions at the level of
the Navier-Stokes equation. Yet, in the framework of a CA description, this can
be achieved in a simple way [14].

Numerically, an advantage of the CA approach is its simplicity and its adequa-
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tion to computer architectures and parallel machines. In addition, working with
Boolean quantities prevent numerical instabilities since an exact computation is
made. There is no truncation or approximation in the dynamics itself. Finally,
a CA model is an implemetation of a N-body system where all correlations are
taken into account, as well as spontaneous uctuations arising in a system made
up of many particles.

On the other hand, cellular automata models have several drawbacks related
to their fully discrete nature. An important one is the statistical noise requiring
a systematic averaging processes. Another one is the little exibility to adjust
parameters of a rule in order to describe a wider range of physical situations.

At the end of the 1980s, McNamara and Zanetti [41] Higueras, Jimenez and
Succi [42] have shown the advantage of extending the Boolean dynamics of the
automaton to directly work on real numbers representing, somehow, the proba-
bility for a cell to have a given state. This approach, called the lattice Boltzmann
(LB) method, is numerically much more ecient than the Boolean dynamics and
provides an new computational model much more appropriate to simulate high
Reynolds ows and many other relevant applications (for instance glacier ow[43]
and fracture processes). On the other hand, the LB approach re-introduce the
risk of numerical instabilities and, also, requires some hypotheses of factorization
of the joint probability in order to write the interaction. We will return to the
this approach in section 4.

Another generalization of the original denition of a CA is the multiparticle
method in which the number of state of each cell is innite so that an arbi-
trary number of particles can stay simultaneously at each site. This oers much
more exibility to tune the parameter of the rule and reduces considerably the
statistical noise. A multiparticle model goes in the same direction as the LB
models but it does not need a factorization assumption and is not sensitive to
numerical instability. Unfortunately, as explained in section 6, it requires more
implementation eort than the LB approach and is also numerically less ecient.

Finally, we should remark that the cellular automata approach is not a rigid
framework but should allow for many extensions according to the problem at
hand. The CA methodology is a philosophy of modeling where one seeks a
description in terms of simple but essential mechanisms. Its richness and interest
of comes from the microscopic contents of its rule for which there is, in general,
a clear physical or intuitive interpretation of the dynamics directly at the level
of the cell.

2 Examples of simple rules

In this section we consider several CA rules in order to illustates the ideas we
have introduced in section 1. Although the rules we will present here have a clear
physical contents, some of them should be considered as toy models because their
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(a) (b) (c)

Figure 2: Evolution of the annealing rule. The inherent \surface tension" present
in the rule tends to separate the black phases s = 1 from the white phase s = 0.
The snapshots (a), (b) and (c) correspond to t = 0, t = 72 and t = 270 iterations,
respectively. The extra gray levels indicate how \capes" have been eroded and
\bays" lled: dark gray shows the black regions that have been eroded during the
last few iterations and light gray marks the white regions that have been lled.

ability to describe the macroscopic behavior of a real physical system does not
resist to a detailled analysis. However, our goal is to present the avor of the CA
appraoch but not to give a proof that the rule we propose is rigorously related
to a given process.

2.1 A growth model

A natural class of cellular automata rules consists of the so-called majority rules.
The updating selects the new state of each cell so as to conform to the value
currently hold by the majority of the neighbors. Typically, in these majority
rules, the state is either 0 or 1.

A very interesting behavior is observed with the twisted majority rule pro-
posed by G. Vichniac [44]: in two-dimensions, each cell considers its Moore neigh-
borhood (i.e itself plus its eight nearest neighbors) and computes the sum of the
cells having a value 1. This sum can be any value between 0 and 9. The new
state sij(t + 1) of each cell is then determined from this local sum, according to
the following table

sumij(t) 0 1 2 3 4 5 6 7 8 9

sij(t + 1) 0 0 0 0 1 0 1 1 1 1 (3)

As opposed to the plain majority rule, here, the two middle entries of the table
have been swapped. Therefore, when there is a slight majority of 1 around a cell,
it turns to 0. Conversely, if there is a slight majority of 0, the cell becomes 1.

Surprisingly enough this rule describes the interface motion between two
phases, as illustrated in Figure 2. Vichniac has observed that the normal ve-
locity of the interface is proportional to its local curvature, as required by the
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Allen-Cahn [45] equation. Of course, due to its local nature, the rule cannot
detect the curvature of the interface directly. However, as the the rule is iter-
ated, local information is propagated to the nearest neighbors and the radius of
curvature emerges as a collective eect.

This rule is particularly interesting when the initial conguration is a random
mixture of the two phases, with equal concentration. Otherwise, some patholog-
ical behaviors may occur. For instance, an initial square of 1's surrounded by
zero's will not evolve: right angles are not eroded but stable structures.

2.2 Ising-like dynamics

The Ising model is extensively used in physics. Its basic constituents are spins
si which can be in one of two states: si 2 f1; 1g. These spins are organized on
a regular lattice in d-dimensions and coupled in the sense that each pair (si; sj)
of neighbor spins contributes an amount Jsisj to the energy of the system.
Intuitively, the dynamics of such a system is that a spin ips (si ! si) if this
is favorable in view of the energy of the local conguration.

Vichniac [44], in the 1980s, has proposed a CA rule, called the Q2R, simulating
the behavior of an Ising spin dynamics. The model is as follows:

We consider a two-dimensional square lattice such that each site holds a spin
si which is either up (si = 1) or down (si = 0) (instead of 1). The coupling
between spins is assumed to come from the von Neumann neighborhood (i.e.
north, west south and east neighbors).

In this simple model, the spins will ip (or not ip) during their discrete
time evolution according to a local energy conservation principle. This means we
are considering a system which cannot exchange energy with its surroundings.
The model will be a microcanonical cellular automata simulation of Ising spin
dynamics, without a temperature but with a critical energy.

A spin si can ip at time t to become 1si at time t+1 if and only if this move
does not cause any energy change. Accordingly, spin si will ip if the number of
its neighbors with spin up is the same as the number of its neighbors with spin
down. However, one has to remember that the motion of all spins is simultaneous
in a cellular automata. The decision to ip is based on the assumption that the
neighbors are not changing. If they are allowed to ip too, (because they obey
the same rule), then energy may not be conserved.

A way to cure this problem is to split the updating in two phases and consider
a partition of the lattice in odd and even sites (e.g. the white and black squares of
a chess-board in 2D): rst, one ips the spins located at odd positions, according
to the conguration of the even spins. In the second phase, the even sublattice
is updated according to the odd one. The spatial structure (dening the two
sublattices) is obtained by adding an extra bit b to each lattice site, whose value is
0 for the odd sublattice and 1 for the even sublattice. The ipping rule described
earlier is then regulated by the value of b. It takes place only for those sites
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for which b = 1. Of course, the value of b is also updated at each iteration
according to b(t+1) = 1 b(t), so that at the next iteration, the other sublattice
is considered. In two-dimensions, the Q2R rule can be the expressed by the
following expressions

sij(t + 1) =

(
1  sij(t) if bij = 1 and si1;j + si+1;j + si;j1 + si;j+1 = 2
sij(t) otherwise

(4)

and
bij(t+ 1) = 1  bij(t) (5)

where the indices (i; j) label the cartesian coordinates and sij(t = 0) is either one
or zero.

The question is now how well does this cellular automata rule performs to
describe an Ising model. Figures 3 show a computer simulation of the Q2R rule,
starting from an initial conguration with approximately 11% of spins sij = 1
(gure 3 (a)). After a transient phase (gures (b) and (c)), the system reaches
a stationary state where domains with \up" magnetization (white regions) are
surrounded by domains of \down" magnetization (black regions).

(a) (b)

(c) (d)

Figure 3: Evolution of a system of spins with the Q2R rule. Black represents the
spins down sij = 0 and white the spins up sij = 1. The four images (a), (b), (c)
and (d) show the system at four dierent times ta = 0 < tb < tc << td.

In this dynamics, energy is exactly conserved because that is the way the rule
is built. However, the number of spins down and up may vary. In the present
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experiment, the fraction of spins up increases from 11% in the initial state to
about 40% in the stationary state. Since there is an excess of spins down in this
system, there is a resulting macroscopic magnetization.

It is interesting to study this model with various initial fractions s of spins up.
When starting with a random initial condition, similar to that of gure 3 (a), it
is observed that, for many values of s, the system evolves to a state where there
is, in the average, the same amount of spin down and up, that is no macroscopic
magnetization. However, if the initial conguration presents an suciently large
excess of one kind of spins, then a macroscopic magnetization builds up as time
goes on. This means there is a phase transition between a situation of zero
magnetization and a situation of positive or negative magnetization.

It turns out that this transition occurs when the total energy E of the system is
low enough (a low energy means that most of the spins are aligned and that there
is an excess of one species over the other), or more precisely when E is smaller
than a critical energy Ec. In that sense, the Q2R rule captures an important
aspect of a real magnetic system, namely a non-zero magnetization at low energy
(which can be related to a low temperature situation) and a transition to a non
magnetic phase at high energy.

However Q2R also exhibits unexpected behavior that are dicult to detect
from a simple observation. There is a breaking of ergodicity: a given initial
conguration of energy E0 evolves without visiting completely the region of the
phase space characterized by E = E0.

This is illustrated by the following simple 1D example, where a ring of four
spins with periodic boundary condition are considered.

t : 1001

t + 1 : 1100

t + 2 : 0110

t + 3 : 0011

t + 4 : 1001 (6)

After four iterations, the system cycles back to its original state. The congu-
ration of this example has E0 = 0. As we observed, it never evolves to 0111,
which is also a conguration of zero energy. This non-ergodicity means that not
only energy is conserved during the evolution of the automaton, but also another
quantity which partitions the energy surface in independent regions.

2.3 Competition models and cell dierentiation

In section 2.1 we have discussed a majority rule in which the cells imitate their
neighbors. In some sense, this corresponds to a cooperative behavior between the
cells. A quite dierent situation can be obtained if the cells obey a competitive
dynamics. For instance we may imagine that the cells compete for some resources
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(b)(a)

Figure 4: Final (stationary) conguration of the competition CA model. (a) A
typical situation with about 23% of active cells, obtained with almost any value
of panihil and pgrowth. (b) Conguration obtained with panihil = 1 and pgrowth = :8
and yielding a fraction of 28% of active cells; one clearly sees the close-packed
regions and the defects.

at the expense of their nearest neighbors. A winner is a cell of state 1 and a looser
a cell of state 0. No two winner cells can be neighbor and any looser cell must
have at least one winner neighbor (otherwise nothing would have prevented it to
also win).

It is interesting to note that this problem has a direct application in biology,
to study cells dierentiation. It has been observed in the development of the
drosophila that about 25% of the cells forming the embryo are evolving to the
state of neuroblast, while the remaining 75% does not. How can we explain this
dierentiation and the observed fraction since, at the beginning of the process
all cells can be assumed equivalent? A possible mechanism [46] is that some
competition takes place between the ajacent biological cells. In other word, each
cell produces some substance S but the production rate is inhibited by the amount
of S already present in the neighboring cells. Dierentiation occurs when a cell
reaches a level of S above a given threshold.

The competition CA model we propose to describe this situation is the follow-
ing. Due to the analogy with the biological system, we shall consider a hexagonal
lattice which is a reasonable approximation of the cell arrangement observed in
the drosophila'embryo. We assume that the values of S can be 0 (inhibited) or 1
(active) in each lattice cell.

 A S = 0 cell will grow (i.e. turn to S = 1) with probability pgrow provided
that all its neighbors are 0. Otherwise, it stays inhibited.

 A cell in state S = 1 will decay (i.e. turn to S = 0) with probability pdecay

if it is surrounded by at least one active cell. If the active cell is isolated
(all the neighbors are in state 0) it remains in state 1.
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The evolution stops (stationary process) when no S = 1 cell feels any more inhibi-
tion from its neighbor and when all S = 0 cell are inhibited by their neighborhood.
Then, cells with S = 1 are those which will dierentiate.

What is the expected fraction of these S = 1 cells in the nal conguration?
Clearly, the maximum value is 1/3 which, according to the inhibition condition
we imposed, is the close-packed situation on the hexagonal lattice. On the other
hand, the minimal value is 1/6, corresponding to a situation where the lattice
is partitioned in blocks with one active cell surrounded by 5 inhibited cells. In
practice we do not expect any of these two limits to occur spontanously after the
automaton evolution. On the contrary, we should observe clusters of close-packed
active cells surrounded by defects, i.e. regions of low density of active cells (see
gure 4).

CA simulations give a very interesting results, namely that the fraction s of
active cells when the stationary state is reached is

:23  s  :24

almost irrespectively of the values chosen for panihil and pgrowth. This is exactly
what we expect from the biological observations made on the drosophila's em-
bryo. Thus, cell dierentiation can be explained by a geometrical competition
without having to specify the inhibitory couplings between adjacent cell and the
production rate (i.e. the values of panihil and pgrowth): the result is quite robust
against any possible choices.

In our CA model, there are, however, some pathological results when either
panihil or pgrowth equals to one. For instance, panihil = 1 and pgrowth = :8, we
obtain s  :28. This situation is illustrated in gure 4 (b).

2.4 Trac models

Cellular automata models for road trac have received a great deal of interest
during the past few years (see [47,37{39,48{51] for instance).

2.4.1 One-dimensional models

One-dimensional models for single lane car motions are quite simple and elegant.
The road is represented as a line of cells, each of them being occupied or not by
a vehicle. All cars travel in the same direction (say to the right). Their positions
are updated synchronously. During the motion, each car can be at rest or jump
to the nearest neighbor site, along the direction of motion. The rule is simply
that a car moves only if its destination cell is empty. This means that the drivers
are short-sighted and do not know whether the car in front will move or is also
stuck by another car. Therefore, the state of each cell si is entirely determined by
the occupancy of the cell itself and its two nearest neighbors si1 and si+1. The
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motion rule can be summarized by the following table, where all eight possible
congurations (si1sisi+1)t ! (si)t+1 are given

(111)| {z }
1

(110)| {z }
0

(101)| {z }
1

(100)| {z }
1

(011)| {z }
1

(010)| {z }
0

(001)| {z }
0

(000)| {z }
0

(7)

This cellular automaton rule turns out to be Wolfram's rule 184 [20,47].
This simple dynamics captures an interesting feature of real car motion: trac

congestion. Suppose we have a low car density  in the system, for instance
something like

: : : 0010000010010000010 : : : (8)

This is a free trac regime in which all the cars are able to move. The average
velocity < v > dened as the number of motions divided by the number of cars
is then

< vf >= 1 (9)

where the subscript f indicates a free state. On the other hand, in a high density
conguration such as

: : : 110101110101101110 : : : (10)

only 6 cars over 12 will move and < v >= 1=2. This is a partially jammed regime.
If the car positions were uncorrelated, the number of moving cars (i.e the

number of particle-hole pairs) would be given by L(1), where L is the system
size. Since the number of cars is L, the average velocity would be

< vuncorrel >= 1   (11)

However, in this model, the car occupancy of adjacent sites is highly correlated
and the vehicles cannot move until a hole has appeared in front of them. The car
distribution tries to self-adjust to a situation where there is one spacing between
consecutive cars. For densities less than one-half, this is easily realized and the
system can organize to have one car every other site.

Therefore, due to these correlations, equation 11 is wrong in the high density
regime. In this case, since a car needs a hole to move to, we expect that the
number of moving cars simply equals the number of empty cells [47]. Thus, the
number of motions is L(1  ) and the average velocity in the jammed phase is

< vj >=
1  


(12)

A richer version of the above CA trac model is due to Nagel and Schrecken-
berg [50,37,38]. The cars may have several possible velocities u = 0; 1; 2; :::; umax.
Let ui be the velocity of car i and di the distance, along the road, separating cars
i and i + 1. The updating rule is:

 The cars accelerate when possible: ui ! u0
i = ui + 1, if ui < umax.
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 The cars slow down when required: u0
i ! u00

i = di  1, if u0
i  di.

 The cars have a random behavior: u00
i ! u000

i = u00
i  1, with probability pi

if u00
i > 0.

 Finally the cars move u000
i sites ahead.

This rule caputres some important behaviors of real trac on a highway: velocity
uctuations due to a non-deterministic behavior of the drivers, and \stop-and-
go" waves observed in high density trac regime (i.e. some cars get stop for no
specic reasons.

2.4.2 A 2D trac model

A CA trac model can also be dened for the situation of a street network,
where several lane may cross provided that the rule is extended to deal with cars
entering the same road junction. In the case of an urban trac, we may restrict
ourselves to a one speed CA.

Our approach is to model a road intersection as a rotary. Cars in the rotary
have priority over those willing to enter. It is easy to add trac lights in such
a model by blocking the entry to the rotary to to car coming from a given road.
Note that road crossings may be a bottleneck limiting the trac ow and, thus,
causing congestion.

Let us consider the case of a Manhattan-like city. We assume that horizontal
roads consist of two lanes, one for eastward motion and the other for westward
motion. Similarly, vertical streets are composed of northbound and southbound
lanes. Road junctions are formed by central points around which the trac moves
always in the same direction.

A four-corner junction is shown in gure 5. The four middle cells constitute
the rotary. A vehicle on the rotary (like b or d) can either rotate counterclockwise
or exit. A local ag tf is used to decide of the motion of a car in a rotary. If
tf = 0, the vehicle (like d) exits in the direction allowed by the color of its lane
(see gure caption). If tf = 1, the vehicle moves counterclockwise, like b. The
value of the local turn ag tf can be updated according to the modeling needs:
it can be constant for some amount of time to impose a particular motion at a
given junction, completely random, random with some bias to favor a direction
of motion, or may change deterministically according to any user specied rule.

Figure 6 shows a typical trac congurations. In gure (a), a vehicle has a
probability 1/2 to exit at each rotary cell. In gure (b), the turn ag tf has an
initial random distribution on the rotary. This distribution is xed for the rst 20
iterations and then ips to tf = 1 tf for the next 20 steps an so on. In this way,
a junction acts as a kind of trac light, which for some amount of time, allows
only a given ow pattern. We observed that the global trac pattern is dierent
in the two cases: in case (a), the car distribution is quite homogeneous along the
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Figure 5: Example of a trac conguration near a junction. The four central cells
represent a rotary which is traveled counterclockwise. The grey levels indicate the
dierent trac lanes: white is a northbound lane, light grey an eastbound lane,
grey a southbound lane and, nally, dark grey is a westbound lane. The dots
labeled a, b, c, d, e, f , g and h are cars which will move to the destination cell
indicated by the arrows, as determined by the cell turn ag tf . Cars without an
arrow are forbidden to move.

streets. On the other hand, in case (b), cars get queued at some junctions while
some other streets remain empty.

The behavior of the above trac model can be described analytically [39].
The rst important fact is that a rotary junction has a maximum possible ow of
cars. Thus, the number of vehicles able to enter a rotary per unit time cannot be
larger than a given value determined by the rule of motion. Therefore, there is a
critical average density crit

1 above which the trac is not free but constrained by
this maximum rotary ow. As a result, car queues are formed at road junctions.

The second key observation is that, in the regime above crit
1 , the system self-

organizes in three dierent regions of xed car densities: the queues that form
before a junction, the road segments after a junction, characterized by a low
trac density and the region inside a rotary. The three densities associated to
these dierent regions correspond to a jammed density j, a free trac density
f and a rotary density r, respectively.

As the overall car number is increased, j, f and r remain constant: the
result of increasing the number of cars is to extend the length ` of the car queues,
without changing the density in the three regions. The reason for xed densities
is that, due to the ow diagram of rule 184 [47], there are only two possible
densities f and j compatible with a given trac ow  < v >, along a road
segment. Thus, the only way to absorb an excess of car is to increase the size of
the queue.

When one keeps adding cars in the system, there is a second critical average
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(a) (b)

Figure 6: Trac conguration after 600 iterations, for a car density of 30%.
Streets are white, buildings grey and the black pixels represent the cars. The
Situation (a) corresponds to an equally likely behavior at each rotary junction,
whereas image (b) mimics the presence of trac lights. In the second case, queues
are more likely to form and the global mobility is less than in the rst case.

density crit
2 for which the length of some queues becomes larger than the distance

separating two consecutive street intersections. The up-trac rotary output gets
disturbed and, from a maximum-ow trac regime, one gets into a strongly
jammed phase.

Provided that the turning decision at rotaries is random and not time corre-
lated, one typically obtains [39]

f =
1

4
j =

3

4
r =

1

2
(13)

Assuming that the queues length is ` along all road segments and that the sepa-
ration between two consecutive junctions is L (the network period), we can relate
the average car density  to ` by the relation[47]

4(L 2  `)f + 4`j + 4r = 4L (14)

Equation 14 simply reects that the total number of cars is distributed in three
regions: queues of length ` and density j, free trac segments of length L`2
and density f and rotaries of size four and density r.

In the case of large L, the queue length can be approximated by

`

L
=

 f

j  f
(15)

Equation 15 provides a way to determine the critical densities crit
1 and crit

2 . For
 < f , ` is negative, which should be interpreted in the sense that no queue is
formed. This is the free trac regime. Thus, crit

1 = f = 1=4 and the average
velocity is < v >= 1, independent of .
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On the other hand, for f <  < j, car queues form but their lengths are
smaller than the distance between successive intersections. This is the maximum
ow regime. In this case, we have  < v >= J = const = 1=4, that is < v >=
1=(4).

Finally, for  > j = crit
2 , the queues reach their maximum length L and

the rotary exits are hindered. This is the strongly jammed trac regime. The
trac velocity is governed by the motion of holes and obeys 12, namely < v >=
(1 )=. If < v > is taken as the order parameter, both of these transitions are
second order.

Figure 7 (a) shows the velocity-density diagram obtained from CA simu-
lations, for the situation we just described. We have considered various road
spacings for our measurements (i.e the distance L separating consecutive inter-
sections). The larger the spacing the better the agreement with the analytical
description. Note that for small L, the correlation along the lane cannot build
up and < v > obeys 11.

In gure 7 (b), we also show the velocity-density diagram in the case the
drivers choose the rotary exit at random but stick to this decision even if the exit
they have chosen is not free.

(a)

0 1
car density

0

1

<
v
>

free rotary

road spacing=4
road spacing=32
road spacing=256

0 1
car density

0

1

<
v
>

(b)

road spacing=32
road spacing=64
road spacing=128
road spacing=256

fixed decision

Figure 7: Average velocity versus average density for the cellular automata street
network, for (a) time-uncorrelated turning strategies and (b) a xed driver's deci-
sion. The dierent curves correspond to dierent distances L between successive
road junctions. The dashed line is the analytical prediction. Junction deadlock is
likely to occur in (b), resulting in a completely jammed state.

The present CA model can be adapted to simulate trac in more realistic sit-
uations. We have considered the case of the city of Geneva and its suburbs[52,53].
The simulations uses the full road network (4000 km, 3145 road segments and
1066 junctions with a number of 800765 cells) and a large set of origin and des-
tination pairs (about 50'000) for the cars traveling during the rush hour.

The precise departure time of each vehicle is not known from observations.
It is natural to assume that the distribution of these departure times is not
uniform. Here we assume that this distribution has the form shown in gure 8
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Figure 8: Distribution of departure times used in the simulation of the city of
Geneva trac.

and is characterized by two parameters: (i) the duration I of the departure period
and (ii) the ratio p2=p1 specifying the degree of non-uniformity. Empirically we
choose p2=p1 = 6 and I = 45 minutes (so that almost all cars have arrived after
90 minutes).

Due to the lack of data concerning the real evolution of the trac state in the
city of Geneva, we did not investigate systematically the eect of varying p2=p1

and I. Rather, we focused on the problem of measuring the time necessary for a
test car to travel from a given origin A to a given destination B. This time is of
direct interest to the drivers because it determines, for instance, when they must
leave their house in order to be on time at their work. This is also a quantity
which is easily comparable with the reality by actually driving from A to B.

The interesting fact is that the travel time is a uctuating quantity. If one
repeats the same trip under the same condition (for instance the next day, at
the same time), the drive is likely to be longer or shorter. This fact is well
known from everyday experience and is also well reproduced in the CA model
because the probability distribution of the departure times gives the necessary
randomness to produce uctuations when the simulation is repeated.

Our main result is that the amplitude of the variations of the travel times
depends very much on the departure time of the test car and on its trip. In the
simulations, we studied the four trips shown in gure 9.

The measured times obtained from the simulation for trips 2 and 3 are shown
in gure 10. The results for trip 1 and 4 are similar.

For trip 3, the average time needed to reach the desired destination is not
constant: it is maximal if the driver leaves 15 to 20 minutes after the start of
the rush hour. It is minimal if the diver leaves at the very beginning or the very
end of interval I. On the other hand, the average time for trip 2 is quite stable.
These two situations dier by the fact that trip 3 uses heavily loaded sections
with many crossings while trip 2 uses higher capacity sections.

We also observe that, for trip 3, it is impossible to make accurate predictions
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Figure 9: The road network of Geneva used in our simulation and the four selected
trips considered to measure the travel time of a test car.
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Figure 10: Expectation time and \risk" of trips 2 and 3 of gure 9. The horizontal
axis corresponds to the departure time of a test vehicle within interval I. The
dashed line shows the average driving time and the shaded region indicates the
amplitude of the variation of this time (computed as the standard deviation). Note
that the times shown here are pretty realistic, thus giving an indirect validation
of our simulations for the case of Geneva.

on the time needed to reach the destination point. Variations up to 30% show
up. We call this variation the risk1 associated to the trip (for a given departure
time) to describe the fact that an expected outcome is likely not to occur. In
practice, for trip 3, in which the variation is high, there is a large risk to arrive
late at destination, or to be too early, which may not be acceptable either. This
also means that it is not possible to establish an accurate schedule for taxis or
public transportation, unless dedicated lanes are available.

Finally, gure 11 shows the dependence of < v >, the average car velocity in
the network, as a function of the average car density . Since the trac load is not
stationary but concentrated within about one and a half hour, the steady-state
density-velocity diagram (as shown for instance in g. 7) is no longer valid and
must be replaced by a \dynamic" diagram which shows a signicant hysteresis.

2.5 A simple gas: the HPP model

The HPP rule is a simple example of an important class of cellular automata
models: lattice gas automata (LGA). The basic ingredient of such models are
point particles that move on a lattice, according to appropriate rules so as to
mimic a fully discrete \molecular dynamics."

The HPP lattice gas automata is traditionally dened on a two-dimensional
square lattice. Particles can move along the main directions of the lattice, as
shown in gure 12. The model limits to 1 the number of particles entering a
given site with a given direction of motion. This is the exclusion principle which

1In nance, the term risk is also used to describe the standard deviation of a random quantity.
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Figure 11: Dynamical ow diagram for p2=p1 = 6. As time goes on (t 2 [0; I]),
the car density rst increases and the upper branch of the diagram is formed;
then, when the density decreases, the lower branch is measured.

is common in most LGA. Consequently, four bits of information in each site are
enough to describe the system during its evolution. For instance, if at iteration
t site ~r has the following state s(~r; t) = (1011), it means that three particles are
entering the site along direction 1,3 and 4, respectively.

Figure 12: Example of a conguration of HPP particles

The cellular automata rule describing the evolution of s(~r; t) is often split in
two steps: collision and motion (or propagation). The collision phase species
how the particles entering the same site will interact and change their trajectories.
The purpose of the HPP rule is to model a gas of colliding particles and, thus,
essential features of this step are borrowed from the real microscopic interactions,
namely local conservation of momentum and particle number. Since the collision
phase amounts to rearranging the particles in dierent direction, it ensures that
the exclusion principle will be satised, provided that it was at time t = 0.
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During the propagation phase, the particles actually move to the nearest
neighbor site they are traveling to. Figure 13 illustrates the HPP rules. This
decomposition into two phases is a quite convenient way to partition the space
so that the collision rule is purely local.

(a)

(b)

(c)

time t time t+1

Figure 13: The HPP rule: (a) a single particle has a ballistic motion until it ex-
periences a collision; (b) and (c) the two non-trivial collisions of the HPP model:
two particles experiencing a head on collision are deected in the perpendicular
direction. In the other situations, the motion is ballistic, that is the particles are
transparent to each other when they cross the same site.

According to our Boolean representation of the particles at each site, the
collision part for the two head on collisions are expressed as

(1010) ! (0101) (0101) ! (1010) (16)

all the other congurations being unchanged. During the propagation phase, the
rst bit of the state variable is shifted to the east neighbor cell, the second bit to
the north and so on.

The aim of this rule is to reproduce some aspect of the real interactions
between particles, namely that momentum and particle number are conserved
during a collision. From gure 13, it is easy checked that these properties are
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obeyed: a pair of zero momentum particles along a given direction is transformed
into another pair of zero momentum along the perpendicular axis.

The HPP rule captures another important ingredient of the microscopic na-
ture of a real interaction: invariance under time reversal. Figures 13 (b) and
(c) show that, if at some given time, the directions of motion of all particles are
reversed, the system will just trace back its own history. Since the dynamics of a
deterministic cellular automaton is exact, this fact allows us to demonstrate the
properties of physical systems to return to their original situation when all the
particles reverse their velocity.

(a)

(b)

Figure 14: Time evolution of a HPP gas. (a) From the initial state to equilibrium.
(b) Illustration of time reversal invariance: in the rightmost image of (a), the
velocity of each particle is reversed and the particles naturally return to their
initial position.

Figure 14 illustrate the time evolution of a HPP gas initially conned in
the left compartment of a container. There is an aperture on the wall of the
compartment and the gas particles will ow so as to ll the entire space available
to them. In order to include a solid boundary in the system, the HPP rule
is modied as follows: when a site is a wall (indicated by an extra bit), the
particles no longer experience the HPP collision but bounce back from where they
came. Therefore, particles cannot escape a region delimited by such a reecting
boundary.

If the system of gure 14 is evolved, it reaches an equilibrium after a long
enough time and no macroscopic trace of its initial state is any longer visible.
However, no information has been lost during the process (no numerical dis-
sipation) and the system has the memory of where it comes from. Reversing
all the velocities and iterating the HPP rule makes all particle go back to the
compartment in which they were initially located.

This behavior is only possible because the dynamics is perfectly exact and
that no numerical errors are present in the numerical scheme. If one introduces
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externally some errors (for instance, one can add an extra particle in the system)
before the direction of motion of each particle is reversed, then reversibility is
lost.

The HPP rule is important because it contains the basic ingredients of many
models we are going to discuss below. However, the capability of this rule to
model a real gas of particle is poor, due to a lack of isotropy and spurious invari-
ants. We shall see in section 3 that a remedy to this problem is to use a dierent
lattice.

2.6 Random walk

The HPP rule we discussed in the previous section can be easily modied to
produce many synchronous random walks. Instead of experiencing a mass and
momentum conserving collision, each particle now selects, at random, a new
direction of motion among the possible values permitted by the lattice. Since
several particles may enter the same site (up to four, on a two-dimensional square
lattice), the random change of directions should be such that there are never two
or more particle exiting a site in the same direction. This would otherwise violate
again the exclusion principle.

The solution is to shue the directions of motion or, more precisely, to perform
a random permutation of the velocity vectors, independently at each lattice site
and each time step. Figure 15 illustrate this probabilistic evolution rule. Note
that at a macroscopic level of description, the random walk rule corresponds to
a diusion process (see section 5.3.1).

As an example of the use of the present random walk cellular automata rule,
we discuss an application to growth processes. In many cases, growth is governed
by a spatial quantity such as an electric eld, a local temperature, or a particle
density eld [54]. Aggregation constitutes an important mechanism: like particles
stick to each other as they meet and, as a result, form a complicated pattern with
a branching structure.

A prototype model of aggregation is the so-called DLA model (diusion-
limited aggregation), introduced by Witten and Sander[55] in the early 1980s.
Since its introduction, the DLA model has been investigated in great detail.
However, diusion-limited aggregation is a far from equilibrium process which
is not described theoretically by rst principle only. Spatial uctuations that
are typical of the DLA growth are dicult to take into account and a numerical
approach is necessary to complete the analysis.

DLA-like processes can be readily modeled by our diusion cellular automata,
provided that an appropriate rule is added to take into account the particle-
particle aggregation. The rst step is to introduce rest particle to represent the
particles of the aggregate. Therefore, in a two-dimensional system, a lattice site
can be occupied by up to four diusing particles, or by one \solid" particle. Our
approach has some dierences compared with the original Witten and Sanders
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Figure 15: How the entering particles are deected at a typical site, as a result of
the diusion rule. The four possible outcomes occur with respective probabilities
p0, p1, p2 and p3. The gure shows four particles, but the mechanism is data-
blind and any one of the arrows can be removed when fewer entering particles are
present.

model. All particles reside on a lattice and move simultaneously. They can stick
to dierent part of the cluster and we do not launch them, one after the other,
from a region far away from the cluster. For this reason, we may expect some
quantitative variation from the original DLA properties.

Figure 16 shows a two-dimensional DLA-like cluster grown by the cellular
automata dynamics. At the beginning of the simulation, one or more rest particles
are introduced in the system to act as aggregation seeds. The rest of the system
is lled with particle with average concentration . When a diusing particle gets
nearest neighbor to a rest particle, it stops and sticks to it by transforming into
a rest particle. Since several particle can enter the same site, we may choose to
aggregate all of them at once (i.e. a rest particle is actually composed of several
moving particles), or to accept the aggregation only when a single particle is
present.

In addition to this question, the sticking condition is important. If any dius-
ing particle always sticks to the DLA cluster, the growth is very fast and can be
inuenced by the underlying lattice anisotropy. It is therefore more appropriate
to stick with some probability ps. Since up to four particles may be simulta-
neously candidate for the aggregation, we can also use this fact to modify the
sticking condition. A simple way is to require that the local density of particle
be larger than some threshold (say 3 particles) to yield aggregation. The cluster
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Figure 16: Two-dimensional cellular automata DLA-like cluster (black), obtained
with ps = 1, an aggregation threshold of 1 particle and a density of diusing
particle of 0.06 per lattice direction. The gray dots represent the diusing particles
not yet aggregated.

shown in gure 16 has fractal dimension df = 1:78 which is not very dierent
from the genuine, o-lattice DLA fractal dimension[56,54] df = 1:70.

The cellular automata approach is also well suited to study dynamical prop-
erties such as the DLA growth rate. The standard numerical experiment is to
distribute uniformly the initial diusing particles on the lattice with a single ag-
gregation seed in the middle. As time t goes on, more and more particles get
solidied and the cluster mass M(t) increases. Our simulations indicate (see
gure 17) that this process has an intermediate regime governed by a power law

M(t) = t

where
  2

in both two and three dimensions. Although these results are not sucient to
conclude denitely that the 2-D and 3-D exponents are the same, an explanation
would be that in 3-D there is more surface to stick to than in 2-D, but also more
space to explore before a diusing particles they can aggregate. These two eects
may just compensate.

2.7 The traveling ant

The ant rule is a cellular automata invented by Chris Langton[57] and Greg Turk
which models the behavior of a hypothetical animal (ant) having a very simple
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Figure 17: Formation rate of cellular automata DLA clusters in two- and three
dimensions. The lattice has periodic boundary conditions.

algorithm of motion. The ant moves on a square lattice whose sites are either
white or grey. When the ant enters a white cell, it turns 90 degrees to the left
and paints the cell in gray. Similarly, if it enters a gray cell, it paints it in white
and turn 90 degree to the right.

It turns out that the motion of this ant exhibits a very complex behavior.
Suppose the ant starts in a completely white space. After a series of about 500
steps where it essentially keeps returning to its initial position, it enters a chaotic
phase during which its motion is unpredictable. Then, after about 10000 steps
of this very irregular motion, the ant suddenly performs a very regular motion
which brings it far away from where it started.

Figure 18 illustrates the ant motion. The path the ant creates to escape the
chaotic initial region has been called a highway[58]. Although this highway is
oriented at 45 degrees with respect to the lattice direction, it is traveled by the
ant in a way which makes very much think of a sewing machine: the pattern is a
sequence of 104 steps which are repeated indenitely.

The Langton ant is a good example of a cellular automata whose rule is very
simple and yet generates a complex behavior which seems beyond our understand-
ing. Somehow, this fact is typical of the cellular automata approach: although
we do know everything about the fundamental laws governing a system (because
we set up the rules ourselves!), we are often unable to explain its macroscopic
behavior.

There is anyway a global property of the ant motion: the ant visits an un-
bounded region of space, whatever the initial space texture is (conguration of
gray and white cells).

The proof (due to Bunimovitch and Troubetzkoy) goes as follows: supposed
the region the ant visits is bounded. Then, it contains a nite number of cells.
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t=6900 t=10431 t=12000

Figure 18: The Langton's ant rule. The motion of a single ant starts with a
chaotic phase of about 10000 time steps, followed by the formation of a highway.
The gure shows the state of each lattice cell (gray or white) and the ant position
(marked by the black dot). In the initial condition all cells are white and the ant
is located in the middle of the image.

Since the number of iteration is innite, there is a domain of cells that are visited
innitely often. Moreover, due to the rule of motion, a cell is either entered
horizontally (we call it a H cell) or vertically (we call it a V cell). Since the
ant turns by 90 degrees after each step, a H cell is surrounded by four V cells
and conversely. As a consequence, the H and V cells tile the lattice in a xed
checkerboard pattern. Now, we consider the upper rightmost cell of the domain,
that is a cell whose right and upper neighbor is not visited. This cell exists
if the trajectory is bounded. If this cell is an H cell (and be so for ever), it
has to be entered horizontally from left and exited vertically downward and,
consequently be gray. However, after the ant has left, the cell is white and
there is a contradiction. The same contradiction appears if the cell is a V cell.
Therefore, the ant trajectory is not bounded.

As it has been described, the above rule is dened only when a single ant moves
on the lattice. We can easily generalize it when many ants are simultaneously
present so that up to four of them may enter the same site at the same time,
from dierent sides

Following the same idea as in the HPP rule, we will introduce ni(~r; t) as a
boolean variable representing the presence (ni = 1) or the absence (ni = 0) of
an ant entering site ~r at time t along lattice direction ~ci, where ~c1, ~c2, ~c3 and ~c4

stand for direction right, up, left and down, respectively. If the color (~r; t) of
the site is gray ( = 0), all entering ants turn 90 degrees to the right. On the
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other hand, if the site is white( = 1), they all turn 90 degrees to the left. The
color of each cell is modied after one or more ants have gone through. Here, we
chose to switch  ! 1   only when an odd number of ant are present.

t=2600 t=4900 t=8564

Figure 19: Motion of several Langton's ants. Gray and white indicate the colors
of the cells at the current time. Ant locations are marked by the black dots. At
the initial time, all cells are white and a few ants are randomly distributed in the
central region, with random directions of motion. The rst highway appears much
earlier than when the ant is alone. In addition the highway can be used by other
ants to travel much faster. However, the \highway builder" is usually prevented
from continuing its construction as soon as it is reached by the following ants.
For instance, the highway heading north-west after 4900 steps get destroyed. A
new highway emerges later on from the rest, as we see from the snapshot at time
t = 8564.

When several ant travel simultaneously on the lattice, cooperative and de-
structive behaviors are observed. First, the erratic motion of several ants favors
the formation of a local arrangement of colors allowing the creation of a highway.
One has to wait much less time before the rst highway appears. Second, once a
highway is being created, other ants may use it to travel very fast (they do not
have to follow the complicated pattern of the highway builder. In this way, the
term \highway" is very appropriate. Third, a destructive eect occurs as the sec-
ond ant gets to the highway builder. It breaks the pattern and several situations
may be observed. For instance, both ants may enter a new chaotic motion; or
the highway is traveled in the other direction (note that the rule is time reversal
invariant) and destroyed. Figure 19 illustrates the multi-ant behavior.

The problem of an unbounded trajectory pauses again with this generalized
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motion. The assumption of Bunimovitch-Troubetzkoy's proof no longer holds in
this case because a cell may be both an H or a V cell. Indeed, two dierent ants
may enter a same cell one vertically and the other horizontally. Actually, the
theorem of an unbounded motion is wrong in several cases where two ants are
present. Periodic motions may occur when the initial positions are well chosen.

For instance, when the relative location of the second ant with respect to the
rst one is (x;y) = (2; 3), the two ants returns to their initial position after
478 iterations of the rule (provided they started in an uniformly white substrate,
with the same direction of motion). A very complicated periodic behavior is
observed when (x;y) = (1; 24): the two ant start a chaotic-like motion for
several thousands of steps. Then, one ant builds a highway and escape from the
central region. After a while, the second ant nds the entrance of the highway
and rapidly catches the rst one. After the two ants meet, they start undoing
their previous paths and return to their original position. This complete cycle
takes about 30000 iterations.

More generally, it is found empirically that, when x+y is odd and the ants
enter their site with the same initial direction , the two-ant motion is likely to
be periodic. However, this is not a rule and the conguration (x;y) = (1; 0)
yields an unbounded motion, a diamond pattern of increasing diameter which is
traveled in the same direction by the two ants.

It turns out that the periodic behavior of a two-ant conguration is not so
surprising. The rule we dened is reversible in time, provided that there is never
more than one ant at the same site. Time reversal symmetry means that if the
direction of motion of all ants are reversed, they will move backward through
their own sequence of steps, with an opposite direction of motion. Therefore, if
at some point of their motion the two ants cross each other (on a lattice link, not
on a site), the rst ant will go through the past of the second one, and vice versa.
They will return to the initial situation (the two ants being exchanged) and build
a new pattern, symmetrical to the rst one, due to the inversion of the directions
of motion. The whole process then cycles for ever. Periodic trajectories are
therefore related to the probability that the two ants will, at a some time, cross
each other in a suitable way. The conditions for this to happen are fullled when
the ants sit on a dierent sublattice (black or white sites on the checkerboard) and
exit two adjacent sites against each other. This explain why a periodic motion is
likely to occur when x + y is odd.

2.8 Population dynamics

In addition to physical, chemical or biological systems, the CA approach is in-
teresting for the study of simple population models. Several dierent problems
can be envisaged, such as the simulation of ecosystems or the social behavior in a
population of interacting individuals. Here we consider an example of the latter
situation.
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The social behavior of the group of persons is certainly related to the fact
that each individual has its own autonomy and perception of the environment.
On the other hand, the behavior of a whole population may also reect some
\mechanical" or spontaneous response of an individual to the situation it is con-
fronted with. We may hope that the collective behavior that may emerge from
such a proceess could be captured by some CA model, provided that one is able
to nd the rule to which each individual obey. At least it is worth to check
whether a given social behavior can be explained with such mechanisms before
incriminating the fact that each individual is free to think and act its own way.

Here we address here the generic problem of the competing ght between two
dierent groups over a xed area. We present a \voter model" which describes
the dynamical behavior of a population with bimodal conicting interests and
study the conditions of extinction of one of the initial groups [59].

This model can be thought of as describing the smoker - non smoker ght:
in a small group of persons, a majority of smokers will usually convince the few
others to smoke and vice versa. The point is really when an equal number of
smokers and non-smokers meet. In that case, it may be assumed that a social
trend will decide between the two attitudes. In the US, smoking is viewed as a
disadvantage whereas, in France, it is rather well accepted. In other words, there
is a bias that will select the winner party in an even situation. In our example,
whether one studies the French or US case, the bias will be in favor of the smokers
or the non-smokers, respectively.

The same mechanism can be associated with the problem of competing stan-
dards. The choice of one or the other standard is often driven by the opinion
of the majority of people one meets. But, when the two competing systems are
equally represented, the intrinsic quality of the product will be decisive. Price
and technological advance then play the role of a bias.

Here we consider the case of four-person confrontations in a spatially extended
system in which the actors (species A or B) move randomly. Initially, the B
species is present with density b0 and the A species with density 1  b0. The B
individuals are supposed to have a qualitative advantage over the As but are less
numerous. The question we want to address is what is the minimal density b0

which make the Bs win over A (i.e. invade the entire system at the expense of A
individuals). The process of spatial contamination of opinion plays a crucial role
in this dynamics.

The CA rule we propose here [59] to describe this proceess is derived from
a model by Galam [60], in which the four individuals involved in a tournament
are randomy chosen among the current population, whose composition in A or
B type of persons evolves after each confrontation. The density threshold for an
invading emergence of B is bc = 0:23 if the B group has a qualitative bias over
A. With a spatial distribution of the species, even if b0 < bc, B can still win over
A provided that it strives for confrontation. Therefore a qualitative advantage
is found not to be enough to win. A geographic as well a denite degree of
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aggressiveness are instrumental to overcome the less tted majority.
The model we use to describe the two populations A and B inuencing each

other or competing for some unique resources, is based on the diusion automaton
proposed in section 2.6. The particles have two possible internal states (1),
coding for the A or B species, respectively.

The individuals move on a two-dimensional square lattice. At each site, there
are always four individuals (any combination of A's and B's is possible). These
four individuals all travels in a dierent lattice direction (north, east, south and
west).

The interaction takes place in the form of \ghts" between the four individuals
meeting on the same site. At each ght, the group nature (A or B) is updated
according to the majority rule, when possible, otherwise with a bias in favor of
the best tted group:

 The local majority species (if any) wins:

nA+mB !
(

(n+m)A if n > m
(n+m)B if n < m

where n+m = 4.

 When there is an equal number of A and B on a site, B wins the con-
frontation with probability 1=2 + =2. The quantity  2 [0; 1] is the bias
accounting for some advantage (or extra tness) of species B.

The above rule is applied with probability k. Thus, with probability 1  k the
group composition does not change because no ght occurs. Between ghts both
population agents perform a random walk on the lattice.

The behavior of this model is illustrated in gure 20. The current congura-
tion is shown at three dierent time steps. We can observe the growth of dense
clusters of B invading the system.

It is clear that the model richness comes from the even confrontations. If only
odd ghts would happen, the initial majority population would always win after
some short time. The key parameters of this model are (i) k, the aggressiveness
(probability of confrontation), (ii) , the B's bias of winning a tie and (iii) b0,
the initial density of B.

The strategy according to which a minority of B's (with yet a technical,
genetic, persuasive advantage) can win against a large population of A's is not
obvious. Should they ght very often, try to spread or accept a peace agreement?
We study the parameter space by running the cellular automaton.

In the limit of low aggressiveness (k ! 0), the particles move a long time be-
fore ghting. Due to the diusive motion, correlation between successive ghts are
destroyed and B wins provided that b0 > 0:23 and  = 1: This is the mean-eld
level of our dynamical model which corresponds to the theoretical calculations
made in [60].
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t=10 t=30 t=70

Figure 20: Congurations of the voter CA model, at three dierent times. The
A and B species are represented by the gray and white regions, respectively. The
parameters of the simulation are b0 = 0:1, k = 0:5 and  = 1.

More generally, we observe that B can win even when b0 < 0:23, provided it
acts aggressively, i.e. by having a large enough k. Thus, there is a critical density
bdeath(k) < 0:23 such that, when b0 > bdeath(k), all A are eliminated in the nal
outcome. Below bdeath, B looses unless some specic spatial congurations of B's
are present.

Therefore the growth of species B at the expense of A is obtained by a spatial
organization. Small clusters that may accidentally form act as nucleus from which
the B's can develop. In other words, above the mean-eld threshold bc = 0:23
there is no need to organize in order to win but, below this value only condensed
regions will be able to grow. When k is too small, such an organization is not
possible (it is destroyed by diusion) and the strength advantage of B does not
lead to success.

Figure 21 summarizes, as a function of b0 and k, the regions where either
A or B succeeds. It is found that the separation curve satises the equation
(k + 1)7(b0  0:077) = 0:153.

It is also interesting to study the time needed to annihilate completely the
looser. Here, time is measured as the number of ghts per site (i.e. kt where t
is the iteration time of the automaton). We observe that the dynamics is quite
fast and a few units of time are sucient to yield a collective change of opinion.

Following the same methodology, more complicated interactions between in-
dividuals can be investigated. The case of a non-constant bias is quite interesting
and is described in [59]. In conclusion, although this model is very simple, it
abstracts the complicated behavior of real life agents by capturing some essential
ingredients. For this reason, the results we have presented may shed light on the
generic mechanisms observed in a social system of opinion making.

In particular we see that the correlations existing between successive ghts
may strongly aect the global behavior of the system and that an organization
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Figure 21: Phase diagram for our socio-physical model with  = 1. The curve
delineates the regions where, on the left, A wins with high probability and, on the
right, B wins with probability one. The outcome depends on b0, the initial density
of B and k, the probability of a confrontation.

is the key feature to obtain a denite advantage over the other population. This
observation is important. For instance, during a campaign against smoking or
an attempt to impose a new system, it is much more ecient (and cheaper) to
target the eort on small nuclei of persons rather than sending the information
in an uncorrelated manner.

3 From micro-physics to macro-physics

In the previous section, we have discussed several cellular automata rules which
are relevant to the description of physical processes. The question is of course
how close these models are to the reality they are supposed to simulate?

In general, space and time are not discrete and, in classical physics, the state
variables are continuous. Thus, it is crucial to show how a cellular automata
rule is connected to the laws of physics or to the usual quantities describing the
phenomena which are modeled. This is particularly important if the cellular au-
tomata is intended to be used as a numerical scheme to solve practical problems.

Lattice gas automata have a large potential of applications in hydrodynamics
and reaction-diusion processes. The purpose of this section is to present the
techniques that are used to establish the connection between the macroscopic
physics and the microscopic discrete dynamics of the automaton. The problem
one has to address is the statistical description of a system of many interacting
particles. The methods we shall discuss here are very close, in spirit, to those
applied in kinetic theory: the N-body dynamics is described in terms of macro-
scopic quantities like the particle density or the velocity eld. The derivation of
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a Boltzmann equation is a main step in this process.
To illustrate the method we rst present the so-called FHP CA uid model

because this system features all the relevant steps of the derivation.

3.1 The FHP model

The FHP rule is a model of a two-dimensional uid which has been introduced
by Frisch, Hasslacher and Pomeau [21], in 1986. We will show here how the fully
discrete microscopic dynamics maps onto the macroscopic behavior of hydrody-
namics.

The model describes the motion of particles traveling in a discrete space and
colliding with each other, very much in the same spirit as the HPP lattice gas
discussed in section 2.5. The main dierence is that, for isotropy reasons that
will become clear below, the lattice is hexagonal (i.e. each site has six neighbors,
as shown in gure 22).

The FHP model is an abstraction, at a microscopic scale, of a uid. It is
expected to contain all the salient features of real uid. It is well known that
the continuity and Navier-Stoke equations of hydrodynamics express the local
conservation of mass and momentum in a uid. The detailed nature of the
microscopic interactions does not aect the form of these equations but only the
values of the coecients (such as the viscosity) appearing in them. Therefore, the
basic ingredients one has to include in the microdynamics of the FHP model is the
conservation of particles and momentum after each updating step. In addition,
some symmetries are required so that, in the macroscopic limit, where time and
space can be considered as continuous variables, the system be isotropic.

As in the case of the HPP model, the microdynamics of FHP is given in terms
of Boolean variables describing the occupation numbers at each site of the lattice
and at each time step (i.e. the presence or the absence of a uid particle). The
FHP particles move in discrete time steps, with a velocity of constant modulus,
pointing along one of the six directions of the lattice. The dynamics is such
that no more than one particle enters the same site at the same time with the
same velocity. This restriction (the exclusion principle) ensures that six boolean
variables at each lattice site are always enough to represent the microdynamics.

Interactions take place among particles entering the same site at the same
time and result in a new local distribution of particle velocities. In order to
conserve the number of particle and the momentum during each interaction, only
a few congurations lead to a non trivial collision (i.e a collision in which the
directions of motion have changed). For instance, when exactly two particles
enter the same site with opposite velocities, both of them are deected by 60
degrees so that the output of the collision is still a zero momentum conguration
with two particles. As shown in gure 22, the deection can occur to the right or
to the left, indierently. For symmetry reasons, the two possibilities are chosen
randomly, with equal probability.
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p=1/2

p=1/2

Figure 22: The two-body collision in the FHP model. On the right part of the
gure, the two possible outcomes of the collision are shown in dark and light gray,
respectively. They both occur with probability one-half.

Figure 23: The three-body collision in the FHP model.

Another type of collision is considered: when exactly three particles collide
with an angle of 120 degrees between each other, they bounce back (so that the
momentum after collision is zero, as it was before collision). Figure 23 illustrates
this rule. Several variants of the FHP model exist in the literature [3], including
some with rest particles, like the FHP-II and FHP-III models.

For the simplest case we are considering here, all interactions come from the
two collision processes described above. For all other congurations (i.e those
which are not obtained by rotations of the situations given in gures 22 and 23)
no collision occurs and the particles go through as they were transparent to each
other.

Both two- and three-body collisions are necessary to avoid extra conserva-
tion laws. The two-particle collision removes a pair of particles with a zero total
momentum and moves it to another lattice direction. Therefore, it conserves
momentum along each line of the lattice. On the other hand, three-body interac-
tions deect particles by 180 degrees and cause the net momentum of each lattice
line to change. However, three-body collisions conserve the number of particles
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Figure 24: The direction of motion ~ci

within each lattice line.

3.2 Microdynamics

The full microdynamics of the FHP model can be expressed by evolution equa-
tions for the occupation numbers: we introduce ni(~r; t) as the number of particles
(which can be either 0 or 1) entering site ~r at time t with a velocity pointing along
direction ~ci, where i = 1; 2; :::; 6 labels the six lattice directions. The unit vectors
~ci are shown in gure 24.

We also dene the time step as  and the lattice spacing as . Thus, the six
possible velocities ~vi of the particles are related to their directions of motion by

~vi =



~ci

Without interactions between particles, the evolution equations for the ni

would be given by
ni(~r + ~ci; t+ ) = ni(~r; t) (17)

which expresses that a particle entering site ~r with velocity along ~ci will continue
in straight line so that, at the next time step, it will enter site ~r+~ci with still the
same direction of motion. However, due to collisions, a particle can be removed
from its original direction or another one can be deected into direction ~ci.

For instance, if only ni and ni+3 are 1 at site ~r, a collision occurs and the
particle traveling with velocity ~vi will then move with either velocity ~vi1 or ~vi+1

(note that the operations on index i are wrapped onto the value 1,2,...,6). The
quantity

Di = nini+3(1  ni+1)(1  ni+2)(1  ni+4)(1  ni+5) (18)

indicates, when Di = 1 that such a collision will take place. Therefore,

ni Di
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is the number of particles left in direction ~ci due to a two-particle collision along
this direction.

Now, when ni = 0, a new particle can appear into direction ~ci, as the result
of a collision between ni+1 and ni+4 or a collision between ni1 and ni+2. It is
convenient to introduce a random boolean variable q(~r; t) which decides whether
the particles are deected to the right (q = 1) or to the left (q = 0) when a
two-body collision takes place. Therefore, the number of particle created into
direction ~ci is

qDi1 + (1  q)Di+1

Particles can also be created into (or removed from) direction ~ci because of a
three-body collision. The quantity which expresses the occurrence of a three-
body collision with particles ni, ni+2 and ni+4 is

Ti = nini+2ni+4(1  ni+1)(1  ni+3)(1  ni+5) (19)

As before, the result of a three-body collision is to modify the number of particles
in direction ~ci as

ni  Ti + Ti+3

Thus, in full generality, the microdynamics of a LGA is written as

ni(~r + ~ci; t+ ) = ni(~r; t) + i(n(~r; t)) (20)

where i is called the collision term.
For the FHP model, i is dened so as to reproduce the collisions, that is

i(n) = Di + qDi1 + (1  q)Di+1

Ti + Ti+3 (21)

Using the full expression for Di and Ti, we obtain

i(n) = nini+2ni+4(1  ni+1)(1  ni+3)(1  ni+5)

+ni+1ni+3ni+5(1  ni)(1  ni+2)(1  ni+4)

nini+3(1  ni+1)(1  ni+2)(1  ni+4)(1  ni+5)

+(1  q)ni+1ni+4(1  ni)(1  ni+2)(1  ni+3)(1  ni+5)

+qni+2ni+5(1  ni)(1  ni+1)(1  ni+3)(1  ni+4) (22)

These equations are easy to code in a computer and yield a fast and exact im-
plementation of the model. As an example, gure 25 illustrates a sound wave in
the FHP gas at rest. Note that, usually, the so-called FHP-III model [61], which
include a rest particle and a more complete set of collisions, is prefered when
simulating a uid, due to better physical properties.
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Figure 25: Development of a sound wave in a FHP gas, due to an over particle
concentration in the middle of the system

3.3 The macroscopic variables

In a lattice gas automaton, the physical quantities of interest are not so much
the Boolean variables ni but macroscopic quantities or average values, such as,
for instance, the average density of particles and the average velocity eld at
each point of the system. These quantities are dened from the ensemble average
Ni(~r; t) =< ni(~r; t) > of the microscopic occupation variables. Ni(~r; t) is also
the probability of having a particle entering site ~r, at time t, with velocity ~vi =
(=)~ci.

In general, a LGA is characterized by the number z of lattice directions and
the spatial dimensionality d. For a square lattice in d = 2 dimensions, we have
z = 4, whereas, for hexagonal lattice, z = 6. It is also convenient to add a
(z + 1)th direction, i = 0, corresponding to a population of rest particles for
which, obviously, ~v0 = 0.

Following the usual denition of statistical mechanics, the local density of par-
ticles is the sum of the average number of particles traveling along each direction
~ci

(~r; t) =
zX

i=0

Ni(~r; t) (23)

Similarly, the particle current, which is the density  times the velocity eld ~u,
is expressed by

(~r; t)~u(~r; t) =
zX

i=1

~viNi(~r; t) (24)

Another quantity which will play an important role in the up coming derivation
is the momentum tensor  dened as

 =
zX

i=1

viviNi(~r; t) (25)

where the greek indices  and  label the d spatial components of the vectors.
The quantity  represents the ux of the -component of momentum transported
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along the -axis. This term will contain the pressure contribution and the eects
of viscosity.

3.4 Multiscale Chapman-Enskog expansion

It is important to show that the discrete CA world is, at some appropriate scale
of observation, governed by admissible equations: the physical conservation laws
and the symmetry of the space are to be present and the discreteness of the lattice
should not show up. The connection between the microscopic Boolean dynamics
and the macroscopic, continuous world has to be established in order to assess
the validity of the model.

In what follows we restrict the discussion to the case where all speed ~vi have
the same modulus and no particle at rest exists.

The starting point to obtain the macroscopic behavior of the CA uid is to
derive an equation for the Ni's. Averaging the microdynamics 20 yields

Ni(~r + ~ci; t+ ) Ni(~r; t) =< i > (26)

where i is the collision term of the LGA under study. It is important to notice
that i(n) has some generic properties, namely

zX
i=1

i = 0
zX

i=1

~vii = 0 (27)

expressing the fact that particle number and momentum are conserved during the
collision process (the incoming sum of mass or momentum equals the outgoing
sum). If more conservation laws exists (e.g. enery), the collision term should
reect them. It is also expected that no extra quantities are conserved in addition
to the physical ones. This is usually not the case: spurious invariants are found
in several lattice models [14,62{65] and they may aect the physical behavior.

Equation 26 is still discrete in space and time. The Ni's vary between 0 and 1
and, at a scale L >> , T >>  , one can expect them to be smooth functions of
the space and time coordinates. Therefore, equation 26 can be Taylor expanded
up to second order and gives

@tNi + (~ci  r)Ni +
 2

2
@2

t Ni +
2

2
(~ci  r)2Ni + (~ci  r)@tNi =< i > (28)

The macroscopic limit of a LGA dynamics will require the solution of this equa-
tion. However, under the present form, there is little hope to solve it. Several
approximations will be needed. At some point, it will be necessary to use the
so-called Boltzmann assumption saying that Ni and Nj are uncorrealated if i 6= j
and approximate < i(n) > as i(N) (with all random Boolean variables re-
placed by their average values).
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Then, we will have to solve a nonlinear equation, which can be handeled
provided that we use a perturbation technique. For this purpose, we need a
small parameter . As we said we are interested to observe the system at a
macroscopic scale L >> . Thus, we introduce a new space variable ~r1 such that

~r1 = ~r @~r = @~r1
(29)

with  << 1
Unfortunately, the equation we obtain by substituting into 28 @~r with its ex-

pression in terms of ~r1 cannot be solved with a naive perturbation method. It is
necessary to introduce several time scales, otherwise divergences will occur. Fol-
lowing the procedure of the so-called multiscale expansion (see for instance [66]),
we introduce the extra time variables t1 and t2, as well as new functions N 

i

depending on ~r1, t1 and t2
N 

i = N 
i (t1; t2; ~r1)

Suppose that now we formally substitue into equation 28

Ni ! N 
i @t ! @t1 + 2@t2 @r ! @~r1

(30)

together with the corresponding expressions for the second order derivatives.
Rigorously, we have no reason to consider only two time scales. However this will
be enough here and, from a physical standpoint, we may anticipate that t1 will
be the scale giving the convective phenomena, while t2 will describe dissipative
processes.

After substitution in 30, we then obtain new equations for the new functions
N 

i . The advantage is that, now, these equations can be solved by a pertubation
method and the divergences removed [66]. Thus, we may write

N 
i = N

(0)
i + N

(1)
i + 2N

(2)
i + ::: (31)

In addition we notice that, on the region,

t1 = t t2 = 2t

we precisely have the equality

@t = @t1 + 2@t2 (32)

and our new equations have for solutions

N 
i (t; 

2t; ~r1) = Ni(t; ~r)

From now on, we shall omitt the superscript  onNi because we are only interested
in what happens when t1 = t and t2 = 2t.
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3.5 Chapman-Enskog procedure

The Chapman-Enskog method is the standard procedure used in statistical me-
chanics to solve an equation like 28 with a perturbation parameter . Assuming
that < i(n) > can be factorized into i(N), we write the contributions of each
order in . According to multiscale expansion 31, the right-hand side of 28 reads

i(N) = i(N
(0)) + 

zX
j=1

 
@i(N

(0))

@Nj

!
N

(1)
j +O(2)

Using expressions 31, 32 and 29 for Ni, @t and @~r in the left-hand side of 28 yields
the following conditions for the rst two orders in 

O(0) : i(N
(0)) = 0 (33)

and

O(1) : @t1N
(0)
i + @1viN

(0)
i =

1



zX
j=1

 
@i(N

(0))

@Nj

!
N

(1)
j (34)

where the subscript 1 in spatial derivatives (e.g. @1) indicates a dierential
operator expressed in the variable ~r1.

The rst equation determines the N
(0)
i 's. Once they are known, they can be

substituted into the second equation in order to obtain a solution for the N
(1)
i .

Unfortunately, this procedure is not as simple as it rst looks, because the matrix
(@=@N) (whose elements are @i=@Nj) is not invertible, due to the conservation
laws 27. Indeed X

i

 
@i

@Nj

!
=

@

@Nj

X
i

i = 0

and, similarly X
i

vi

 
@i

@Nj

!
= 0

Thus, the columns of the matrix (@=@N) are linear combinations of each other
and the determinant is zero. The above two equations can also be written as

 
@

@N

!T

E0 = 0

 
@

@N

!T

E = 0 1    d (35)

where the quantities E0 and E are called the collisional invariants and are
vectors of Rz dened as

E0 = (1; :::; 1)

E = (v1; :::; vz)

(36)
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The reason the E are called collisional invariants is because they described the
conserved quantities of the dynamics, namely

N  E0 =  N  E = u (37)

where  denotes the scalar product in Rz.
In order for equation 34 to have a solution, it is necessary that @t1N

(0)
i +

@1viN
(0)
i be in the image space of (@=@N). It is well known from linear algebra

that the image of a matrix is orthogonal (in the sense of the scalar product) to
the kernel of its transpose

Im

 
@

@N

!
=

2
4Ker

 
@

@N

!T
3
5?

(38)

Therefore, the solubility condition of equation 34 requires that @t1N
(0)
i +@1viN

(0)
i

be orthogonal to E0, E1 and E2. We shall see in the next section that this con-
dition is satied (equations 41 and 42).

Finally, note that when a solution to equation 34 exists, it is not unique
(again, due to the fact that (@=@N) is not invertible). For this reason, we also
impose the extra conditions that the macroscopic quantities  and ~u are entirely
given by the zero order of expansion 31

 =
zX

i=1

N
(0)
i ~u =

zX
i=1

~viN
(0)
i (39)

and, therefore

zX
i=1

N (`)
i = 0

zX
i=1

~viN
(`)
i = 0; for `  1 (40)

In other words, this amounts to asking that the solution N (1) is also orthogonal
to the collisional invariants and belongs to Im(@=@N).

3.6 Balance equations

Before we solve equations 33 and 34, remember that we are interested in the
behavior of the macroscopic quantities  and ~u. Conservation laws 27 imply
some important balance equation for these variables.

Summing equation 28 over i yields zero for the right-hand side. The same is
true if we rst multiply 28 with ~vi before summing. If, again, we express (28) in

terms of ~r1, t1, t2 and N
(`)
i we obtain (using equations 39) the following result at

order 
O() : @t1+ div1~u = 0 (41)
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and
O() : @t1u + @1

(0)
 = 0 (42)

The quantity 
(0)
 =

P
i ~vi~viN

(0)
i is the zero order approximation of the mo-

mentum tensor dened in 25. One recognizes in equation 41 the usual continuity
equation, while equation 42 expresses momentum conservation and corresponds
to the Euler's equation of hydrodynamics, in which dissipative eects are absent.

The same calculation can be repeated for the order O(2). Remembering
relations 40, we nd

@t2+


2
@2

t1
 +



2
@1@1

(0)
 + @t1@1u = 0 (43)

and
@t2u + @1

(1)
 +



2
@2

t1
ua +



2
@1@1S

(0)
 + @t1@1

(0)
 = 0 (44)

where S is the third-order tensor

S =
zX

i=1

viviviNi (45)

These last two equations can be simplied using relations 41 and 42. Let us rst
consider the case of equation 43. One has



2
@2

t1
 = 

2
@t1@1ua (46)

and, therefore



2
@2

t1
 +



2
@1@1

(0)
 + @t1@1u =



2
@1

h
@t1ua + @1

(0)


i
= 0 (47)

Thus, equation 43 reduces to
@t2 = 0 (48)

Similarly, since


2
@2

t1
ua = 

2
@t1@1

(0)


equation 44 becomes

@t2u + @1


(1)

 +


2


@t1

(0)
 + @1S

(0)



= 0 (49)

This last equation contains the dissipative contributions to the Euler equation 42.
The rst contribution is 

(1)
 which is the dissipative part of the momentum ten-

sor. The second part, namely 
2


@t1

(0)
 + @1S

(0)



comes from the second order

terms of the Taylor expansion of the discrete Boltzmann equation. These terms
account for the discreteness of the lattice and have no counterpart in standard
hydrodynamics. As we shall see, they will lead to the so-called lattice viscosity.
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The order  and 2 can be grouped together to give the general equations
governing our system. Summing equations 49 and 42 with the appropriate power
of  as factor gives

@tu +
@

@r

"
 +



2

 
@t1

(0)
 +

@

@r

S(0)


!#
= 0 (50)

where we have used that @t = @t1 + 2@t2 and @ = @1. Similarly, equation 41
and 48 yield

@t + div~u = 0 (51)

which is the standard continuity equation. Equation 50 corresponds to the
Navier-Stokes equation. With the present form, it is not very useful because
the tensors  and S are not given in terms of the quantities  and ~u. To go
further, we will have to solve equations 33 and 34 to nd an expression for N

(0)
i

and N
(1)
i as a function of  and ~u. However, for the time being, it is important

to remember that the derivation of the continuity equation 51 and the Navier-
Stokes equation 50 are soley based on very general considerations, namely thatP

i =
P
~vii = 0. The specic collision rules of the LGA under study (FHP

for instance) do not aect the structure of these balance equations. However, the
details of the collision rule will play a role for the explicit expression of  and S.

3.7 Local equilibrium

We now turn to the problem of solving equation 33, together with conditions 39
in order to nd N

(0)
i as a function of  and ~u.

The solutions N
(0)
i which make the collision term  vanish are known as the

local equilibrium solutions. Physically, they correspond to a situation where the
rate of each type of collision equilibrates. Since the collision time  is much
smaller than the macroscopic observation time, it is reasonable to expect, in rst
approximation, that an equilibrium is reached locally.

Provided that the collision behaves reasonably, it is found [61] that the generic
solution is

N
(0)
i =

1

1 + exp(A ~B  ~vi)
(52)

This expression has the form of a Fermi-Dirac distribution. This is a consequence
of the exclusion principle we have imposed in the cellular automata rule (no more
than one particle per site and direction). This form is explicitly obtained for the
FHP model by assuming that the rate of direct and inverse collisions are equal,
namely

Ti(N
(0)) = Ti+3(N

(0))

and
1

2
Di(N

(0)) =
1

2
Di+1(N

(0))
1

2
Di(N

(0)) =
1

2
Di1(N

(0))
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The quantities A and ~B in 52 are functions of the density  and the velocity eld
~u and are to be determined according to equations 39. In order to carry out this
calculation, N

(0)
i is Taylor expanded, up to second order in the velocity eld ~u

(i.e. second order in the Mach number). One obtains (see [14] for full details in
the case the FHP model).

N
(0)
i = a +

b

v2
~vi  ~u+

G()

v4
Qiuu (53)

where v = = and

Qi = vivi  v2

d
 (54)

The coecients entering this expression can be determined from 39. First we
assume that the lattice velocities have the following important properites

zX
i=1

~vi = 0 (55)

zX
i=1

vivi = v2C2 (56)

zX
i=1

vivivi = 0 (57)

zX
i=1

vivivivi = v4C4( +  + ) (58)

These conditions express the isotropy of tensors up to fourth order on the lattice.
These properties are necessary in order for the CA uid ow to be isotropic (i.e.
independent of a specic lattice orientation), up to order u2. They hold for the
hexagonal lattice with C2 = 3 and C4 = 3=4 (see [14,67]), but 58 is wrong for
a 2D square lattice and that is the reason why the FHP model is dened on a
hexagonal lattice.

From 56, one has
P

i vivi = v2C2 = v2dC2. On the other hand, if all ~vi

have same modulus v, a direct calculation gives
P

i vivi = zv2. Thus

C2 =
z

d

Similarly, using 58,

zX
i=0

vivivivi = v4C4(d +  + ) = v4(d+ 2)C4

Again, if all ~vi are of same length,
Pz

i=0 vivivivi = v2Pz
i=0 vivi and, from 56,

it is equal to v4C2. Therefore,

C4 =
C2

d+ 2
=

z

d(d+ 2)
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Using the above properties, it is easy to see that
P

iQi =
P

i Qivi = 0.
Thus the determination of the values of a and b is staightforward from 39

 =
zX

i=1

N
(0)
i = az ~u =

zX
i=1

~viN
(0)
i = bC2u

Hence,

a =
1

z
b =

1

C2

=
d

z

The function G is obtained from the fact that N
(0)
i is the Taylor expansion of

a Fermi-Dirac distribution. For FHP, it is found [14,61]

G() =
2

3

(3  )

(6  )

The fact that G(p) is not equal to 1 and depends on  expresses the lack of
Galilean invariance of the CA uid. Note that adding several rest particles to
the model is a way to restore gradually this invariance.

We may now compute the local equilibrium part of the momentum tensor,


(0)
 . This calculation requires to multiplying equation 53 by vivi and summing

over i.


(0)
 =

X
i

N
(0)
i vivi

= aC2v
2  C2

d
G()u2 + C4G()


u2 + 2uu


=


aC2v

2

C2

d
 C4


G()u2


 + 2C4G()uu (59)

The quantity

p =

aC2v

2

C2

d
 C4


G()u2


(60)

is called the pressure term and 2C4G()uu the convective part of the momen-
tum tensor. Thus the microdynamics gives an explicit expression for the pressure.
The term aC2v

2 corresponds to a perfect gas contribution, at xed temperature.
It is usually written as

p = c2
s (61)

where cs is the speed of sound. From this relation, we may identify

c2
s = aC2v

2 = v2=d

The other term, containing a u2 depenence is not physical and imply a spurious
behavior. This contribution can be suppressed in LB models (see section 4).

Note that in the FHP model, the temperature is not dened and the balance
equation for the kinetic energy is identical to the mass conservation equation,
since all particles have the same velocities. Temperature has been introduced in
multispeed lattice gas models, through the equipartition theorem[68{70].
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3.8 Correction to local equilibrium

The next step is to compute the terms involved in the Navier-Stokes equation 50

@tu +
@

@r

"


(0)
 + 

(1)
 +



2

 
@t1

(0)
 +

@

@r
S

(0)


!#
= 0 (62)

We shall restrict ourselves to rst order in the velocity eld u.

The lattice viscosity: From equation 59 we have


(0)
 = c2

s +O(u2)

Since @t1 = div1~u (from equation 41), one has @t1 = div~u and



2

@

@r
@t1

(0)
 =

c2
s

2

@

@r
@t1 = c

2
s

2

@div~u

@r
(63)

To compute the term involving

S
(0)
 =

zX
i=1

viviviN
(0)
i ;

we rst notice that the only contribution to N
(0)
i given by equation 53 will be

N
(0)
i = [b=v2]~vi  ~u because the other terms contain an odd number of ~vi. Thus,

using 58,
S

(0)
 = v2C4b(u + u + u)

and


2

@2

@rr
S

(0)
 =

v2

2
C4br2u + v2C4b

@

@r
div~u (64)

Substituting the results 63 and 64 into the Navier-Stokes equation 62 yields

@tu +
@

@r


(0)
 =  @

@r


(1)
  v2

2
C4br2u


"
v2C4b c2

s

2

#
@

@r

div~u (65)

The last term vanishes since v2C4b  c2
s=2 = 0 and the other term has the form

of a viscous eect latticer2~u, where

lattice = C4b
v2

2
=  v2

2(d+ 2)
(66)

where lattice is a negative viscosity. The origin of this contribution is the discrete-
ness of the lattice (S

(0)
 and @t1

(0)
 comes from the Taylor expansion). For this

reason, this term is referred to as a lattice contribution to the viscosity. The fact
that it is negative is of no consequence because the last contribution @

(1)


which we still have to calculate will be positive and larger than the present one.
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The collisional viscosity: The usual contribution to viscosity is due to the
collision between the uid particles. This contribution is captured by the term
@

(1)
 in equation 65. In order to compute it, we rst have to solve equation 34

for N
(1)
i . To lowest order in the velocity ow ~u, we have

1



zX
j=1

 
@i(N

(0))

@Nj

!
N

(1)
j = @t1N

(0)
i + @1viN

(0)
i

= @N
(0)
i

@
div1~u @N

(0)
i

@u

@1
(0)
 + @1viN

(0)
i

(67)

where we have expressed the time derivative of N
(0)
i in terms of the derivatives

with respect to  and u

@t1N
(0)
i =

@N
(0)
i

@
@t1+

@N
(0)
i

@u
@t1u (68)

and used equations 41 and 42 to express @t1 and @t1u. These substitutions
will ensure that the right-hand side of equation 67 will is the image of (@=@N).

As we did for the lattice viscosity, we shall only consider the rst order in the
velocity ow ~u. The omitted terms are expected to be of the order O(u3). From
the expressions 53 and 59, we have for the lowest order in ~u

N
(0)
i = a +

b

v2
viu and 

(0)
 = c2

s

Thus
@N

(0)
i

@
= a and

@N
(0)
i

@u
=
bvi

v2

and we can rewrite 67 as

1



zX
j=1

 
@i(N

(0))

@Nj

!
N

(1)
j = adiv1~u bvi

v2
@1

(0)
 + @1viN

(0)
i

=
b

v2
(vivi  v2

d
)@1u

=
b

v2
Qi@1u (69)

From this result, it is now clear that equation 67 will have a solution since, as
noticed previously, the z-dimensional vectors Q of component Qi are orthog-
onal to the collisional invariants E0 and E . Since E0 and E are in the kernel
of (@=@N)T , then Q is in the image space of (@=@N) (see equation 38).

We now consider the left-hand side of equation 67, for ~u = 0 (remember that

we want to obtain the rst contribution to N
(1)
i .
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An interesting observation is that, in general, the vectors Q are eigenvectors
of the matrix (@=@N). Thus we write 

@(N (0)

@N

!
~u=0

Q = Q

where  is the associated eigenvalue (for FHP, it is found that  = 3s(1  s)3,
with s = =6). This yields immediately the solution for N (1) as a multiple of
Q. Since Q is orthogonal to the collisional invariants, N (1) will clearly satisfy
the extra conditions 40. Thus we have

N
(1)
i =  b

v2
Qi@1u (70)

We may now compute the correction (1) to the momentum tensor. Since @1 =
@, we get


(1)
 = 

X
i

N
(1)
i vivi

=
v2b




C2

d
div~u  C4( +  + )@u



= v2 b




C2

d
 C4


div~u  C4(@u + @u)


(71)

3.9 The Navier-Stokes equation

We can now rewrite (to rst order in  and second order in the velocity ow ~u),

the Navier-Stokes equation 65. Using expression 59 for 
(0)
 , we get

@tu + @ (2C4G()uu) = rp v2

2
C4br2u

@

"
v2 b




C2

d
 C4


(div~u C4(@u + @u))

#

(72)

where the pressure p is given by relation 60
In the limit of low Mach number, the density can be assumed to be a constant,

except in the pressure term [71]. From the continuity equation 51, we then get
div~u = 0 and

1


@

(1)
 = 1


v2 bC4



h
@@u + @2

u

i
= collr2u (73)

with

coll = v2 bC4
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Within this approximation equation 72 can be cast into

@t~u+ 2C4G()(~u  r)~u = 1


rp+ r2~u (74)

The quantity  is the kinematic viscosity of our discrete uid, whose expression
is composed of the lattice and collisional viscosities

 = v2bC4


1


 1

2


=

v2

d+ 2


1


 1

2


(75)

The presence of the coecient C4 for the viscosity indicates that our results relies
on the isotropy of the fourth order tensor

P
i vivivivi. Thus, for a 2D square

lattice (e.g. the HPP model), a viscosity cannot be dened, even in the rst order
in ~u.

For the FHP model, the viscosity depends strongly on the density ( =
(=2)[1  (=6)]3 and may become arbitrarily large for the limiting values  = 0
and  = 6. Its minimal value is obtained for  = 3=2.

Whereas the form of equation 74 depends little on the type of collision the
particles experience, the expression 75 is very sensitive to the collision processes,
through the value of . In a lattice gas dynamics, the viscosity is intrinsic to
the model and is not an adjustable parameter. In order to change the viscosity,
collision rules should be modied. This is why the FHP model has been extended
to obtain the FHP-III model with a lowest intrinsic viscosity.

Up to the factor of 2C4G(), equation 74 is the standard Navier-Stokes equa-
tion. The fact that the coecient of the convective term (~u r)~u is dierent from
1 is an indication of the non Galilean invariance of the model. However, if we
assume that  ' const), this factor can be absorbed in a renormalization of the
time and the lattice dynamics is described by the usual hydrodynamic equation.

In section 4 we shall see that Galilean invariance can be restored in a more
general way when using a lattice Boltzmann dynamics. Also, viscosity will be an
adjustable parameter.

3.10 A two-phase CA uids

The ability of a cellular automata uids, like FHP, to model a real uid depends
very much on the application one considers. It is not appropriate to simulate
high Reynolds ows (because the viscosity is too high), but can be very useful
to describe situations with complicated boundary conditions (porous media) and
multi-phase or reactive ows (see for instance [13,72{75]).

In this section we consider a two-phase cellular automata uid. Each particle
of the uid can be in two possible states, say s = 1 or s = 1. If we call this
extra degree of freedom a spin, this uid can be compared with an Ising system
in which, the spins can move according to some hydrodynamics rules.
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We consider an interaction between nearest neighbor similar to that found in
classical dynamical Ising models. This will produce a surface tension eect at
the interface between the two phases. The introduction of such an interaction
requires real-valued elds (like the temperature) and, thus, the present model
goes beyond a simple, fully discrete cellular automaton.

It is interesting to remark that, in addition to being a binary uid model, this
system has some of the ingredients of a ferrouid [76], if the spin is interpreted
as the magnetization carried by the particles.

The collision rule Before we dene more precisely the spin interaction, let us
return to the particle motion. A collision rule which conserve mass, momentum
and spin can be dened in analogy with the FHP rule described in section 3.1.

We denote by si(~r; t) 2 f1; 0; 1g the state of the automaton along lattice
direction i at site ~r and time t (si = 0 means an absence of particle). Clearly the
presence of a particle is charcterized by s2

i = 1, regardless of its spin. Thus, the
collision term can be obtained by using s2

i as an occupation number.
When a collision takes place, the particles are redistributed among the lattice

directions but the same number of spin +1 and -1 particles should be present in
the output state as there were in the input state. A way to guarantee this spin
conservation is to assume that the particles are distinguishable, at least for what
concerns their spin.

Therefore the full collision of a Ising uid obeying FHP-like collision reads

si(~r + ~ci; t+ ) = si

sis
2
i+2s

2
i+4(1  s2

i+1)(1  s2
i+3)(1  s2

i+5)

+si+3s
2
i+1s

2
i+5(1  s2

i )(1  s2
i+2)(1  s2

i+4)

sis
2
i+3(1  s2

i+1)(1  s2
i+2)(1  s2

i+4)(1  s2
i+5)

+pqsi+1s
2
i+4(1  s2

i )(1  s2
i+2)(1  s2

i+3)(1  s2
i+5)

+p(1  q)si+4s
2
i+1(1  s2

i )(1  s2
i+2)(1  s2

i+3)(1  s2
i+5)

+(1  p)(1  q)si+2s
2
i+5(1  s2

i )(1  s2
i+1)(1  s2

i+3)(1  s2
i+4)

+(1  p)qsi+5s
2
i+2(1  s2

i )(1  s2
i+1)(1  s2

i+3)(1  s2
i+4)

(76)

where p and q and random boolean variables that are 1 with probability 1=2,
independently at each site and time step. These quantities select one of the two
possible outcome in the two-body collisions.

Spin interaction An important part of this Ising uid model is the interaction
between spins at the same sites and spins sitting on adjacent lattice sites. This
interaction produces the surface tension and can be adjusted through a parameter
which corresponds to the temperature of the system (which is asumed to be
uniform here).
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The interaction we propose here does not conserve the number of spins of
each sign. It only conserves the number of particles and, for this reason, does
not represent two dierent uids but two possible state of the same uid. Of
course, the miscibility or immiscibility of the two phases can be tuned through
the temperature.

The updating rule for the spin dynamics is taken from the Monte-Carlo
method [77], using the so-called Glauber transition rule. The main idea is that a
spin ips (change sign) if it can lower the local energy of the system. The energy
of the pair of spin si and sj is computed as E = J1sisj if the two spins are
nearest neighbors on the hexagonal lattice and E = J0sisj if they both sit on
the same site (remember that up to six particles can populate a given site).

However, a spin can ip even if this results in a local increase of enery. But,
then, the change is accepted only with a probability W (s ! s) which depends
on the temperature. In the Glauber dynamics, this probability is given by

W (si ! si) =
1

2
(1  sitanh(Ei))

where Ei is the energy before the ip

Ei =
1

kBT
(J0mi + J1Mi) si

and mi =
P

j 6=i sj is the on-site \magnetization" seen by spin si and Mi =P
<ji> sj is the \magnetization" carried by all the particles j on the neighboring

sites of spin i. The quantity T is the temperature and kB the Boltzmann constant
that we can set to 1 when working with an arbitrary temperature scale. When
more than one particle are present at a site, only one of them, chosen at random,
is checked for such a spin ip.

The above transition rule is obtained from the detailed balance condition,
namely

W (si ! si)

W (si ! si)
=

exp (E(si)=(kBT ))

exp (E(si)=(kBT ))

where E(si) denotes the Ising energy as a function of si and it has the properties
to drive an ergodic system to thermodynamic equilibrium.

As opposed to the standard the Monte-Carlo approach, where the lattice
sites are visited sequentially and in a random way, here we update synchronously
all the sites belonging to a given sub-lattice. Indeed, for the coherence of the
dynamics it is important not to update simultaneoulsy any two spins that are
neighbors on the lattice. This is for the same reason as explained in section 2.2
when we discussed the Q2R rule.

In an hexagonal lattice, it is easy to see that the space can be partitioned in
three sub-lattices so that all the neighbors of one sub-lattice always belong to the
two others (see gure 26).
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Figure 26: The three sub-lattices on the hexagonal lattice used for the syn-
chrounous spin update. The values 0, 1, 2 label the sites according to the sub-
lattice they belong.

Figure 27: Three snapshot of the evolution of the Ising FHP model below the
critical temperature. Particles with spin +1 are shown in black while gray points
show particles with -1. White cells indicate empty sites.

Therefore, the spin interaction rule described above cycles over these three
sub-lattices and alternate with the FHP particle motion given by equation 76.

It is of course possible to vary the relative frequency of the two rules (Glauber
and FHP). For instance we can perform n successive FHP steps followed by m
successive steps of the Ising rule in order to give more or less importance to the
particle motion with respect to the spin ip. When n = 0 we have a pure Ising
model on an hexagonal lattice but with possibly a dierent number of spins per
site.

If the temperature is large enough and periodic boundary conditions are im-
posed, the system evolves to a conguration where, on average, there are the
same amount of particles with spins up and down. Of course, the situation is not
frozen and the particles keep moving and spins continuously ip. As in regular
Ising systems, there is a critical temperature below which we can observe a global
magnetization and the growth of domains containing one type of spin. This sit-
uation is illustrated in gure 27 and corresponds to the case n = m = 1, namely
one spin update cycle followed by one step of FHP motion. It is observed that
the critical temperature depends on the update frequency n and m.

Another interesting situation corresponds to the simulation of a Raleigh-
Taylor instability (see gure 28). Two immiscible uids are on the top of each
other and the heavier is above the lighter. Due to gravity, the upper uid wants
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Figure 28: Rayleigh-Taylor instability of the interface between two immiscible
uids. Particles with spin +1 are shown in black and are \lighter" than gray
particles with having spin -1. An approximate immisciblity is obtained by choosing
a low temperature in the model.

to penetrate through the lower one. Since the two uids are immiscible, the
interface between them becomes unstable and, as time goes on, gives rise to a
mushroom-like pattern.

An external force like gravity can be added to our model by deecting with
some probability (and when possible) the trajectory of particles in a given di-
rection. Two immiscible uids can modeled by having a low temperature T in
the Glauber dynamics so as to produce the necessary surface tension. The upper
uid layer is initialized with only particles of spin -1, whereas the lower layer
contains only spins +1. Gravity is adjusted so that \light" particles go up and
heavy particles go down. After a few iterations, the at interface destabilizes as
shown in the last panel of gure 28.

4 The Lattice Boltzmann Method

Cellular automata uids, such as those discussed in the previous section, represent
idealized N-body systems. Their time evolution can be performed exactly on a
computer, without many of the approximations usually done when computing
numerically the motion of a uid. In particular, there is no need, in a CA
simulation to assume some factorization of the many-body correlation functions
into a product of one-particle density function.

Of course, the cellular automata model may be inadequate to represent a
real situation but it includes naturally the intrinsic uctuations present in any
system composed of many particles. This features is out of reach of most tractable
numerical technique. In many physical situations, spontaneous uctuations and
many-particle correlations can be safely ignored. This is however not always the
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case and, in sections 6.3 and 6.5, we shall see some examples of systems where
intrinsic uctuations are crucial.

On the other hand, a cellular automata simulation is very noisy (because it
deals with Boolean quantities). In order to obtain the macroscopic behavior of
a system (like the streaklines in a ow past an obstacle), one has to average the
state of each cell over a rather large patch of cells (for instance a 32 32 square)
and over several consecutive time steps. This requires larger systems and longer
simulation times Therefore, the benet of the cellular automata approach over
more traditional numerical techniques get blurred [78] when simulating pure uid
ows in simple geometries.

In addition, due to its Boolean nature, cellular automata models oer little
exibility to nely adjust external parameters. Many tunings are done through
probabilities, which is not always the most ecient way.

4.1 From Boolean to real-valued elds

When correlations can be neglected and the Boltzmann molecular chaos hypoth-
esis is valid, it may be much more eective to directly simulate on the computer
the lattice Boltzmann equation

Ni(~r + ~ci; t+ ) = Ni(~r; t) + i(N) (77)

with i given, for instance, by 22 with q replaced by 1/2. It is more advantageous
to average the microdynamics before simulating it rather than after doing it.
The quantities of interest Ni are no longer boolean variables but probabilities of
presence which are continuous variable ranging in the interval [0; 1].

A direct simulation of the lattice Boltzmann dynamics has been rst con-
sidered by McNamara and Zanetti [41]. It considerably decreases the statistical
noise that plague cellular automata models and considerably reduces the com-
putational requirements. The main drawback of this approach is that it neglects
many-body correlations and may become numerically unstable.

The lattice Boltzmann (LB) method has been widely used for simulating var-
ious uid ows [79] and is believed to be a very serious candidate to overcome
traditional numerical techniques of CFD (Computational Fluid Dynamics). Their
microscopic level of description provide a natural interpretation of the numeri-
cal scheme and permits intuitive generalizations to complex ow problems (two-
phase ow [13,28,74], magnetohydrodynamics [80], ow in porous media [23,24]
or thermohydrodynamics [81]).

The main weakness of current LB models is that they are dened on a regular
lattices, while CFD techniques can deal with arbitrary irregular meshes. For some
applications where the geometry cannot be tted by a regular lattice, this is a
strong limitation. Some eort are now devoted to extend LB models to irregular
lattices [82]. The succesful approach is probably to assume an underlying discrete
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velocity Boltzmann equation and express its evolution on a coarse grain discrete
spatial mesh. As a tentative example, section 5.3.3 shows a simple LB diusion
model in polar coordinates.

In a lattice Boltzmann uid, the most natural way to dene the collision term
i, is to average the microdymanics of a given underlying cellular automata uid
and factorize it into a product of average quantities, as we did in section 3 to
get the Boltzmann approximation. However, as one considers more sophisticated
lattice gas uid (like FHP-III [3]) or 3D models [61]), the collision term requires
a very large number of oating point operations at each lattice site and time
step. Even on a massively parallel computer, in which every cells are computed
simultaneously, this may not be acceptable.

The rst solution to this problem is to consider the same approximation as
we used with the Chapman-Enskog expansion when deriving the macroscopic
behavior of the FHP uid. The idea is to linearize the collision term around
its local equilibrium solution. This approach has been proposed by Higuera and
coworkers [42] and considerably reduces the complexity of the operations involved.

4.2 BGK models

Following the same idea, a further simplication can be considered [83]: the
collision term need not be related to an existing cellular automata microdynamics,
as long as particle and momentum are conserved. In its simplest form, the lattice
Boltzmann dynamics can be written as a relaxation equation [84,85]

fi(~r + ~vi; t+ )  fi(~r; t) = i(f) =
1




f

(0)
i (~r; t)  fi(~r; t)


(78)

where fi(~r; t) denotes the probability that, at time t, a particle is entering site ~r
along lattice direction i (note that here, we use the notation fi instead of Ni).
The quantity  is a relaxation time, which is a free parameter of the model. It
actually will determine the uid viscosity.

Equivalently, equation 78 reads

fi(~r + ~vi; t+ ) =
1


f

(0)
i (~r; t) +

 
1  1



!
fi(~r; t) (79)

which is the appropriate form for a numerical implementation.
The local equilibrium solution f (0)

i is a function of the actual density  =
P
fi

and velocity ow ~u =
P
fi~vi. Therefore, when implementing 79 on a computer,

one rst compute, at each site,  and ~u from the current values of the fi's and
then one may compute f

(0)
i (; ~u). In general, f (0) is a nonlinear function of  and

~u and thus, equ. 79 is nonlinear in the fi's.
It is important to notice that f (0) is model dependent and can adjusted so

as to produce a given, expected, behavior. In particular, the lack of Galilean
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invariance that plague cellular automata uid can be cured, as well the spurious
velocity contribution appearing in expression 60 of the pressure term. In a more
general context, f

(0)
i could include other physical features, such as a local tem-

perature [81,86] and can be tuned to describe other physical situations, as shown
in section 7.

Equation 78 is referred to as the lattice BGK method[84] (BGK stands for
Bhatnager, Gross and Krook [87] who rst considered a collision term with a
single relaxation time, in 1954). Equation 78 is studied by several authors [88,79],
due to its ability to deal with high Reynolds number ows. However, one diculty
of this approach are the numerical instabilities which may develop when large
velocity gradients are present.

4.3 Lattice Boltzmann uids

In this section we dene the generic dynamics of LB uid models (precisely BGK
models) and derive the corresponding macrosopic behavior.

A common example of LB uid is the so-called D2Q9 model (see [79]) dened
in two dimensions (D2) with nine variables, or quantities per sites (Q9). This
lattice and its possible directions of motion are shown in gure 29. Note that a
nine th direction i = 0 is dened to describe a population f0(~r; t) of particles at
rest (i.e. having ~v0 = 0). The isotropy problems inherent to square lattices in 2D
are solved by weighting dierently the eight possible directions of motion. Here
we interprete these weights as masses mi associated to the particles traveling
along each direction. Figure 29 (right) gives the approriate masses for the D2Q9
model.

v1

v2

v3
v4

v5

v6 v7 v8

4

1

4

1

4

1 4 1

Figure 29: The eight velocities in the D2Q9 lattice Boltzmann model of a two-
dimensional uid (on the left) and the mass associated to each of these directions
(on the right).

In a general DdQ(z + 1) LB uid, the macroscopic quantities, such as the
local density  or the velocity ow ~u are dened as usual as

 =
zX

i=0

mifi ~u =
zX

i=0

mifi~vi (80)
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where z is again the number of non-zero velocities in the model.
We set v = = and assume that the lattice has the following properties

zX
i=1

mi = C0

zX
i=1

mivivi = C2v
2 (81)

and
zX

i=1

mivivivivi = C4v
4( +  + ) (82)

Note, aslo, that odd tensors are supposed to vanish. For the D2Q9 model, we
have mi = 1 for diagonal motions, mi = 4 for horizontal and vertical motions
and (see [14])

C0 = 20; C2 = 12; C4 = 4

For the D2Q7 (hexagonal lattice in two dimensions) one has mi = 1 for all i and

C0 = 6; C2 = 3; C4 =
3

4

The next step is to dene the local equilibrium distribution f (0)
i as a function

of the macroscopic quantities  and ~u. A natural choice is to adopt a similar
expression as obtained for the FHP model, namely equation 53. Accordingly, we
dene

f
(0)
i = a +

b

v2
~vi  ~u+ e

u2

v2
+ 

h

v4
viviuu i  1

f
(0)
0 = a0+ e0

u2

v2
(83)

where a, a0, b, e, e0 and h are coecients which will now be determined, rst
using mass and momentum conservation, and second by matching the form of
the momentum tensor with the standard expression of hydrodynamics.

Mass and momentum conservation impose
zX

i=0

mii = 0 and
zX

i=0

mi~vii = 0

This implies that
zX

i=0

mif
(0)
i =  and

zX
i=0

mi~vif
(0)
i = ~u (84)

because  and ~u are dened through relations 80. Using relations 81 and 82, we
obtain from 83

zX
i=0

mif
(0)
i = (m0a0 + C0a) + (m0e0 + C0e+ C2h)

u2

v2

zX
i=0

mi~vif
(0)
i = C2b~u

(85)
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As in the case of a CA uid (see section 3) we assume here that the LB dynamics
can be solved by a multiscale Chapman-Enskog expansion. Thus, we write

fi = f
(0)
i + f

(1)
i + :::

and the zeroth order of the momentum tensor is


(0)
 =

8X
i=0

mivivif
(0)
i

= C2v
2

"
a+


e+

C4

C2

h

u2

v2

#
 + 2C4huu

(86)

In a real uid, when the dissipative terms are disregarded (Euler equation) one
has the following expression for the momentum tensor


(0)
 = c2

s + uu (87)

where cs is the sound speed.
By comparing equation 84 with 85 and equation 87 with 86 we obtain the

following conditions

a =
1

C2

c2
s

v2
m0a0 = 1  C0

C2

c2
s

v2

and

b =
1

C2

e =  1

2C2

m0e0 =
C0

2C2

 C2

2C4

h =
1

2C4

Where the sound speed is considered as an adjustable parameter. With the above
result, we can rewrite 83 as

f
(0)
i = 

"
1

C2

c2
s

v2
+

1

C2

~vi  ~u
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+
1

2C4v4


vivi  v2C4
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uu
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C2

c2
s
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2C4


u2
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(88)

4.4 The Navier-Stokes equation

In equation 50, we have obtained the following result

@tu + @


 +



2


@t1

(0)
 + @S

(0)



= 0 (89)

where t = t1


+ t2
2 and ~r = ~r1= take into account the dierent time scales of the

problem (see equations 29) and (32).
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The derivation of 89 only relies on the fact that
P
mii = 0 and

P
mii~vi = 0

and, thus, this equation is still valid here.
We have already obtained (0) in the previous section. We still need to com-

pute S
(0)
 and (1). The quantity f (1) is dened by a similar equation as obtained

in relation 34, namely

1



zX
j=0

 
@i(f

(0))

@fj

!
f

(1)
j = @t1f

(0)
i + @1vif

(0)
i

Since i = 1



f

(0)
i (~r; t)  fi(~r; t)


, the above equation simply reads

 1


f

(1)
i = @t1f

(0)
i + @1vif

(0)
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= @f
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div1~u @f
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 + @1vif
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(90)

with div1 =
P

 @1. We shall now compute f
(1)
i to the rst order in ~u. We have

f
(0)
i = a +

b

v2
viu f

(0)
0 = a0

and


(0)
 = c2

s (91)

Thus,

@f
(0)
i

@
= a

@f
(0)
i

@u

=
b

v2
vi

@f
(0)
0

@
= a0

@f
(0)
0

@u

= 0

and we obtain

f
(1)
i =  1

C2v2


vivi  c2

s


@1u and f

(1)
0 = a0div1~u

Using that @1 = @ , the order O() contribution to  reads


(1)
 = 

zX
i=0

mif
(1)
i vivi

= v2

" 
c2

s

v2
 C4

C2

!
div~u C4
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(92)

Thus

@
(1)
 = v2

" 
2
C4

C2
 c2

s

v2

!
@div~u+

C4

C2
@2

u

#
(93)

From this expression, we get two viscosity coecients (shear and bulk viscosity),
as usual in compressible uids.
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The nal step is the calculation of the lattice viscosity. The rst term in
89 giving a contribution to the lattice viscosity is @(=2)@t1

(0)
 . With 

(0)
 =

c2
s +O(u2), we have



2
@t1

(0)
 = 

c2
s

2
@t1 =  c

2
s

2
div~u

where we have used that @t1 + div1~u = 0 (see equation 41) and the denition
of the length scale div1 = div. Therefore



2
@@t1

(0)
 =  c

2
s

2
@div~u (94)

Similarly, we must compute the contribution due to S
(0)
 in equation 89

S
(0)
 =

zX
i=0

mivivivif
(0)
i

= v2C4

C2

(u + u + u) (95)

Consequently, we obtain the dissipative lattice contributions
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(96)

Finally, after substitution of 96, 93 and 91 into equation 89, we obtain

@tu + u@u + udiv~u = c2
s@ + v2C4

C2


  1

2


r2u +

v2

  1

2

"
2
C4

C2
 c2

s

v2

#
@div~u (97)

In the case of an incompressible uid (at low Mach number, for instance) one has
div~u = 0 and one recovers the usual Navier-Stokes equation

@t~u+ (~u  r)~u = 1


rp+ lbr2~u (98)

where p = c2
s is the scalar pressure and lb is the kinematic viscosity

lb = v2C4

C2


  1

2


(99)

As we see from this reslut, there are two free physical quantities in this model,
c2

s and , and three parameters C0, C2 and C4 depending of the specic lattice
chosen for the simulation.
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Changing cs within acceptable limits will modify the sound speed (or the tem-
perature, since p = c2

s). Clearly c2
s < (C2=C0)v

2 otherwise a0 become negative.
Also, the relaxation time  can be tuned to adjust the viscosity within some

range. We can see that when  is small, relaxation to f (0) is fast and viscosity
small. This means that the collision between the particles are quite eective to
restore the local equilibrium.

However,  cannot be made arbitrarily small since  < 1=2 would imply
a negative viscosity. Practically, more restrictions are expected, because the
dissipation length scale should be much larger than the lattice spacing. The value
 = 1=2 yields numerical instability and the smaller acceptable value depends on
the velocity gradients.

Figure 30: Non-stationary ow past a plate obtained with the D2Q8 lattice Boltz-
mann model. System size is 512 128,  = 1: and the entry speed is u1 = 0:025.
From left to right and top to bottom, the gure shows the dierent stage of evo-
lution.

Figure 30 illustrates the behavior of the LB uid in a simulation of a ow
past a plate leading to a von Karman street pattern.

4.5 A short summary of LB models

This section summarizes the main nding of the above discussion, in order to
highlight the important steps necessary to implement on a computer a LB uid
simulation.

1. The system is described in terms of z + 1 quantities fi(~r; t) giving the prob-
ability of presence of a particle entering lattice site ~r with velocity ~vi, at time
t. The eld f0 corresponds to a population of rest particles, with ~v0 = 0. The
other possible velocities ~vi depend on the lattice under consideration. Usually,
one has slow and fast velocities. The former ones have modulus v = = where
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 is the lattice spacing and  the time step. The modulus of fast velocities are
lattice-dependent.

The physical quantities are the density  and velocity eld ~u dened as

 =
zX

i=0

mifi ~u =
zX

i=1

mifi~vi

where m0 can be set to 1 without loss of generality, and the othermi are chosen so
as to ensure the isotropy of the fourth order tensor

Pz
i=1 mivivivivi. Usually,

the value of mi depends whether ~vi is a fast or slow velocity.

2. For lattice sites not corresponding to a boudary of the system, the dynamics
is given by equ. 79

fi(~r + ~vi; t+ ) =
1


f

(0)
i (~r; t) +

 
1  1



!
fi(~r; t) (100)

For boundary sites, a no-slip condition is enforced by bouncing back the incoming
fi.

The local equilibrium distribution is given by equ. 88. From a numerical point
of view, it make sense to compute directly mifi and mif
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i

mif
(0)
i = mi

"
1
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+

1
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2C2

 C2

2C4


u2

v2

#

where  and ~u are computed from the current values of fi, as explained in step
1.

3. The coecients C0, C2 and C4 are dened in equ. 81 and 82, i.e.

zX
i=1

mi = C0

zX
i=1

mivivi = C2v
2

and
zX

i=1

mivivivivi = C4v
4( +  + )

These quantities are lattice dependent and are given in table 1 for some standard
lattices (see also [79] for a slightly dierent formulation). Note that there is some
arbitrariness in the choice of the mi. The important point is to keep the correct
ratio between the slow and fast masses. Then, if all mi, mi  1 are multiplied
by the same factor, C0, C2 and C4 are modied proportionally and it is easy to
check that f

(0)
0 and mif

(0)
i are invariant under such a scaling of mass.
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model slow velocities fast velocities C0 C2 C4 geometry
D1Q3 jvij = v, mi = 1 2 2 2/3 linear lattice

D2Q9 jvij = v, mi = 4 jvij =
p

2v, mi = 1 20 12 4 square lattice
D2Q7 jvij = v, mi = 1 6 3 3/4 hex lattice

D3Q15 jvij = v, mi = 1 jvij =
p

3v,mi = 1=8 7 3 1 cubic lattice

D3Q19 jvij = v, mi = 2 jvij =
p

2v,mi = 1 24 12 4 cubic lattice

Table 1: The geometrical coecients necessary to compute the local equilibrium
distribution in a LB simulation.

The coecients  determines the uid viscosity as

lb = v2C4

C2


  1

2



and cs can be tune to select the sound speed. The maximal value is limited by

c2
s < (C2=C0)v

2

A commonly chosen value is c2
s = v2(C4=C2).

Remember that numerical instabilities may develop in LB uid models (see
section 4.6).

4. Up to order O(u2), the above numerical scheme solves the continuty equation

@t + div~u = 0

and Navier{Stokes equation

@tu + u@u + udiv~u = c2
s@+ lbr2u +

v2

  1

2

 "
2
C4

C2
 c2

s

v2

#
@div~u (101)

This equation simplies when (u=cs) << 1 since, at low Mach number one may
assume that div~u = 0.

4.6 Subgrid models

In order to achieve high Reynolds number, the viscosity should be made as small
as possible. A solution to overcome the problem of numerical instabilities that
appear when   1=2 is to make the viscosity vary locally at each time step so
as to self-adjust to the ow pattern.

This is the main idea of what is called a subgrid model (a standard approach
in computational uid dynamics). One assumes that an eective viscosity results
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from the unresolved scales, that is the scale below the lattice spacing . Our
goal is not to give a theoretical discussion of subgrid models but, rather, to adopt
a pragmatic approach and show how to introduce eddy viscosity in a lattice
Boltzmann model, following Hou et al.' s work [88].

Instability appears where the magnitude of the local strain tensor

S =
1

2
(@u + @u)

is large. In the so-called Smagorinski subgrid model, the relaxation time is mod-
ied as

0 =  + 3C2
smago

2jSj
where  = 1=2 and Csmago > 0 is the Smagorinski constant (in practice, a param-
eter of the model set for instance to 0.5).

The magnitude jSj of the tensor S can be computed locally, without tak-
ing extra derivatives, just by considering the nonequilibrium momentum tensor
(1)

 =
P

i vivi(fi  f eq
i ) Then, the quantity jSj is directly obtained as

jSj =
 +

r
2 + 182C2

smago

q


(1)


(1)


62C2
smago

Therefore the bare viscosity  is transformed into

 0 =  + t

with t the Smagorinski eddy viscosity

t = C2
smago

2jSj

4.7 Pattern formation in snow transport

In this section, we apply the LB and CA methods to the problem of modeling
the formation of snowdrifts (see [89,90] for more details). The dynamics of solid
particles erosion, transport and deposition due to the action of a streaming uid
plays a crucial role in sand dune formation, sedimentation problems and snow
transport. This eld remains rather empirical compared to other domains of
science and experts do not all agree on the mechanisms involved in these process.
The CA and LB approach give a new and promising way to address these dicult
problems.

Phenomenologically, snow transport has been divided in three main processes,
creeping, saltation and suspension, each corresponding to a dierent observation
scale [91]. Various patterns of accumulations can be observed [91,92], with quite
dierent characteristic sizes: they range from the small ripples (oscillations of a
few centimeters over a at surface) up to large wind slabs tens of meters long
leeward a mountain crest.
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4.7.1 The wind-snow model

In our approach, the wind is described with a D2Q9 LB model, using the sub-
grid technique presented in the previous section in order to achieve large enough
Reynolds number ows. The Smagorinski constant is varied from 0 to C1 within
the few lattice sites above the ground prole (i.e. the top of the deposition layer)
so as to ensure a log prole for the wind velocity eld ~u [89].

The snow transport is obtained by adding solid particles on top of the LB wind
model. We dene Ni(~r; t) 2 f0; 1; 2; :::;1g as the number of particles entering
site ~r at time t with velocity vi. Snow particles can be injected in the simulation
(snowfall) or eroded from the ground, deposited and transported according to
the combined eect of gravity and local wind velocity. We consider the following
rules to describe the transport, erosion and deposition phenomena:

Transport: an arbitrary number of snow grains may reside at each lattice
site. During the updating step, they synchronously move to the nearest neighbor
sites. Between times t and t + s, particles at site ~r should move to ~r + s ~w,
where s is the time step associated to solid particle motion, ~w = ~u + ~ufall,
with ~u the local wind speed and ~ufall the falling speed (accounting for gravity).
Usually, ~r + s ~w does not correspond to a lattice node and the amount of grains
that reach each neighbor is computed according to the following randomized
algorithm, which ensures that the average motion is correct. One computes
pi = max(0; (s=)(~vi  ~w)=j~vij2), for i = 1; 3; 5; 7 (if pi > 0, then pi+4 = 0, since
~vi = ~vi+4). For eciency, we choose s   , but small enough so that pi is always
less than 1. Then, each particle ` jumps to site ~r + `

1~v1 + `
3~v3 + `

5~v5 + `
7~v7,

where `
i is a Boolean quantity which is 1 with probability pi. If N =

P
Ni

is large enough, this binomial scattering can be approximated by a Gaussian
distribution [93]. Note that in this algorithm, there is no attempt to include
specic rules for creeping, saltation or suspension.

Deposition: lattice sites can be either solid (original landscape or deposited
snow) or free (air). Snow particles on a free site may \freeze" if the neighbor
site i they want to jump to is a solid site: Nfrozen ! Nfrozen + Ni, Ni ! 0.
When Nfrozen exceed some pre-assigned threshold Ns, the site becomes solid and
subsequent incoming wind particle will bounce back (hence dening a new ground
prole). This threshold gives a way to assign some size to the snow akes. When
a site solidies the wind particles that may be present get trapped until erosion
frees them again.

Erosion: deposited particles may be eroded under some conditions. For snow,
the erosion rate seems to be related to the wind speed above the solid site [94], the
concentration of snow being transported, the saturation concentration and the
eciency of the transport [91]. In our model, we express these mechanisms in a
very simple way: erosion means that each frozen snow particle is ejected upwards
(N3 ! N3 + 1, Nfrozen ! Nfrozen  1) with probability p. When the local wind
is fast enough, these ejected snow particles will be transported. Otherwise they
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Figure 31: Deposition pattern of snow in a trench (0.7m1.7m, lattice spacing
0.03m, Ns = 10, p = 0:04 and C1 = 0:3). Snow particles are introduced on
the left corner of the simulation; proles are shown every 1000 iterations. The
experimental proles measured by Kobayashi [95] (given every 1/2 hour for the
rst layers) are sketched in the inset.

fall back and freeze again.

4.7.2 Deposition patterns

The above simple rules, when combined with the LB wind dynamics, are sucient
to produce realistic deposition patterns at dierent space scales by varying the
Smagorinski constant C1, the threshold Ns and the erosion probability p [90].

Figure 31 illustrates the lling of a trench excavated in a large at area. Good
qualitative agreement is observed between the model and reality [95], mainly for
the rst part of the experiment (growth of two deposition peaks) before the wind
has slowed down in the outdoor experiment.

Figure 32 shows small scale patterns known as ripples occurring with both
sand and snow transport. Ripples are mainly due to creeping transport. The
ratio we nd between the height and the spacing of the oscillations (called the
wave index) ranges around 6; this value agrees with the lowest index found for
sand [96] in eld observations, ts well wind tunnel experiments values [97] and
sand ripples in water [96]. Outdoor snow ripples are more complicated since
freezing and cohesion have to be taken into account; their wave index has been
measured to be around 16 [91,98]. In agreement with real observations, we also
see in our simulation that ripples move horizontally. This eect is illustrated in
the gure. As observed in [99], our model also shows that large ripples can be
built through the merging of smaller ones, traveling faster.

This model not only produces quantitatively realistic deposits, it also provides,
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Figure 32: Formation of ripples, as obtained from our model. Particles are con-
tinuously injected in the lower left corner of the simulation and the ripples grow
spontaneously. The deposition prole is given every 1000 time steps, which makes
the horizontal ripple motion quite clear (as well as the higher speed of the smaller
ripples \escaping" rightwards). The lattice spacing is around 0.03m, Ns = 10,
p = 0:02 and C1 = 5:0.

through simple and intuitive rules, a better understanding of the basic (and quite
controversial) mechanisms that occur in particle transport. Various patterns
of deposition result from the emergence of a collective eect rather than from
mechanisms that have not yet been identied. In a CA type of approach, creeping,
saltation or suspension are no longer three phenomena requiring each a special
treatment: they are all captured by the same erosion/transport mechanisms.
Therefore, a unied view of the basic laws governing the formation of particle
deposition pattern is gained.

5 Reaction-Diusion systems

Diusive phenomena and reaction processes play an important role in many ar-
eas of physics, chemistry and biology and still constitute an active eld of re-
search. Systems in which reactive particles are brought into contact by a diu-
sion process and transform, often give rise to very complex behaviors. Pattern
formation [100,101], is a typical example of such a behavior in reaction-diusion
processes.

In addition to a clear academic interest, reaction-diusion phenomena are
also quite important in technical sciences and still constitute numerical chal-
lenges. As an example, we may mention the famous problem of carbonation in
concrete [102,103].

In many reaction-diusion problems a particle based model, such as a lattice
gas dynamics, provides a useful approach and ecient numerical tool.

For instance, processes such as aggregation, formation of a diusion front,
trapping of particles performing a random walk in some specic region of space [104,105],
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or the adsorption of diusing particles on a substrate [106] are important problems
that are dicult to solve with the standard diusion equation. A microscopic
model, based on a cellular automata dynamics, is therefore of clear interest.

Reaction processes, as well as growth mechanisms are most of the time nonlin-
ear phenomena, characterized by a threshold dynamics. While they are naturally
implemented in terms of a point-particles description they may be very dicult
to analyze theoretically and even numerically, with standard techniques, due to
the important role that uctuations may play. In the simplest cases, uctations
are responsible for symmetries breaking which may produce interseting patterns,
as we shall see later in this section.

More surprisingly, microscopic uctuations are sometime relevant at a macro-
scopic level of observation because they may induce an anomalous dynamics, as
in the A + A ! 0 or A + B ! 0 annihilation reactions [34,107]. These systems
depart from the behavior predicted by the classical approach based on dierential
equations for the densities. The reason is that they are uctuations-driven and
that correlations cannot be neglected. In other words, one has to deal with a
full N-body problem and the Boltzmann factorization assumption is not valid.
For this kind of problem, a lattice gas automata approach turns out to be a very
successful approach.

Cellular automata particles can be equipped with diusive and reactive prop-
erties, in order to mimic real experiments and model several complex reaction-
diusion-growth processes, in the same spirit as a cellular automata uid simu-
lates a uid ow: these systems are expected to retain the relevant aspects of the
microscopic world they are modeling. Diusion can be obtained with the rule
described in section 2.6. Chemical reactions, such as A + B ! C, are treated
in an abstract way, as a particle transformation phenomena rather than a real
chemical interaction.

Within the CA approach, there are two ways of modeling a spatially extended
system with local reactive interactions. The rst one is to use a standard CA
scheme: each cell is updated according to the state of its neighbors. The sec-
ond way is to consider a lattice gas (LG) approach. As already mentioned, LG
are a particular class of cellular automata, characterized by a two-phase dynam-
ics: rst, a completely local interaction on each lattice point, and then particle
transport (or propagation) to nearest-neighbor sites. This way of partitioning
the space prevents the problem of having a particle simultaneously involved in
several dierent interactions.

Here we shall start the discussion with the rst kind of model. Some reactive
phenomena can be nicely described by simple rule, without the space partitioning
of the LG paradigm. In section 5.1, we present a model of excitable media in
which chemical waves are observed and, in section 5.2, we shall see an example
of a surface reaction on a catalytic substrate.

Then, in section 5.3, we shall concentrate on the LG approach which is well
suited to represent many reaction-diusion processes in terms of ctitious parti-
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cles evolving in a discrete universe. We shall rst present the generic model for
diusion with only one species of particles. The approach can be extended to
the case where several dierent chemical species coexist simultaneously on the
same lattice and diuse. It just requires more bits of information to store the
extra automaton states. Then, it is easy to supplement the diusion rule with the
annihilation or creation of particles of a dierent kind, depending on the species
present at each lattice site and the reaction rule under study.

The microdynamics will be given, as well as its link to macroscopic rate equa-
tions. The corresponding LB extension will be discussed too. As an illustration
of the method, an application to the formation of patterns of precipitate in a
reaction-diusion process (the so-called Liesegang structures) will be presented.

Note that in section 6, we shall consider other reaction-diusion processes,
using the multiparticle method. Other examples and applications can be found
in [36].

5.1 Excitable media

An excitable medium is basically characterized by three states [36]: the resting
state, the excited state and the refractory state. The resting state is a stable
state of the system. But a resting state can respond to a local perturbation and
become excited. Then, the excited state evolves to a refractory state where it no
longer inuences its neighbors and, nally, returns to the resting state.

A generic behavior of excitable media is to produce chemical waves of various
geometries [108,109]. Ring and spiral waves are a typical pattern of excitations.
Many chemical systems exhibits an excitable behavior. The Selkov model [110]
and the Belousov{Zhabotinsky reaction are examples. Chemical waves play an
important role in many biological processes (nervous systems, muscles) since they
can mediate the transport of information from one place to another.

The Greenberg{Hasting model is an example of a cellular automata model
of an excitable media. This rule, and its generalization, have been extensively
studied [111,112].

The implementation we propose here for the Greenberg{Hasting model is the
following: the state (~r; t) of site ~r at time t takes its value in the set f0; 1; 2; :::; n
1g. The state  = 0 is the resting state. The states  = 1; :::; n=2 (n is assumed
to be even) correspond to excited states. The rest,  = n=2 + 1; :::; n 1 are the
refractory states. The cellular automata evolution rule is the following:

1. If (~r; t) is excited or refractory, then (~r; t+ 1) = (~r; t) + 1 mod n.

2. If (~r; t) = 0 (resting state) it remains so, unless there are at least k excited
sites in the Moore neighborhood of site ~r. In this case (~r; t) = 1.

The n states play the role of a clock: an excited state evolves through the sequence
of all possible states until it returns to 0, which corresponds to a stable situation.
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Figure 33: Excitable medium: evolution of a stable initial conguration with 10%
of excited states  = 1, for n = 10 and k = 3. The color black indicates resting
states. After a transient phase, the system sets up in a state where pairs of
counter-rotating spiral waves propagate. When the two extremities come into
contact, a new, similar pattern is produced.

The behavior of this rule is quite sensitive to the value of n and the excitation
threshold k. Figures 33 and 34 show the evolution of this automaton for two
dierent sets of parameters n and k. Both simulations are started with a uni-
form conguration of resting states, perturbed by some excited sites randomly
distributed over the system. If the concentration of perturbation is low enough,
excitation dies out rapidly and the system returns to the rest state. Increasing
the number of perturbed states leads to the formation of traveling waves and
self-sustained oscillations may appear in the form of ring or spiral waves.

The Greenberg{Hasting model has some similarity with the \tube-worms"
rule proposed by Tooli and Margolus [10]. This rule is intended to model the
Belousov{Zhabotinsky reaction and is as follows. The state of each site is either
0 (refractory) or 1 (excited) and a local timer (whose value is 3, 2, 1 or 0) controls
the refractory period. Each iteration of the rule can be expressed by the following
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Figure 34: Excitable medium: evolution of a conguration with 5% of excited
states  = 1, and 95% of resting states (black), for n = 8 and k = 3.

Figure 35: The tube-worms rule for an excitable media

sequence of operations: (i) where the timer is zero, the state is excited; (ii) the
timer is decreased by 1 unless it is 0; (iii) a site becomes refractory whenever the
timer is equal to 2; (iv) the timer is reset to 3 for the excited sites which have
two, or more than four, excited sites in their Moore neighborhood.

Figure 35 shows a simulation of this automaton, starting from a random ini-
tial conguration of the timers and the excited states. We observe the formation
of spiral pairs of excitations. Note that this rule is very sensitive to small modi-
cations (in particular to the order of operations (i) to (iv)).

Another rule which is also similar to Greenberg-Hasting and Margolus-Tooli
tube-worm models is the so-called forest-re model. This rule describes the prop-
agation of a re or, in a dierent context, may also be used to mimic contagion
in case of an epidemic. Here we describe the case of a forest-re rule.

The forest-re rule is a probabilitic CA dened on a d-dimensional hypercubic
lattice. Initially, each site is occupied by either a tree, a burning tree or is empty.
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Figure 36: The forest re rule: grey sites correspond to a grown tree, black pixels
represent burned sites and the white color indicates a burning tree. The snapshot
given here represents the situation after a few hundred iterations. The parameters
of the rule are p = 0:3 and f = 6  105.

The state of the system is parallel updated according to the following rule: (1)
a burning tree becomes an empty site; (2) a green tree becomes a burning tree
if at least one of its nearest neighbors is burning; (3) at an empty site, a tree
grows with probability p; (4) A tree without a burning nearest neighbor becomes
a burning tree during one time step with probability f (lightning).

Figure 36 illustrates the behavior of this rule, in a two-dimensional situation.
Provided that the time scales of tree growth and burning down of forest clusters
are well separated (i.e. in the limit f=p ! 0), this models has self-organized crit-
ical states [113]. This means that in the steady state, several physical quantities
characterizing the system have a power law behavior. For example, the cluster
size distribution N (s) and radius of a forest cluster R(s) vary with the number
of trees s in the forest cluster as N (s)  sC(s=smax) and R(s)  s1=S(s=smax)
Scaling relations can be established between the critical exponents  and , and
the scaling functions C and S can be computed.

5.2 Surface reaction models

The problem of nonequilibrium phase transition is an important topics in physics.
The situation is not as clear as it is for equilibrium systems and no general
theory is available to describe such systems. Most of the known results are
based on numerical simulations. However, as is the case for equilibrium systems,
the concept of universality classes appears to be relevant although we do not
completely understand how the universality classes are characterized.
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In this section, we discuss the case of a nonequilibrium phase transition in a
simple model of reaction on a catalytic surface. The system is out of equilibrium
because it is an open system in which material continuously ows in and out.
However, after a while, it reaches a stationary state and, depending on some
control parameters, may be in dierent phases.

The system we shall consider is the so-called Zi model [114]. This model is
based upon some of the known steps of the reaction AB2 on a catalyst surface
(for example CO  O2). The basic steps are

 A gas mixture with concentrations XB2
of B2 and XA of A sits above the

surface and can be adsorbed. The surface can be divided into elementary
cells. Each cell can adsorb one atom only.

 The B species can be adsorbed only in the atomic form. A molecule B2

dissociates into two B atoms only if two adjacent cells are empty. Otherwise
the B2 molecule is rejected. The rst two steps correspond to the reactions

A ! A(ads) B2 ! 2B(ads) (102)

 If two nearest neighbor cells are occupied by dierent species they chemi-
cally react according to the reaction

A(ads) +B(ads) ! AB(desorb) (103)

and the product of the reaction is desorbed. In the example of the COO2

reaction, the desorbed product is a CO2 molecule.

This nal desorption step is necessary for the product to be recovered and for
the catalyst to be regenerated. However, the gas above the surface is assumed
to be continually replenished by fresh material so that its composition remains
constant during the whole evolution.

It is found by sequential numerical simulation [114] that a reactive steady
state occurs only in a window dened by

X1 < XA < X2

where X1 = 0:3890:005 and X2 = 0:5250:001 (provided that XB2
= 1XA).

This situation is illustrated in gure 37, though for the corresponding cellular
automata dynamics and XB2

6= 1 XA.
Outside this window, the steady state is a \poisoned" catalyst of pure A

(XA > X2) or pure B (XA < X1). For XA > X1, the coverage fraction varies
continuously with XA and one speaks of a continuous (or second-order) nonequi-
librium phase transition. At XA = X2, the coverage fraction varies discontinu-
ously with XA and one speaks of a discontinuous (or rst-order) nonequilibrium
phase transition. The asymmetry of behavior at X1 and X2 comes from the fact
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that A and B atoms have a dierent adsorption rule: two vacant adjacent sites
are necessary for B to stick on the surface, whereas one empty site is enough for
A.

From a physical point of view, the dynamics of such a system is not sequential
since many cells can be reacting simultaneously, within a given small time inter-
val. A parallel, asynchronous dynamics would then be a more realistic updating
scheme. However, it is interesting to study the Zi model with a fully paral-
lel, synchronous cellular automata dynamics [115], which represents the other
limiting case.

In a CA approach the elementary cells of the catalyst are mapped onto the
cells of the automaton. In order to model the dierent processes, each cell j can
be in one of four dierent states, denoted j ji = j0i, jAi, jBi or jCi.

The state j0i corresponds to an empty cell, jAi to a cell occupied by an
atom A, and jBi to a cell occupied by an atom B. The state jCi is articial
and represents a precursor state describing the conditional occupation of the cell
by an atom B. Conditional means that during the next evolution step of the
automaton, jCi will become jBi or j0i depending upon the fact that a nearest
neighbor cell is empty and ready to receive the second B atom of the molecule B2.
This conditional state is necessary to describe the dissociation of B2 molecules
on the surface.

Figure 37: Typical microscopic conguration in the stationary state of the CA Zi
model, where there is coexistence of the two species. The simulation corresponds
to the generalized model described by rules R1, R2, R3 and R4 below. The gray
and black dots represent, respectively, the A and B particles, while the empty sites
are white. The control parameter XA is larger in the right image than it is in the
left one.

The main diculty when implementig the Zi model with a fully synchronous
updating scheme is to ensure that the correct stoichiometry is obeyed. Indeed,
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since all atoms take a decision at the same time, the same atom could well take
part to a reaction with several dierent neighbors, unless some care is taken.

The solution to this problem is to add a vector eld to every site in the
lattice [116], as shown in gure 38. A vector eld is a collection of arrows, one
at each lattice site, that can point in any of the four directions of the lattice.
The directions of the arrows at each time step are assigned randomly. Thus, a
two-site process is carried out only on those pairs of sites in which the arrows
point toward each other (matching nearest-neighbor pairs (MNN)). This concept
of reacting matching pairs is a general way to partition the parallel computation
in local parts.

In the present implementation, the following generalization of the dynamics
is included: an empty site remains empty with some probability. One has then
two control parameters to play with: XA and XB2

that are the arrival probability
of an A and a B2 molecule, repectively.

Figure 38: Illustration of rules R2 and R3. The arrows select which neigbor is
considered for a reaction. Dark and white particles represent the A and B species,
respectively. The shaded region corresponds to cells that are not relevant to the
present discussion such as, for instance, cells occupied by the intermediate C
species.

Thus, the time evolution of the CA is given by the following set of rules,
xing the state of the cell j at time t + 1, j ji(t + 1), as a function of the state
of the cell j and its nearest neighbors (von Neumann neighborhood) at time t.
Rules R1, R4 describe the adsorption{dissociation mechanism while rules R2, R3
(illustrated in gure 38) describe the reaction{desorption process.
R1 : If j ji(t) = j0i then

j ji(t+ 1) =

8>>>>><
>>>>>:

jAi with probability XA

jCi with probability XB2

j0i with probability 1 XA XB2

(104)
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R2 : If j ji(t) = jAi then

j ji(t + 1) =

8><
>:

j0i if the MNN
of j was in the state jBi at time t

jAi otherwise
(105)

R3 : If j ji(t) = jBi then

j ji(t + 1) =

8><
>:

j0i if the MNN
of j was in the state jAi at time t

jBi otherwise
(106)

R4 : If j ji(t) = jCi then

j ji(t+ 1) =
 jBi if MNN is in the state jCi at time t

j0i otherwise
(107)

In addition, equation 107 is supplemented by the following rule: a cell in the
intermediate state C will give two adjacent B atoms if its matching arrow points
to an empty site which is not pointed to by another C state. Rule R4 is illustrated
in gure 39.

Figure 37 shows typical stationary congurations obtained with a cellular
automata version of the Zi model. At time t = 0, all the cells are empty and a
randomly prepared mixture of gases with xed concentrations XA and XB2

sits
on top of the surface. The rules are iterated until a stationary state is reached.
The stationary state is a state for which the mean coverage fractions Xa

A and Xa
B

of atoms of type A or B does not change in time, although microscopically the
congurations of the surface changes.

(a) (b)

Figure 39: Dissociation rule R4. The B2 molecule (or C state) is represented as
two disks on top of each other. Dissociation is possible if the upper disk can move
to the site indicated by the arrow without conict with other moves.

The phase diagram obtained for this generalized CA Zi model is given in
gure 40, with the value XB2

= 0:1. This phase diagram is topologically sim-
ilar to the sequential updating case (with XB2

= 1  XA) since we observe a
rst and a second order transition surrounding a region of coexistence of both
species. However the locations of the critical points are dierent, illustrating the
nonuniversal character of these quantities.
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Figure 40: Stationary state phase diagram corresponding to the CA Zi model.

5.3 The reaction-diusion rule

In this section we shall introduce a LGA model for rection-diusion proceesses.
Our model will be very similar in spirit to the cellular automata uids discussed
in section 3 except that, here, the collision rule will reproduce a diusive behavior
and implement some particle transformations. We shall rst discuss the diusion
rule and then show how a reaction term can be included.

5.3.1 The diusion rule

At a microscopic level of description, a diusive phenomena corresponds to the
random walk of many particles. Particle number is conserved but not momentum.
This random motion is typically due to the properties of the environment the
particles are moving in. When one is not interested in an explicit description
of this environment, it can be considered as a source of thermal noise and its
eective action on the particles can be assumed to be stochastic. Thus, the CA
rule proposed in section 2.6 gives us the basic model for diusion.

This evolution rule requires random numbers and then corresponds to a prob-
abilistic cellular automaton.

Thus, our diusion model consists of particles moving along the main direc-
tions of a hypercubic lattice (a square lattice in two dimensions or a cubic lattice
in three dimensions). As opposed to cellular automata uids, we do not have to
consider here more complicated lattices. The reason is that diusion processes
do not require a fourth-order tensor for their description. The random motion is
obtained by permuting the direction of the incoming particles. If d is the space
dimension, there are 2d lattice directions. These 2d directions of motion can be
shued in 2d! ways, which is the number of permutations of 2d objects. However,
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it is not necessary to consider all permutations. A subset of them is enough to
produce the desired random motion and, as in section 2.6, we restrict ourselves
to cyclic permutations. Thus, at each time step, the directions of the lattice are
\rotated" by an angle i chosen at random, with probability pi, independently
for each site of the lattice. With this mechanism, the direction a particle will
exit a given site depends on the direction it had when entering the site. The
modication of its velocity determines its next location on the lattice.

By labeling the lattice directions with the unit vectors ~ci we can introduce
the occupation numbers ni(~r) dened as the number of particles entering the site
~r, at time t with a velocity pointing in direction ~ci.

With this notation, the CA rule governing the dynamics of our model reads

ni(~r + ~ci; t+ ) =
2d1X
`=0

`(~r; t)ni+`(~r; t) (108)

where i is wrapped onto f1; 2; :::; 2dg. The ` 2 f0; 1g are Boolean variables
which select only one of the 2d terms in the right-hand side. Therefore they must
obey the condition

2d1X
`=0

` = 1 (109)

Practically, this condition can be enforced in a simulation by dividing the interval
[0,1] into 2d bins of length p`, each assigned to one of the `. Then, at each lattice
site and each time step, a real random number between 0 and 1 is computed (with
a random number generator). The bin it falls in will determine which ` is the
one that will be non-zero. This rule is illustrated in gure 15 for the case of a
two-dimensional system.

The macroscopic behavior resulting from microdynamics 108 in the limit of
innitly small lattice spacing  and time step  can be obtained with the same
techniques as developed in section 3, namely the multiscale Chapman-Enskog
expansion [14]. Since the dynamics is linear, a more direct calculation is also
possible if the limit is taken in such a way that 2= remains constant.

As expected, the results is that the quantity  =
P2d

i=1 < ni >, where <
ni > is the average occupation number at site ~r and time t obeys the diusion
equation [14]

@t + div [Dgrad] = 0

where D is the diusion constant whose expression, in a two-dimensional square
lattice, is

D =
2



 
1

4(p+ p2)
 1

4

!
=
2



 
p+ p0

4[1  (p+ p0)]

!
(110)

For the one- and three-dimensional cases, a similar expression can be found [14].
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5.3.2 Lattice Boltzmann diusion rule

If, instead of Boolean variables, the diusion process is described in terms of the
probability of presence fi(~r; t) of a particle entering site ~r at time t along direc-
tion i, the diusion rule can be written down using the LB (lattice Boltzmann)
formalism introduced in section 4.

The evolution rule takes the form

fi(~r + ~vi; t+ ) =
1


f (0)

i (~r; t) +

 
1  1



!
fi(~r; t)

where f
(0)
i is the local equilibrium distribution and  the relaxation time. Since

the only conserved quantity in a diusive process is the particle number  =P2d
i=1 fi, we choose

f
(0)
i =

1

2d


so that (i)  is indeed conserved and (ii) the local equilibrium depends on ~r and
t only through the conserved quantities.

Thus, the evolution rule can be rewritten as

fi(~r + ~vi; t+ ) =

"
1  1




1  1

2d

#
fi(~r; t) +

X
j 6=i

1

(2d)
fj(~r; t)

This is equivalent to the lattice Boltzmann equation asssociated with the diusive
CA having the probability of rotation

p0 = 1  1




1  1

2d


pj =

1

2d

For a two-dimensional square lattice and according to equation 110, these values
of pi correspond to a diusion constant

D =
1

2


  1

2


2



From this, we conclude that   1=2, otherwise D becomes negative. However,
from the expression for p0, we see also that   11=(2d), if we want to interprete
p0 as a probability. Thus, in two dimensions, the situation 1=2 <  < 3=4 does
not correspond to a CA realization. Yet, the CA model can have D = 0 in a
dierent way since it does not impose that all pi's are equal but p0. This also
shows that the numerical behaviour of the LB scheme must be checked in more
detail when 1=2 <  < 3=4. Finally, notice that a too large value of  may yield
an anisotropic behavior because it favors too much the lattice axis.
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5.3.3 LB diusion in polar coordinates

The models presented so far (whether hydrodynamical or diusive) require a
regular lattice to be dened properly. There is a clear interest to relax this limi-
tation and allow \body-tted" meshes that can be adapted to a given geometry
of boundaries. This problem is still an active eld of research [82,117].

Here we simply present a way to dene a LB model in polar coordinate, as-
suming that the system has an angular symmetry. Thus, the variables fi depends
only on the distance r to the center of the system. We shall also assume that the
system is described by an underlying lattice dynamics, independent of the space
discretization given by the polar coordinates.

We want to compute how many particles enter a polar cell located at distance
r. Particles traveling toward larger values of r are described by the quantity
f1(r; t), whereas particle moving to the center of the system are described by
f2(r; t). Due to the angular symmetry, there is no need to consider other directions
of motion.

In the case of a diusive system, the population f1 and f2 are mixed according
to f 0

1 = pf1 + (1  p)f2 and f 0
2 = pf2 + (1  p)f1.

The number of particles entering cell r+dr in the positive direction are those
exiting cell r after the diusion step. The density of such particles is given by
f 0

1. Since we work in polar coordinate, the cross section of cell r is rd1, where
 is some constant and d the space dimensionality. Therefore, there are rd1f 0

1

particles moving from cell r to cell r + dr. Since the cross section of cell r + dr
is (r + dr)d1, the density f1(r + dr; t+ ) is dened by the balance equation

(r + dr)d1f1(r + dr; t+ ) = rf 0
1

A similar derivation hold for f2(r  dr; t + ). Thus, for a diusion process, we
obtain

f1(r + dr; t+ ) =


r

r + dr

d1

[pf1 + (1  p)f2]

f2(r  dr; t+ ) =


r

r  dr

d1

[pf2 + (1  p)f1] (111)

Therefore, the eect of the polar coordinate system is to modied the propagation
scheme. It can be checked that numerical simulations of equ. 111, with xed
boudary conditions at r = r0 and r = r1, converge to the corresponding solution
of Laplace equation in polar coordinate.

5.3.4 The reaction rule

In this section we add a reaction term on top of the diusion rule described in
the previous section. Our aim is to simulate processes such as

A+B
K! C (112)
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where A, B and C are dierent chemical species, all diusing in the same solvent,
and K is the reaction constant. To account for this reaction, one can consider the
following mechanism: at the \microscopic" level of the discrete lattice dynamics,
all the three species are rst governed by a diusion rule. When an A and a
B particle enter the same site at the same time, they disappear and form a C
particle.

Of course, there are several ways to select the events that will produce a
C when more than one A or one B are simultaneously present at a given site.
Also, when Cs already exist at this site, the exclusion principle may prevent the
formation of new ones. A simple choice is to have A and B react only when they
perform a head-on collision and when no Cs are present in the perpendicular
directions. Other rules can be considered if we want to enhance the reaction
(make it more likely) or to deal with more complex situations (2A+B ! C, for
instance).

A parameter k can be introduced to tune the reaction rate K by controlling
the probability of a reaction taking place.

In order to write down the microdynamic equation of this process, we shall
denote by ai(~r; t), bi(~r; t) and ci(~r; t) 2 f0; 1g the presence or absence of a particle
of type A, B or C, entering site ~r at time t pointing in lattice direction i.

We shall assume that the reaction process rst takes place. Then, the left-
over particles, or the newly created ones, are randomly deected according to
the diusion rule. Thus, using equation 108, we can write the reaction-diusion
microdynamics as (d is the dimensionality of the Cartesian lattice)

ai(~r + ~ei; t+ ) =
2d1X
`=0

`(~r; t)
h
ai+`(~r; t) +Ra

i+`(a; b; c)
i

(113)

and similarly for the two other species B and C.
As before, the `(~r; t) are independent random Boolean variables producing

the direction shuing. The lattice spacing  and time steps  are introduced as
usual and the lattice directions ~ei are dened as east, north, west and south, in
the case of a two-dimensional lattice.

The quantity Ra
j (a; b; c) is the reaction term: it describes the creation or the

annihilation of an A particle in the direction j, due to the presence of the other
species. In the case of an annihilation process, the reaction term takes the value
Ra

j = 1 so that aj Ra
j = 0. On the other hand, when a creation process takes

place, aj = 0 and Ra
j = 1. When no interaction occurs, Ra

j = 0.
For instance, in the case of the reaction 112 (illustrated in gure 41), the

reaction terms could be written as

Ra
i = aibi+2 [(1  ci+1) + (1  )(1  ci1)]

Rb
i = Ra

i+2

Rc
i = (1  ci) [ai1bi+1 + (1  )ai+1bi1]

(114)
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ν=1 ν=0

Figure 41: Automata implementation of the A +B ! C reaction process.

Ra
i and Rb

i are annihilation operators, whereas Rc
i corresponds to particle

creation. One can easily check that, for each A (or B) particle which disappears,
a C particle is created. That is,

2dX
i=1

Ra
i =

2dX
i=1

Rb
i = 

2dX
i=1

Rc
i

The quantities (~r; t) and (~r; t) in equations 114 are independent random
bits, introduced in order to select among the various possible events: (~r; t) is
1 with probability 1=2 and decides in which direction the reaction product C is
created. When  = 1, the new C particle forms a +90o angle with respect to the
old A particle. This angle is 90o when  = 0.

The occurrence of the reaction is subject to the value of the Boolean variable
. With probability k,  = 1. Changing the value of k is a way to adjust the
reaction constant K. We shall see that k and K are proportional.

The presence of the terms involving ci in the right-hand side of equations 114
may seem unphysical. Actually, these terms are introduced here in order to satisfy
the exclusion principle: a new C cannot be created in direction i if ci is already
equal to 1. With this formulation, the reaction slows down as the number of C
particles increases. At some point one may reach saturation if no more room is
available to create new particles.

In practice, however, this should not be too much of a problem if one works
at low concentration. Also, quite often, the C species also undergoes a trans-
formation: the reaction can be reversible or C particles can precipitate if the
concentration reaches some threshold. Or, sometimes, one is only interested in
the production rate

P
j R

a
j =

P
j R

b
j of the species C and one can forget about

them once they are created. In this case, one simply puts ci = 0 in the rst two
equations of 114.

Clearly, the exclusion principle may introduce some renormalization of the
reaction rate. If for some reason, this is undesirable, multiparticle models oer
an alternative to the LGA approach. This will be discussed in section 6.

Due to the simple microscopic interpretation, equation 114 is easily gener-
alized to other reaction processes. A common situation is when one species is
kept at a xed concentration. This means that the system is fed a chemical by
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an external mechanism. In this case, the corresponding occupation numbers (for
instance the bis) can be replaced be random Boolean variables which are 1 with
a probability given by the selected concentration of the species.

5.4 The macroscopic behavior

Here we establish the link between the discrete reaction-diusion cellular au-
tomata dynamics and the corresponding macroscopic level of description. We
shall perform this calculation for the case of three species A, B and C but a
generalization to other reaction schemes is straightforward.

Our approach is similar to that used in section 3 and 4. We use the Boltzmann
molecular chaos assumption, in which correlations are neglected. Within this
approximation, we shall see that the microdynamics of the A+B ! 0 reaction-
diusion processes yields the usual rate equation

@tA = Dr2A KAB (115)

To derive the macroscopic behavior of our automata rule, we rst average
equation 113

Ai(~r + ~ei; t+ )  Ai(~r; t) =
2dX

j=1

ijAj(~r; t) +
2dX

j=1

(ij + ij)R
a
j (A;B;C) (116)

where Ai =< ai > is the average value of the occupation numbers ai. The matrix
 is the matrix expressing the diusion rule, that is

ii = p0  1 ij = pji

where j  i is dened modulo 2d. Similar equations as 116 hold for Bi and Ci.
Using the Boltzmann hypothesis, the average value of the reaction term is

written as
< Ra

i (a; b; c; ; ) > Ra
i (A;B;C;<  >;<  >) (117)

Note that this factorization may be wrong for simple annihilation reaction-diusion
processes, as discussed in section 6.3.1.

The second step is to replace the nite dierence in the left-hand side of 116
by its Taylor expansion

Ai(~r + ~ei; t+ )  Ai(~r; t) ="
@t +

 2

2
@2

t + (~ci  @~r) +
2

2
(ci  @~r)

2 + @t(~ci  @~r)

#
Ai

(118)

and similarly for the other species B and C. As in the hydrodynamic case,
we consider a Chapman{Enskog-like expansion and look for a solution of the
following form

Ai = A
(0)
i + A

(1)
i + 2A

(2)
i + ::: (119)
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Since particle motion is governed by the diusion process, we will use the fact that
when taking the continuous limit, the time and length scale are of the following
order of magnitude

 = 1 and  = 22 (120)

In reactive systems, as opposed to hydrodynamics or pure diusion, neither mo-
mentum nor particle number are conserved in general. For instance, in the anni-
hilation process A + A ! ;, no conservation law holds.

On the other hand, the reaction term can be considered as a perturbation
to the diusion process, which makes derivation of the macroscopic limit rather
simple. In equation 115, the reaction constant K has the dimension of the inverse
of a time. This quantity denes at what speed the reaction occurs. At the level
of the automaton, this reaction rate is controlled by the reaction probability
k =<  > introduced in the previous section.

When the continuous limit is taken, the automaton time step  goes to zero.
Thus, the number of reactions per second will increase as  decreases, unless the
reaction probability k also diminishes in the right ratio. In other words, to obtain
a nite reaction constant K in the macroscopic limit, it is necessary to consider
that k /  . Since  is of the order 2 in our Chapman{Enskog expansion, the
reaction term Ra

i is also to be considered as an O(2) contribution and we shall
write

Ra
i = 2Ra

2i (121)

At the macroscopic level the physical quantities of interest are the particle densi-
ties of each species. Following the usual method, we dene the density A of the
A species as

A =
2dX

i=1

A
(0)
i

with the condition
2dX

i=1

A
(`)
i = 0 if `  1

Now we have to identify the dierent orders in  which appear in equation 116,
using the expressions 118, 119, 120 and 121. We obtain

O(0) :
X

j

ijA
(0)
i = 0 (122)

O(1) : 1(~ei  r)A
(0)
i =

X
j

ijA
(1)
j (123)

These equations are exactly similar to those derived in the case of pure diusion
(see [14]) and the result is that

A
(0)
i =

A

2d
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and

A
(1)
i =

1

2d

1

V
ei@A

where V is the eigenvalue of the diusion matrix  for the eigenvector

E = (e1;; e2;; :::; e2d;)

The equation for the density A is now obtained by summing over i equa-
tion 116, remembering that X

i

ij = 0

Collecting all the terms up to O(2), we see that the orders O(0) and O() vanish
and we are left with

22@t

X
i

A
(0)
i +21

X
i

(~eir)A
(1)
i +2

1

2

X
i

(~eir)2A
(0)
i = 2

X
j

Ra
2j(A

(0); B(0); C(0))

Using the denition of 2, 1, R
a
2j and performing the summations yield

@tA = Dr2A +
1



X
j

Ra
j (
A

2d
;
B

2d
;
C

2d
) (124)

where D is the same diusion constant as would be obtained without the chemical
reactions (see section 5.3.1).

It is interesting to note that expression 124 has been obtained without knowing
the explicit expression for the reaction terms R and independently of the number
of species. Actually, from this derivation, we see that the reaction term enters in a
very natural way in the macroscopic limit: we just have to replace the occupation
numbers by =2d, the random Boolean elds by their average values and sum up
this result for all lattice directions.

For the case of the A + B ! C process in two dimensions, with the reaction
term given by 114, equation 124 shows that the macroscopic behavior is described
by the rate equations

@tA = DAr2A  k

4


1  C

4


AB

@tB = DBr2B  k

4


1  C

4


AB

@tC = DCr2C +
k

4


1  C

4


AB

(125)

where, in principle a dierent diusion constant can be chosen for each species.
We also observe that the reaction constant K is related to the reaction probability
k by

K =
k

4
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x=0

A B

direction of the moving front

Figure 42: Example of the formation of Liesegang bands in a cellular automata
simulation. The white bands correspond to the precipitate which results from the
A+B reaction.

As explained previously, the exclusion principle introduces a correction (1c=4)
which remains small as long as C is kept in low concentration.

5.5 Liesegang patterns

In this section we shall study a more complex system in which reaction-diusion
will be accompanied by solidication and growth phenomena. This gives rise to
nice and complex structures that can be naturally modeled and analyzed in the
framework of the cellular automata approach.

These structures are known as Liesegang patterns, from the German chemist
R.E. Liesegang who rst discovered them at the end of the nineteenth cen-
tury [118].

Liesegang patterns are produced by precipitation and aggregation in the wake
of a moving reaction front. Typically, they are observed in a test tube containing
a gel in which a chemical species B (for example AgNO3 ) reacts with another
species A (for example HCl). At the beginning of the experiment, B is uniformly
distributed in the gel with concentration b0. The other species A, with concentra-
tion a0 is allowed to diuse into the tube from its open extremity. Provided that
the concentration a0 is larger than b0, a reaction front propagates in the tube.
As this A + B reaction goes on, formation of consecutive bands of precipitate
(AgCl in our example) is observed in the tube, as shown in gure 42. Although
this gure is from a computer simulation, it is very close to the picture of a real
experiment.

The presence of bands is clearly related to the geometry of the system. Other
geometries lead to the formation of rings or spirals.

Depending on the experimental situation, some Liesegang patterns can present
unexpected structures (inverse banding [119], eect of gravity, shape of the con-
tainer and other exotic behaviors [120]). Therefore a complete analysis of the
phenomena is dicult and still under investigation [121,122]

On the other hand, for many dierent substances, generic formation laws can
be identied. For instance, after a transient time, Liesegang bands appear at
some positions xi and times ti and have a width wi. It is rst observed that
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the center position xn of the nth band is related to the time tn of its formation
through the so-called time law xn  p

tn.
Second, the ratio pn  xn=xn1 of the positions of two consecutive bands

approaches a constant value p for large enough n. This last property is known as
the Jablczynski law [123] or the spacing law. Finally, the width law states that
the width wn of the the nth band is an increasing function of n. These features
are related to the properties of the reaction front which move in the system.
The time law appears to be a simple consequence of the diusive dynamics.
On the other hand, spacing and width laws cannot be derived with reaction-
diusion hypotheses alone. Extra nucleation{aggregation mechanisms have to be
introduced, which makes any analytical derivation quite intricate [124{126].

From an abstract point of view, the most successful mechanism that can be
proposed to explain the formation of Liesegang patterns is certainly the super-
saturation assumption based on Ostwald's ideas [127]. This mechanism can be
understood using the formation scenario proposed by Dee [128]: the two species
A and B react to produce a new species C (a colloid, in chemical terminology)
which also diuses in the gel.

When the local concentration of C reaches some threshold value, nucleation
occurs: that is, spontaneously, the C particles precipitate and become solid D
particles at rest. This process is described by the following equations

@ta = Dar2a Rab

@tb = Dbr2b Rab

@tc = Dcr2a+Rab  nc

@td = nc

(126)

where, as usual, a; b; c; d stand for the concentration at time t and position ~r of the
A, B, C and D species, respectively. The term Rab expresses the production of
the C species due to the A+B reaction. Classically, a mean-eld approximation
is used for this term and Rab = Kab, where K is the reaction constant. The
quantity nc describes the depletion of the C species resulting from nucleation
and aggregation on existing D clusters. An analytical expression for this quantity
is rather complicated. However, at the level of a cellular automata model, this
depletion term can be included quite naturally.

Within this framework, the supersaturation hypothesis can be stated as fol-
lows: due to aggregation, the clusters of nucleated D particles formed at the
reaction front deplete their surroundings of the reaction product C. As a result,
the level of supersaturation drops dramatically and the nucleation and solidi-
cation processes stop. To reach again suitable conditions to form new D nuclei,
the A B reaction has to produce sucient new C particles. But, the reaction
front moves and this happens at some location further away. As a result, separate
bands appear.
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Most of the ingredients needed for modeling the formation of Liesegang pat-
tern in terms of a CA approach have already been introduced in the previous
section, when describing the A + B ! C reaction-diusion process. In the case
of Dee's scenario, we also need to provide a mechanism for spontaneous nucle-
ation (or precipitation) in order to model the transformation of a diusing C
particle into a solid D particle. Finally, aggregation of C particles on an exist-
ing D cluster will be modeled in very much the same spirit as the DLA growth
described in section 2.6. The key idea will be to introduce threshold values to
control both of these processes.

The C particles, once created, diuse until their local density (computed as
the number of particles in a small neighborhood divided by its total number
of sites and lattice directions), reaches a threshold value ksp. Then they spon-
taneously precipitate and become D particles at rest (nucleation). Here, we
typically consider 3  3 Moore neighborhoods centered around each lattice site.

Morover, C particles located in the vicinity of one or more precipitate D
particles aggregate provided that their local density (computed as before) is larger
than an aggregation threshold kp < ksp.

The parameters kp and ksp are two control parameters of the model. The in-
troduction of these critical values refers to the qualitative models of solidication
theory, relating supersaturation and growth behavior [129].

An important aspect of the mechanism of Liesegang patterns formation is the
role of spontaneous uctuations. Precipitation and aggregation processes (such
as a DLA ) are clearly dependent on local density uctuations. For instance, even
if the average particle concentration of C particles is less that the supersatura-
tion threshold, it may be higher locally and give rise to spontaneous nucleation.
Similarly, aggregation is a function of the particle density in the vicinity of an
existing solid cluster, which is also a locally uctuating quantity.

The cellular automata approach naturally accounts for these uctuation phe-
nomena and, in addition, captures the mesoscopic nature of the precipitate clus-
ter, that can be fractal.

Figure 42 shows a typical example of a cellular automata simulation with C
particles, giving rise to bands. The initial condition is built as follows: at time
t = 0, the left part of the system (x  0) is randomly occupied by A particles,
with a density a0 and the right part (x > 0) is lled with B particles with a
density b0.

From the positions xn and the formation time tn of each band, we can verify
the spacing and the time laws. For instance, the plot given in gure 43 shows
very good agreement for the relation xn=xn1 ! p. It is found that the so-called
Jablczynski coecient p is 1.08, a value corresponding to experimental ndings.
The way the value of p depends on the parameters of the model is expected to
follows the so-called Matalon-Pakter [130] experimental law. From a numerical
and theoretical point of view, this dependence is still under investigation [122].

Liesegang patterns are found only if the parameters of the experiment are
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Figure 43: Verication of the spacing law for the situation with C particles. The
ratio xn=xn1 tends to p = 1:08 .
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Figure 44: Qualitative phase diagram showing the dierent possible patterns that
can be obtained with our cellular automata model, as a function of the values of
ksp and kp .
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thoroughly adjusted. In our simulation, kp and ksp are among the natural quan-
tities that control supersaturation and aggregation. In practice, however, one
cannot directly modify these parameters. On the other hand, it is experimen-
tally possible to change some properties of the gel (its pH for example) and thus
inuence the properties of the aggregation processes or the level of supersatura-
tion.

Outside of the region where Liesegang patterns are formed, our simulations
show that, when kp and ksp vary, other types of patterns are obtained. These
various patterns can be classied in a qualitative phase diagram, as shown in
gure 44. An example of some of these \phases" is illustrated in gure 45. Note
that the limits between the dierent \phases" do not correspond to any drastic
modication of the patterns. There is rather a smooth crossover between the dif-
ferent domains. The associated names are borrowed from the phenomenological
theory of solidication [129].

The terminology of dendrite comes from the tree-like structures that are some-
times found on the surfaces of limestone rocks or plates and that can be confused
with fossils. The plant-shaped deposit is made of iron or manganese oxides that
appear when at some point in the geological past the limestone was penetrated
by a supersaturated solution of manganese or iron ions. It turns out that the
formation of these mineral dendrites can be simulated by the same scenario as
Liesegang patterns, but with an aggregation threshold kp = 0. Figure 46 shows
the results of such a modeling. The fractal dimension of these clusters is found to
be around 1.77, a value which is very close to that measured in a real sample [131].

The patterns we have presented so far show axial symmetry, reecting the
properties of the experimental setup. But the same simulations can be repeated
with dierent initial conditions. A case of interest is the situation of radial sym-
metry responsible for the formation of rings or spirals. The reactant A is injected
in the central region of a two-dimensional gel initially lled with B particles. The
result of the cellular automata simulation is shown in gure 47. In (a) concentric
rings are formed, starting from the middle of the system and appearing as the
reaction front radially moves away. In (b) a spiral-shaped structure is created.
Although the two situations are similar as far as the simulation parameter are
concerned, the appearance of a spiral stems from a spontaneous spatial uctua-
tion which breaks the radial symmetry.

Liesegang patterns are obtained when the initial A concentration is signi-
cantly larger than the initial B concentration. In a cellular automata model with
an exclusion principle, a large concentration dierence implies having very few
B particles. As a consequence, the production rate of C particles is quite low
because very few reactions take place. For this reason, the simulation presented
above, have been produced with a pseudo-three-dimensional system composed
of several two-dimensional layers. The reaction has been implemented so that
particles of dierent layers can interact.

Therefore, pure CA simulation of Liesegang structure can be very demanding
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(a)

(b)

(c)

Figure 45: Examples of patterns that are described in the phase diagram: (a)
corresponds to homogeneous clustering; this is also the case of pattern (b) but
closer to the region of band formation. Pattern (c) shows an example of what
we called a dendrite structure. Amorphous solidication would correspond to a
completely uniform picture.
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Figure 46: (a) Examples of mineral dendrite obtained from a cellular automata
simulation with kp = 0; in this gure, the reaction front moves from upward. The
two graphs on the right show the numerical measurement of the fractal dimension
using: (b) a sand-box method and (c) a box-counting technique.

(a) (b)

Figure 47: Liesegang rings (a) and spiral (b), as obtained after 2000 iterations
of the cellular automata model, with C particles indicated in gray.
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Figure 48: Example of the formation of Liesegang bands in a lattice Boltzmann
simulation.

in terms of CPU time. It turns out that a LB approach is also possible, with
much less computer ressources, and makes it possible to investigate large systems
exhibiting many more bands.

The LB model follows the same line as in the CA approach but some external
noise is added to describe aggregation and nucleation as probabilitic processes.
We refer the reader to [132] for a more detailed discussion. Below we just show
some of the patterns generated with the LB model. Figure 48 shows an example
of a lattice Boltzmann simulation containing up to 30 consecutive bands, in a
system of sizes 1024  64.

We can also consider again the case of Liesegang rings and spirals in the
framework of the LB approach.

Figure 49(a) shows the situation where concentric rings of precipitate are
formed. The numerical parameters are: a0 = 1, b0=a0 = 0:013, Db=Da = 0:1,
ksp=a0 = 0:0087, kp=a0 = 0:0065. The nucleation process takes place with a
probability of 0.05 and aggregation with a probability close to 1. This pattern
turns out to be quite similar to real Liesegang structures obtained in a similar
experimental situation [118].

For the same set of parameters, but b0=a0 = 0:016, a dierent pattern is
observed in gure 49(b). There, a local defect produced by a uctuation devel-
ops and a spiral of precipitate appears instead of a set of rings. Such a spiral
pattern will never be obtained from a deterministic model without a stochastic
component.

From these data, we can check the validity of the spacing law for ring forma-
tion. The relation

rn=rn1 ! p

holds, where rn is the radius of the nth ring. In gure 50, the Jablczynski
coecient p is plotted as a function of the concentration of B particles b0 (for
a0 = 1) both for axial (bands) and radial (rings) symmetries. We notice that p
decreases when b0 increases in agreement with experimental data. Moreover, for
the same set of parameters, the value of p is found to be larger in the case of
rings than it is for bands.
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(a) (b)

Figure 49: Formation of (a) Liesegang rings and (b) spiral-shaped pattern, as
obtained after 2000 iterations of the lattice Boltzmann model.
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Figure 50: Jablczynski coecients p as a function of the concentration b0 of B
particles (for a0 = 1), for bands (lower curve) and rings (upper curve).
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6 Multiparticle models

Multiparticle models (also termed Integer Lattice Gas Automata [133]) are lat-
tice gas models without an exclusion principle. They are designed to conciliate
the advantages of the CA and LB models. LB models are less noisy and provide
more exibility than their Boolean (CA) counterpart. However they may exhibit
some bad numerical instabilities (that is the case of lattice BGK models of uids)
and they sometimes fail to account for relevant physical phenomena because uc-
tuations are neglected. An example is provided in section 6.3.1 by the anomalous
kinetics in the simple A + A ! 0 reaction-diusion processes.

Multiparticle models conserve the point-like nature of particles, as in cellular
automata, but allow an arbitrary number of them to be present at each lattice
site. This eliminates the exclusion principle that plagues the cellular automata
approach and which appears as a numerical artifact rather than a desirable phys-
ical property.

Mathematically speaking, this means that the state of each lattice site cannot
be described with a nite number of information bits. However, in practice, it
is easy to allocate a 32- or 64-bit computer word to each lattice site, to safely
assume that \any" number of particles can be described at that site.

Multiparticle models lead to a reduced statistical noise: if the number of
particles per site is N , the intrinsic uctuations due to the discrete nature of the
particles will typically be of the order

p
N . This is small compared to N , if N

is large enough. Therefore, we do not have to perform much averaging to get a
meaningful result.

In addition, with an arbitrary number of particle per site, we have much
more freedom to enforce a given boundary condition, or tune a parameter of the
simulation. Actually, when modeling a reaction process, it is often necessary to
get rid of the exclusion principle. For instance, to describe processes such as
mA + nB ! C, it is highly desirable to have more than four particles per site.

Unfortunately, the numerical implementation of multiparticle models is much
more involved than LB or CA models and the computation time is also much
higher. On the other hand, we restore in a natural way the uctuations that are
absent in LB simulations and provide an intrinsically stable numerical scheme
(since we deal with positive integer numbers). Besides, when compared to CA,
the extra computational time may be well compensated by the fact that less
averaging is required.

In this section we rst consider the case of a reaction-diusion system and
then we shall describe how a hydrodynamical model can be dened within the
context of a multiparticle approach.
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6.1 Multiparticle diusion model

Our algorithm is dened on a d-dimensional Cartesian lattice of spacing  [93].
Each lattice site ~r is occupied, at time t, by an arbitrary number of particles
n(~r; t). The discrete time diusion process is dened as follows: during the
time interval  , each particle can jump to one of its 2d nearest-neighbor sites
along lattice direction i with probability pi, or stay at rest with a probability
p0 = 1 P2d

i=1 pi.
An advantage of dealing with multiparticle dynamics is that advection mech-

anisms can be added to the diusion process. When the probabilities of jumping
to a nearest-neighbor site are dierent in each direction, a drift is introduced.
This adds a density gradient term to the diusion equation which then reads

@t = ~Vr+Dr2

where ~V is the advection velocity. Such an advection eect is dicult to produce
without an artifact when an exclusion principle holds.

For the sake of simplicity, we shall now consider a two-dimensional case. The
generalization is straightforward and follows the same reasoning.

The idea is to loop over every particle at each site, decide where it goes and
move it to its destination site. In terms of the particle numbers n(~r; t), our
multiparticle rule can be expressed as

n(~r; t+ ) =
n(~r;t)X
`=1

p0`(~r; t) +
n(~r+~e3;t)X

`=1

p1`(~r + ~e3; t)

+
n(~r+~e1;t)X

`=1

p3`(~r + ~e1; t) +
n(~r+~e4;t)X

`=1

p2`(~r + ~e4; t))

+
n(~r+~e2;t)X

i=1

p4`(~r + ~e2; t)) (127)

The vectors ~e1 = ~e3, ~e2 = ~e4 are the four unit vectors along the main directions
of the lattice. The stochastic Boolean variable pi`(~r; t) is 1 with probability pi

and selects whether or not particle ` chooses to move to site ~r + ~ei. Since each
particle has only one choice, we must have

p0` + p1` + p2` + p3` + p4` = 1

The macroscopic occupation number N(~r; t) =< n(~r; t) > is obtained by av-
eraging the above evolution rule over an ensemble of equivalent systems. Clearly,
one has

<
n(~r;t)X
`=1

pi`(~r; t) >= piN(~r; t)
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Thus, we obtain the following equation of motion:

N(~r; t+ ) = p0N(~r; t) + p1N(~r + ~e3; t)

+p3N(~r + ~e1; t) + p2N(~r + ~e4; t) + p4N(~r + ~e2; t)

(128)

Assuming N varies slowly on the lattice, we can perform a Taylor expansion
in both space and time to obtain the continuous limit. Using

P
pi = 1 and

~ei = ~ei=2, we obtain

@tN(~r; t) +
 2

2
@t

2N(~r; t) + O( 3) =  [(p3  p1)~e1 + (p4  p2)~e2]  rN(~r; t)

+
2

2
(p1 + p3)(~e1  r)2N(~r; t) +

2

2
(p2 + p4)(~e1  r)2N(~r; t) + O(3)

(129)

Since, ~e1 and ~e2 are orthonormal, we have

(~e1  r)2 + (~e2  r)2 = r2

In order to use this property it is necessary that p1 + p3 = p2 + p4, otherwise the
lattice directions will \visible". Thus we impose the isotropy condition

p1 + p3 = p2 + p4 =
1  p0

2

and we obtain

@tN(~r; t) +


2
@t

2N(~r; t) + O( 2) = ~V  rN(~r; t)

+Dr2N(~r; t) + O(3)

(130)

where ~V is the advection velocity

~V =



[(p3  p1)~e1 + (p4  p2)~e2]

and D the diusion constant

D =
2

4
(1  p0) (131)

We may now consider the limit  ! 0 and  ! 0 with 2= ! constant, as usual
in a diusion process. However, here, some additional care is needed. If p3 6= p1

or p4 6= p2, the advective term will diverge in the limit. This means that p3  p1

or p4  p2 must decrease proportionally to  when the limit is taken. Thus, with
a halved lattice spacing, the dierence between pi and pi+2 must also be halved
in order to produce the same advection. With these assumptions, we obtain, in
the macroscopic limit

@tN = ~V  rN +Dr2N
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6.2 Numerical implementation

The main problem when implementing our algorithm on a computer (for instance,
for the two-dimensional case we described in the previous section) is to nd an
ecient way to select the particles at rest and distribute randomly the others
among the four possible directions of motion. More precisely, we have to compute
quantities such as

ni =
n(~r;t)X
`=1

pi`(~r; t)

In practice, we can loop over all ` particles at every site and, for each of them,
choose a random number r, uniformly distributed in the interval [0; 1]. Then, we
consider a division of this interval in subintervals [rj; rj+1[, j = 0; :::; 5, so that
pi = ri+1  ri. We say that pi` = 1 if and only if ri+1  r < ri. The quantities ni

are thus distributed according to a multinomial distribution.
This procedure is acceptable for small values of n but, otherwise, very time

consuming. However, when n is large (more precisely when npi(1  pi)  1, the
statistical distributions of the ni is expected to approach Gaussian distributions
of mean npi and variance npi(1  pi). This Gaussian approximation allows us to
be much more ecient because we no longer have to generate a random number
for each particle at each site.

For simplicity, take the case p0 = p and p1 = p2 = p3 = p4 = (1  p)=4.
The ni's can be approximated as follows: we draw a random number n0 from a
Gaussian distribution of mean np and variance np(1  p) (for instance using the
Box{Muller method [134]). This number is then rounded to the nearest integer.

Thus, in one operation, this procedure splits the population into two parts:
n0 particles that will stay motionless and nn0 that will move. In a second step,
the nn0 moving particles are divided into two subsets according to a Gaussian
distribution of mean nm=2 and variance nm(1=2)(1=2). Splitting up each of these
subsets one more time yields the number ni of particles that will move in each of
the four lattice directions.

If advection is present, we can also proceed similarly. First, we divide up
the moving particle population into two parts: on the one hand, those going to
north and east, for instance, and on the other hand, those going south and west.
Second, each subpopulation is, in turn, split into two subsets according to to the
values of the pis. Of course, as in traditional lattice gas automata, these splitting
operations can be performed simultaneously (in parallel) at each lattice site.

Empirical considerations, supported by theoretical arguments on binomial
distributions, show that ni = 40 is a good threshold value in two dimensions,
above which the Gaussian procedure can be used. Below this critical value, it is
safer to have the algorithm loop over all particles. Note that in a given simulation,
important dierences in the particle number can be found from site to site and
the two dierent algorithms may have to be used at dierent places.
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6.3 The reaction algorithm

We will now discuss how reaction processes can be implemented in the framework
of multiparticle models (see also [135]). Reaction-diusion phenomena can then
be simulated by alternating the reaction process between the dierent species
and then the diusion of the resulting products, according to the multiparticle
diusion algorithm just described.

A reaction process couples locally the dierent species Al, l = 1; ::; q to pro-
duce new species Bj, j = 1; ::; m according to the relation

1A1 + 2A2 + : : :+ qAq
K! 1B1 + 2B2 + : : :+ mBm (132)

The quantities l; j are the stoichiometric coecients, and k is the reaction
constant.

In order to model this reaction scheme with a multiparticle dynamics, one
considers all the q-tuples that can be formed with 1 particles of A1, 2 particles
of A2, etc. These q-tuples are transformed into m-tuples of Bj particles with
probability k. At site ~r and time t, there are

N (~r; t) 
 
nA1

1

! 
nA2

2

!
: : :

 
nAq

q

!
(~r; t)

ways to form these q-tuples, where nX(~r; t) denotes the number of particles of
species X present at (~r; t). If one of the nAi

< i then obviously N = 0.
This techniques oers a natural way to consider all possible reaction scenarios.

For instance, in the case of the annihilation reaction 2A ! ;, suppose we have
three particles (labeled a1, a2, a3) available at a given lattice site. Then, there
are three possible ways to form a reacting pair: (a1; a2), (a1; a3) and (a2; a3). In
principle, all these combinations have the same chance of forming and reacting.
However, if (a1; a2) react, then only a3 is left and there is no point in considering
(a1; a3) or (a2; a3) as possible candidates for reaction. Thus N is the maximal
number of possible events, but it is likely that the available particles are exhausted
before reaching the end of this list of possible reactions.

The multiparticle reaction rule can therefore be summarized as follows:

 As long as there are enough particles left (i.e. at least l of species Al, for
each l), but no more than N times, choose a Boolean random  which is 1
with probability k.

 If  = 1, remove from each species Al a number l of particles (nAl
!

nAl
 l) and add a number j of particles to each species Bj, j = 1; :::; m

(nBj
! nBj

+ j).

This algorithm can easily be extended to a reversible reaction.
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When k is very small, we may assume that all the N q-tuples need to be
considered and the above reaction rule can be expressed as

nAl
(~r; t+ ) = nAl

(~r; t)  l

N (~r;t)X
h=1

h

nBj
(~r; t+ ) = nBj

(~r; t) + j

N (~r;t)X
h=1

h (133)

where h is 1 with probability k.
This algorithm may become quite slow in terms of computer time if the nX

are large and k  1. In this case, the Gaussian approximation described in the
previous section can be used to speed up the numerical simulations: the number
of accepted reactions can be computed from a local Gaussian distribution of mean
kN (~r; t) and variance k(1  k)N (~r; t).

6.3.1 Diusive annihilation

In order to check that our multiparticle reaction rule captures the true nature
of uctuation and correlation, we simulated the A + A ! ; reaction-diusion
process, where the A particle is uniformly distributed in the system. This reaction
exhibits a non-mean-eld decay law in one-dimensional systems [34]: the time
evolution of NA(t) (the number of A particle left in the system at time t) departs
from the behavior predicted by the rate equation @tNA(t) = KN2

A(t), whose
solution is NA(t)  t1, for large t.

Figure 51 gives the behavior of a simulation performed on a line of 64'536
sites, with an initial number of about 100 particles per site. Diusion and reaction
processes are simulated with our multiparticle algorithms with a probability 1/2
that each particle moves left or right and a reaction probability k = 0:8. We
observe that the total number of A particles decreases with time as the power
law NA(t)  t1=2, which is the correct result in d = 1 dimension.

6.3.2 Rate equation approximation

In a mean-eld approximation, i.e. when the multipoint correlation functions are
factorized as a product of one-point functions and the reaction probability k is
much smaller than 1, our multiparticle dynamics gives the expected rate equation
given by the mass action law. We dene NAl

and NBj
as the average particle

numbers per site of species Al and Bj, respectively.
For the reaction process 132, it is possible to show that our multiparticle

reaction algorithm yields (in the limit of a large lattice)

NAi
(t + ) NAi

(t) = KN1

A1
N2

A2
: : : Na

Aq

NBj
(t + ) NBj

(t) = KN1

A1
N2

A2
: : : n

q

Aq
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Figure 51: Time decay of NA, the total number of A particles in the A + A ! ;
reaction-diusion process, with the multiparticle method. A non-mean-eld power
law td=2 is observed. in agreement with theoretical arguments.

where K is the reaction constant whose expression is

K =
k

1!2! : : : q!

This calculation is based on combinatorial arguments and the equiprobability of
all congurations with the same number of particles. More details can be found
in [14,93].

In the limit  ! 0, we obtain the usual form of the rate equations for the
reaction process under study, namely

@tNAi
(t) = K


N1

A1
N2

A2
: : : N

q

Aq

@tNBj
(t) =

K


N1

A1
N2

A2
: : : N

q

Aq

6.4 Turing patterns

In this section, we use our multiparticle reaction-diusion model to simulate the
formation of the so-called Turing structures. Turing [136] was the rst to suggest
that, under certain conditions, chemicals can react and diuse so as to produce
steady-state heterogeneous spatial patterns of chemical or concentrations [36].
Turing structures are believed to play an important role in biological pattern
formation processes, such as the stripes observed on the zebra skin [101]. In
contrast to most hydrodynamical instabilities, the structure of Turing patterns
is not related to any imposed macroscopic length scales (like the size of the
container). Turing patterns exhibit regular structure with an intrinsic wavelength
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depending on the diusion constants and reaction rates. Typical examples of
inhomogeneous stationary states observed in experiments have a hexagonal or a
striped structure [137].

For the sake of simplicity, we consider here only one of the simplest models
showing Turing patterns: the Schnackenberg reaction-diusion model [138] in
two dimensions. It describes the following autocatalytic reaction:

A
k1! X X

k2! ;
2X + Y

k3! 3X B
k4! Y

(134)

where the densities of the species A and B are kept xed (for instance by external
feeding of the system). This situation of having a xed concentration of some
chemical is quite common in reaction-diusion processes. As a result, there is
no need to include all the dynamics of such reagents in cellular automata or
multiparticle models. It is usually enough to create randomly a local population
of these particles at each lattice sites.

Here we consider a two-dimensional multispecies, multiparticle model with
alternating reaction and diusion steps. Instead of varying p0 in equ. 131, the
diusion coecient is adjusted by performing ` consecutive diusion steps for
a given species. This technique amounts to introducing a dierent time step
m = =` for this species and yields D = `2=4 .

The instability of the homogeneous state leading to Turing structures can be
understood using the corresponding macroscopic rate equations [101] for the local
average densities x and y

@tx = k1a k2x+ k3x
2y +Dxr2x

@ty = k4b k3x
2y +Dyr2y

(135)

where a and b represent the densities of particles A and B, respectively. A con-
ventional analysis shows that for some values of the parameters, a homogeneous
stationary state is unstable towards local density perturbations. Inhomogeneous
patterns can evolve by diusion-driven instabilities providing that the diusion
constants Dx and Dy are not the same. The region of the parameter space (a, b,
Dy=Dx,...) for which homogeneous states of the system are unstable is called the
deterministic Turing space.

Figure 52 shows the conguration obtained in the long time regime with our
multiparticle model and the corresponding rate equations 135. In both cases, a
hexagonal geometry is selected. The right panel corresponds to the solution of the
rate equations, while the left panel corresponds to the multiparticle simulation.
As we can see, the two pictures are quite similar. Although, it is not clear that
the multiparticle (which brings uctuations into play) adds anything compared
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(a) (b)

Figure 52: Turing patterns obtained in the Schnackenberg reaction in the long
time regime. (a) Multiparticle model and (b) mean-eld rate equations.

with the predictions of the mean-eld rate equations (which use less computer
time) there are some indications [139] that the Turing space may be enlarged
when uctuations are considered.

6.5 A multiparticle uid

In this section we show a the multiparticle method can also be used to model
a hydrodynamic behavior. The key problem is to build the appropriate colli-
sion rule. Dening a collision between an arbitrary number of particles which
conserve mass and momentum is not an easy task: particles are indivisible and
fractions of them cannot be distributed among the lattice directions to satisfy
the conservation laws. Furthermore, it is not possible to pre-compute all possible
collisions (as we do in a cellular automaton) because there are an innite number
of congurations. Thus, more sophisticated algorithms should be devised which
may slow down the computation of the collision output.

We also would like to dene a model in which the viscosity is an adjustable pa-
rameter. The approach we propose here is to develop a collision procedure which,
on average, obeys the lattice BGK equation for hydrodynamics (see section 4).
Thus, we write the evolution rule as

fi(~r + ~vi; t+ ) = fi(~r; t) + Fi(f(~r; t))

where fi are integer variable (fi 2 f0; 1; 2; :::;1g) describing the number of par-
ticles entering site ~r at time t with velocity ~vi. The quantity Fi is the collision
term. As usual, the particle density  and velocity eld ~u are dened as

(~r; t) =
X

i

fi(~r; t) ~u(~r; t) =
X

i

fi(~r; t)~vi

where index i runs over the lattice directions.
We now assume that the main eect of the interaction is to restore the local

equilibrium distribution 83 obtained in the LB formalism

f
(0)
i = a+

b

v2
~vi  ~u+ e

u2

v2
+ 

h

v4
viviuu (136)
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Note that fi is an integer whereas f
(0)
i is a real number. The parameters a, b, e

and h should be determined according to the geometry of the lattice, with the
condition that the Navier{Stokes equation describes the dynamics of the system,
and that (~r; t) =

P
i f

(0)
i (~r; t) and ~u(~r; t) =

P
i f

(0)
i (~r; t)~vi.

We shall require that, as in the BGK situation, the relaxation to the local
equilibrium is governed by a parameter . Thus, the number of particles f 0

i

leaving (after collision) a given site along direction i is

f 0
i = fi +

1



h
f

(0)
i  fi

i
+ fi (137)

where fi is a random quantity accounting for the fact that (after collision) the
actual particle distribution may depart from its ideal value.

In practice f 0
i is obtained as follows. Let N =

P
i fi be the total number of

particle at the given site. We assign to each direction i a weight wi computed as

wi = max

 
0;

1


f

(0)
i +

 
1  1



!
fi

!

From these weights, we dene pi, the probability for a particle to leave the site
along direction i, as pi = wi=M , where M =

P
iwi is a normalization constant.

To compute the collision output, we run through each of the N particles and
place them in direction i with probability pi. This gives us a temporary particle
distribution ~fi which then must be corrected to obtain f 0

i , in order to ensure exact
momentum conservation.

In our algorithm, ~fi is computed as

~fi =
NX

h=1

(si1  rh < si) (138)

where (si1  sh < si) is to be taken as a boolean value which is 1 when the
condition is true and zero otherwise. The quantities si are dened by si =

Pi
j=1 pj,

s0 = 0 and rh is a random variable uniformly distributed in [0; 1[. It is then easy
to check that (si1  sh < si) = 1 with probability pi.

Therefore, the expectation of ~fi is < ~fi >=
PN

h=1 pi. If none of the pi is zero,
we have M = N and

< ~fi >=
1


f

(0)
i +

 
1  1



!
fi (139)

Note that when N is large enough, equation 138 can be computed using a Gaus-
sian approximation, as explained for the reaction-diusion multiparticle moldel.

While the distribution ~fi of outgoing particles obviously conserves the num-
ber of particles, equation (139) shows that it does only conserve momentum on
average and some particles must be redirected to ensure exact conservation. The
momentum tuning is performed iteratively, according to the following steps
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 At each site where momentum is not correctly given by
P

j
~fj~vj, choose at

random one lattice direction i.

 If ~fi 6= 0 move one particle randomly to an adjacent direction.

 Accept the change if it does not increase the momentum error. It is im-
portant to accept modications which do not improve the error because it
may happen that only a two-particle redirection decreases the error.

 Iterate this procedure until the outgoing particle distribution satises mo-
mentum conservation

P
j f

0
j~vj =

P
j fj~vj.

From the way the particles are distributed, we expect that roughly
p
N of them

are misplaced. This gives an estimate of the number of iteration necessary to
re-adjust the particle directions.

According to the above discussion, the quantity fi dened in equation 137
vanishes on average. This fact is conrmed numerically. Consequently, we write

< fi(~r + ~vi; t+ ) >=
1


f

(0)
i (~r; t) +

 
1  1



!
fi(~r; t)

where we have used that fi(~r + ~vi; t + ) = f 0
i(~r; t), due to the denition of

particle motion.
In the limit where the correlations between the fi's can be neglected (remem-

ber that f
(0)
i is a nonlinear function of all fj's) we may take the average of the

above equation and we obtain

< fi(~r + ~vi; t+ ) >=
1


f

(0)
i (<  >;< ~u >) + 

1  1



!
< fi > (140)

Equation 140 is identical to the usual BGK microdynamics (see section 4), except
that now it approximates a multiparticle dynamics in which fi are integer quan-
tities. Therefore, the standard multiscale Chapman-Enskog expansion [14] can
be applied exactly as in the BGK case and the same hydrodynamical behavior
emerges: equation 140 is equivalent to the Navier-Stokes equation with viscosity
 = v2(C4=C2) (  1=2), where C2 and C4 are model dependent (dierent in
hexagonal, square or cubic lattices and are dened in equ. 81 and 82.

The present muliparticle scheme is intrinsically stable. No small uctuation
will be amplied unphysically to make the arithmetic blow up as happens with
the LB model when  becomes too small. Any value of the relaxation parameter
 can be considered without numerical problems but the physical limit of our
model when  ! 1=2 (or  < 1=2) has not yet been explored.
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Figure 53: Velocity prole in a multiparticle Poiseuille ow. The plot shows the
horizontal average velocity < ux(y) > as a function of y the vertical position
between the upper and lower boundaries. The solid line corresponds to the best
parabola tting the data.

We now present some applications of our multiparticle uid, on a two-dimen-
sional hexagonal lattice and with a population of rest particles. Figure 53 shows
the measured velocity prole in a simulation of a Poiseuille ow [71]. Fluid
particles are injected on the left side of a channel of length L and width W with
a rightward velocity. On the upper and lower channel limits, the usual no-slip
condition is imposed, by bouncing back incoming particles in order to produce
a zero speed ow at the boundary. We observe a parabolic velocity prole in
agreement with the prediction of hydodynamics.

As a second example, we consider the ballistic annihilation problemA+A ! 0,
where particles A evolve according to our multiparticle uid rule. This is a
variant of the diusive annihilation problem discussed in section 6.3.1: here a
hydrodynamic behavior is imposed to the particle instead of a diusive motion.

When two particles meet at the same site with opposite velocities, they an-
nihilate each other. Thus, before the hydrodynamic colllision take place, our
multiparticle dynamics is supplemented by a reaction term which modies the
particle distributions fi as fi ! max(0; fi  fi0), where i and i0 correspond to
opposite velocities (~vi = ~vi0). We are interested to measure the number N(t)
of A particles left in the system as time goes on. It is known [140{143] that this
quantity obeys a power law N(t)  tx. Molecular dynamics simulations [144]
predict an exponent x between 0.86 and 0.89 depending on the size of the sample,
in a two-dimensional system.

The simulation performed with the multiparticle model fully agrees with this
prediction since an exponent x = 0:870:005 is found [145]. The simulation time
required to obtained this value is several order of magnitude shorter than a full
molecular dynamics computation. The results for the decay law are sumarized in
gure 54.

The decay exponent x depends on the space dimension, as well as the veloc-
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Figure 54: Decay laws for the ballistic annihilation simulations, using the multi-
particle lattice gas model. The various plots correspond to the lattice sizes indi-
cated in the box. The decay exponent x is given by the slopes of the lines which
are all within x = 0:875  0:005, except for the smallest lattice.

ity distribution [142,143]. For one-dimensional systems with particles of velocity
v, it is found that x = 1=2. In two dimensions, the molecular dynamics sim-
ulations [144] indicate that the velocity distribution tends to a Maxwellian, in
the long time regime. It is then interesting to note that our multiparticle model
imposes from the very beginning a discrete, truncated Maxwellial velocity distri-
bution (equ. refeq:multi-f0).

7 Wave model and fracture simulation

In the previous sections, the LB approach has been applied to hydrodynamic
systems and reaction diusion processes. Here we show that it can also be used
to dene a wave dynamics. This section will present the basic aspect of the
model, as well as some of its applications.

7.1 The wave model

Wave phenomena, whether mechanical or electromagnetic derives from two con-
served quantities  and ~J , together with time reversal invariance and a linear
response of the media. The quantity  is a scalar eld and ~J its associated
current. For sound waves,  and ~J are respectively the density and the momen-
tum variations. In electrodynamics,  is the energy density and ~J the Poynting
vector [146].

The idea behind the LB approach is to \generalize" a physical process to
a discrete space and time universe, so that it can be eciently simulated on a
(parallel) computer. For waves, this generalization is obtained by keeping the
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essential ingredients of the real phenomenon, namely conservation of  and ~J ,
linearity and time reversal invariance. Thus, in a discrete space-time universe,
a generic system leading to wave propagation is obtained from the lattice BGK
equation

fi(~r + ~vi; t+ )  fi(~r; t) =
1




f

(0)
i (~r; t)  fi(~r; t)


(141)

by an appropriate choice of the local equilibrium distribution

f
(0)
i = a + b

~vi  ~J
v2

if i 6= 0; and f
(0)
0 = a0 (142)

where v is the ratio of the lattice spacing  to the time step  , and  and ~J are
related to the fis in the standard way:  =

P
i mifi and ~J =

P
i mifi~vi. The

quantitiesmi are the weights associated to each lattice directions and whose value
depends on the chosen lattice (here m0 = 1 whatever the lattice is). Note that,
here, we make no restriction on the sign of the fis which may well be negative in
order to represent a wave.

As opposed to hydrodynamics [79], f
(0)
i is a linear function of the conserved

quantities, which ensures the superposition principle. The parameters a, b and
a0 are computed so that  =

P
i mif

(0)
i and ~J =

P
imi~vif

(0)
i , which ensures

conservation of  and ~J .
Following the same derivation as in section 4, we obtain

a0 + aC0 = 1 b =
1

C2

where C0 =
P

i1 mi and
P

i1 mivivi = C2v
2. For the two-dimensional

square lattice with rest particle (D2Q5), mi = 1, C0 = 4 and C2 = 2.

Writing the momentum tensor 
(0)
 =

P
i mivivif

(0)
i as 

(0)
 = c2

s, we
obtain

a =
c2

s

v2C2
a0 = 1  c2

s

v2

C0

C2

where cs is a free parameter giving the wave propagation speed. This parameter
can be adjusted locally to model a medium with dierent refraction indices.

We can now compute the macroscopic behavior of  and ~J , using the pro-
cedure of section 4. The main dierence is that here, we do not have to neglect
the higher order in ~J , since the dynamics is dened as linear. A straightforward
calculations gives

@t + @J = 0 (143)

@tJ + c2
s@ +
  1

2

 
c2

s@div ~J  

C2v2
T@@J


= 0

(144)
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where T =
P

i vivivivi. Depending on the lattice, this fourth order tensor
may not be isotropic. This is precisely the case of the D2Q5 lattice which is known
for giving anisotropic contributions to the hydrodynamic equations. However,
this term vanishes when  = 1=2. This is interesting since the condition  = 1=2
is required to ensure time reversal invariance, as can be easily checked from eq. 141
with ~J !  ~J and  !  in relation 142.

Equations 143 and 144 can be combined (space derivative of the second sub-
stituted in time derivative of the rst). This yields

@2
t   c2

sr2 =

  1

2

 
c2

s@div ~J  

C2v2
T@@J



With  = 1=2, we recover the wave equation

@2
t   c2

sr2 = 0 (145)

In hydrodynamic models,  = 1=2 corresponds to the limit of zero viscosity
(see section 4), which is numerically unstable. In our case, this instability does
not show up provided we use an appropriate lattice. In the D2Q5 lattice, our
dynamics is also unitary [147] which ensures that

P
i f

2
i is conserved. This extra

condition prevents the fis from becoming arbitrarily large (with positive and
negative signs, since  is conserved). This is no longer the case with the D2Q9
lattice, where numerical instabilities develop for this wave dynamics.

Note that dissipation can be included in our microdynamics. Using  > 1=2
allows us to describe waves with viscous-like dissipation. This makes sense with
the hexagonal lattice D2Q7, where no stability problem occurs when  = 1=2 and
no anisotropy problem appears when the viscosity is non-zero ( > 1=2).

There is another (and simpler) way to include dissipation in this model, which
is suitable for the D2Q5 lattice and appropriate to our purpose of modeling
fracture propagation (see section 7.4): absorption on non-perfect transmitter

sites can be obtained by modifying the conservation of  to
P

imif
(0)
i = ,

where 0    1 is an attenuation factor. In this way,  = 0 corresponds to
perfect reection (see equation 147),  = 1 to perfect transmission and 0 <  < 1
describes a situation where the wave is partially absorbed.

In equation 145, the propagation speed is given by c2
s = av2C2. For the

stability of the numerical scheme we must impose that a0  0. This yields the
larger possible value of a and, thus, the maximum propagation speed of the model
is

c2
max =

C2

C0
v2

(note that v is the speed at which information travels). We dene the refraction
index n (which may depends on the position) as

n(~r) =
cmax

cs(~r)
; n  1
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From these results, we may rewrite a and a0 as

a =
1

C0n2
a0 = 1  1

n2

and equation 141 reads

fi(~r + ~vi; t+ ) =




1

C0n2
 +

1

C2v2

X
j

~vi  ~vjmjfj 
 

1


 1

!
fi(~r; t)

f0(~r; t+ ) =




(n2  1)

n2
 

 
1


 1

!
f0(~r; t) (146)

where  is the dissipation factor.
For  = 1=2 and a d-dimensional cartesian lattice, we have mi = 1, C2 = 2,

C0 = 2d and the above equations reduce to

fi(~r + ~vi; t+ ) =


dn2
  fi0(~r; t)

f0(~r; t+ ) = 2
n2  1

n2
  f0(~r; t) (147)

where i0 is dened as the direction opposite to i, i.e. that having ~vi0 = ~vi. When
 = 0, the microdynamics becomes fi(~r+~vi; t+) = fi0(~r; t). This corresponds
to a perfect reexion on a mirror site, that is the ux bounces back to where they
came from with a change of sign. This is a way to dene a boundary condition
by tuning the parameter  on some selected sites.

Since equation 147 is linear, it can also be expressed using a matrix formu-
lation fi(~r + ~vi; t + ) =

P
j Wijfj(~r; t). However, from the point of view of a

numerical implementation, equ. 147 implies less computation.
Figure 55 (left) shows a simulation (D2Q5) of equation 147 in a situation

where two media are present. A plane wave is produced in mediumM1 by forcing
a sine oscillation for the fi's on some vertical line. The wave propagates at speed
c0 till it penetrates in medium M2 which has the shape of a convex lens. There,
propagation speed is set to c < c0. The shape of the lens naturally produces a
focusing of the energy when the wave re-enters medium M1. In these simulation,
 = 1.

An example of a wave reected on a parabolic mirror is shown in gure 55
(right). Each lattice site in the black region is a perfect reector with  = 0. As
a result of the collective eect of these mirror sites, we observe that the incoming
plane wave concentrates at the focal point of the parabola.

A natural interpretation of our LB wave model is to assume that the fi's rep-
resent some physical elds (a local deformation or deviation from an equilibrium
state). These elds propagate on the lattice and are scattered when reaching a
site as illustrated in gure 56.
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Figure 55: Simulation with the LB wave model: focusing of light by a convex
lens where the propagation speed is smaller than in vacuum (left). Focusing by a
parabolic mirror (right).
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Figure 56: Scattering of an incoming ux f1 = 1 at a D2Q5 lattice site, according
to equation 147.

The idea of expressing wave propagation as a discrete formulation of the Huy-
gens principle has been considered by several authors [148{151]. Not surprisingly,
the resulting numerical schemes bear a strong similarity to ours. Nevertheless the
context of these studies is dierent from ours and none have noticed the existing
link with the lattice BGK approach. Models of refs. [150,151] use a reduced set
of conserved quantities, which may not be appropriate in our case. Other mod-
els [152,153] consider wave propagation in a LB approach, but with a signicantly
more complicated microdynamics and a dierent purpose.

7.2 Application to mobile communications

The above LB wave model can be used to compute the wave intensity pattern in
a system with complicated boundary conditions. Here we consider the problem
of predicting the intensity of a wave propagating in a city. This application is
relevant to the eld of cellular phone and mobile communication devices.

An ecient planning of the deployment of wireless communication networks is
based on accurate predictions of radio-wave propagation in urban environments.
Radio waves are absorbed, reected, diracted and scattered in a complicated
way on the buildings and this constitutes a dicult propagation problem which
is studied by various authors [154{156] and is beyond analytical calculation. Yet,
the coverage region of an antenna is a crucial question because the base stations
must be placed in appropriate locations so that a complete coverage is guaranteed
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with a minimum number of cells, each of them no larger than what is allowed by
trac or propagation requirements.

The LB model presented in the previous section (with n = 1) produces fast
and accurate predictions of the wave propagation in urban environment [157].
The procedure starts by discretizing the building layout by, for example, scan-
ning a city map. Depending on the nature of each pixel (building or not), a
dierent set of coecients is dened for the microdynamics of the fi. The value
is chosen appropriately after comparison with real measurements performed by
Swisscom. A source wave of wave length  is simulated at site ~r by imposing
a A(~r) sin(2t=T ) for the fi(~r; t) where T = c= is the period and A(~r) some
chosen amplitude.

The simulation then consists of a synchronized updating of each site, according
to the LB microsynamics until a steady state of the signal intensity (dened as
the amplitude of ) is reached. A re-normalization scheme 0 = R(; =0)
must be then applied in order to account for the three-dimensional geometry of
the real propagation problem, and the possibly wrong wavelength  chosen for
numerical reasons (the wavelength must be large compared to the lattice spacing).
In the function R, the quantity  is the distance to the source depending on the
layout (see [157]) and 0 is the real wavelength concerned by the prediction.

Figure 57 shows a typical simulation of the wave intensity pattern produced
by a transmitter located in an urban area. The predictions of the LB model and
the renormalization procedure are in good agreements with the corresponding
real measurements performed by Swisscom in the real environment.

7.3 Modeling Solid Body

Whereas LB methods have been largely used to simulate systems of point particles
which interact locally, modeling a solid body with this approach (i.e. modeling
an object made of many particles that maintains its shape and coherence over
distances much larger than the interparticle spacing) has remained mostly un-
explored. A successful attempt to model a one-dimensional solid as a cellular
automata is described in [158]. The crucial ingredient of this model is the fact
that collective motion is achieved because the \atoms" making up the solid vi-
brate in a coherent way and produce an overall displacement. This vibration
propagates as a wave throughout the solid and reects at the boundary.

A 2D solid-body can be thought of as a square lattice of particles linked to
their nearest neighbors with a spring-like interaction. Generalizing the model
given in [158] requires us to consider this solid as made up of two sublattices. We
term them black and white, by analogy to the checkerboard decomposition. The
dynamics consists in moving the black particles as a function of the positions of
their white, motionless neighbors, and vice-versa, at every other steps.

Let us denote the location of a black particle by ~ri;j = (xi;j; yi;j). The sur-
rounding white particles will be at positions ~ri1;j, ~ri+1;j, ~ri;j1 and ~ri;j+1. We
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Figure 57: LB simulation of wave propagation in the city of Bern on a square
lattice of size 512  512. The white blocks represent the buildings, the gray levels
indicates the simulated intensity of the wave (decreasing from white to black)
and the dot marks the position of the source. The plots show the measured and
computed intensity along the street which is indicated by the dotted white line.
Two types of boundary conditions were applied for the sites limiting the buildings
in the discretized layout: reecting walls in the upper graph and permeable walls
in the lower graph.
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Figure 58: Illustration of the way the fis are dened. The cross indicates the
location of the geometrical center of mass of the four white particles. At the next
iteration, the black particle jumps to a symmetrical position with respect to this
point.

dene the separation to the central black particle as (see gure 58)

~f1(i; j; t) = ~ri;j(t)  (~ri1;j(t) + ~h)

~f2(i; j; t) = ~ri;j(t)  (~ri;j1(t) + ~u)

~f3(i; j; t) = ~ri;j(t)  (~ri+1;j(t)  ~h)

~f4(i; j; t) = ~ri;j(t)  (~ri;j+1(t)  ~u)

(148)

where the ~fi are now vector quantities, and ~h = (r0; 0) and ~u = (0; r0) can be
thought of as representing the equilibrium length of the horizontal and vertical
spring connecting adjacent particles. With this formulation, the coupling between
adjacent particles is not given by the Euclidean distance but is decoupled along
each coordinate axis (however, a deformation along the x-direction will propagate
along the y-direction and conversely). This method makes it possible to work
with a square lattice, which is usually not taken into account when describing
deformation in a solid because, with the Euclidean distance, the y-axis can be
tilted by an angle  without applying any force. The breaking of the rotational
invariance is expected not to play a role in the fracture process we shall consider
below.

The locations ~rij(t + 1) of the black particles is obtained by updating the

corresponding ~fis by equ. 147, with n = 1 and for i > 0. Next, the quantities ~f
are interpreted as the deformations seen by the white particles,

~f1(t+ 1) = ~ri+1;j  (~rij(t+ 1) + ~h)

~f2(t+ 1) = ~ri;j+1  (~rij(t+ 1) + ~u)

~f3(t+ 1) = ~ri1;j  (~rij(t+ 1)  ~h)
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~f4(t+ 1) = ~ri;j1  (~rij(t+ 1)  ~u) (149)

Then, the same procedure can re-applied to move the white particles.
It turns out that equ. 147 (with n = 1 and i 6= 0) is equivalent to moving

the particles to a symmetric location with respect to (1=4)[~ri1;j + ~h + ~ri+1;j 
~h + ~ri;j1 + ~u + ~ri;j+1  ~u] (i.e. the center of mass of the neighbors, as shown in
gure 58).

Indeed, in this case the new location of the particle will be

~ri;j(t+ 1) = ~rij + 2(~rCM  ~rij) =
1

2

h
~f1 + ~f2 + ~f3 + ~f4

i
(150)

If this expression is substituted into equ. 149, it is easy to check that, for instance,

~f1(t + 1) =
1

2

h
~f1 + ~f2 + ~f3 + ~f4

i
 ~f3 (151)

and similarly for ~f2(t+ 1), ~f3(t+ 1) and ~f4(t+ 1) This shows that the dynamics
given in equation 151 is identical to the LB wave model described in relation 147
for n = 1 and f0 = 0.

The momentum ~pij associated to the motion of particle (i; j) is then

~pij  ~rij(t + 1)  ~rij(t) = 1

2

h
~f1 + ~f2 + ~f3 + ~f4

i

which is the conserved quantity ~ introduced in the LB wave model.
At the boundary of the domain a dierent rule of motion has to be considered

since the particles may have less than four links. With the interpretation of the
rule as a symmetrical motion with respect to

~rCM = [(~ri1;j+~h)ne+(~ri+1;j~h)nw+(~ri;j1+~u)ns+(~ri;j+1~u)nn]=(ne+nw+ns+nn)

where ne, nw, ns and nn are Boolean variables indicating the presence or absence
of a neighbor along the east, west, south and north directions, the evolution rule
can be written down for particles missing some of their link, either because they
are at the boundary of the domain or because some links are broken, as described
below.

7.4 Fracture

An interesting application of our LB solid body model is the study of a fracture
process. How things breaks is still an important problem in science for which one
lacks theory and no satisfactory understanding is yet achieved [159].

The key idea when using our approach as a model of dynamic crack is to
assume that a bond linking two adjacent atoms may break if the local deformation
exceeds some given threshold. This threshold can possibly be dierent for each
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Figure 59: Fracture simulation obtained in a LB solid with 128128 atoms when
applying an opposite force on both sides of the sample.

bond and spatial disorder can be introduced in this way. Once a bond is broken,
the atoms on each side of the crack behave as free ends. A broken link weakens
the material because a local deformation can no longer be distributed uniformly
among the four neighbors. Usually, the next bond to break is nearest neighbor
of an already broken bond.

A typical experiment which is performed when studying fracture formation
is to apply a stress by pulling in opposite way the left and right extremities of a
solid sample. A small notch (articially broken links) is made in the middle of
the sample to favor the apparition of the fracture at this position. Once a given
strain is reached, a crack forms and propagate from that notch through the bulk,
breaking the system in one or multiple pieces. The fracture is perpendicular to
the direction of the stress. This situation is illustrated in gure 59 where each
dot shows the position of an atom.

The shape of the fracture we obtain is qualitatively similar to what is observed
in real experiment [159]. Several situations can be reproduced, depending on the
value of the model parameters. It is found that adding some attenuation in the
motion (i.e. having  < 1) yields fractures with less branching. Figure 60 shows
some of the simulation results. In gure (b) no damping of the wave is included
while, in (a) a damping factor  = 0:92 is added. Figures (c) and (d) have
less disorder than (a) and (b) in the sense that the breaking threshold varies
weakly over space. The damping in (d) is  = 0:91, slightly stronger than in (c)
( = 0:92). The stretching rate (i.e the displacement of the solid boundary at
each time step) is the same for all experiments. In the above simulations, once
the fracture starts propagating, the external stress is turned o.

We have measured the propagation speed of the fracture by recording the
location of the crack tip l(t) for each time step. In case of branching we consider
the most advanced crack. Figure 61 shows the average velocity v(t) = l(t)=t of
the propagation fracture as a function of time. These measurements made from
our simulation are in qualitative agreement with experimental data. In particular

121



(a) (b) (c) (d)

Figure 60: Fracture (top) and the corresponding map of the broken bond (bottom)
for several runs with dierent parameters.
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Figure 61: Crack propagation speed measured in the LB fracture simulation. The
upper and lower curves correspond to the fractures shown in gure 60 (b) and
(d), respectively.
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the crack speed is slower than the speed of sound (which is here c0 = 1=
p

2 in
lattice units) and it is faster when the fracture is complex.

7.5 Wave localization

In this section, we consider another problem for which the LB wave model is use-
ful: propagation in disordered media. Our purpose is not to derive new physical
properties but, rather, to show how the LB approach can be easily applied to
study a dicult problem such as wave localization. Note also that this type of
approach has been considered for this problem by other authors [150].

A coherent, but by no means complete understanding of the problem of waves
in disordered media has only emerged recently [160]. Disordered media means here
that the waves are supposed to undergo multiple scattering and the problem is
quite dierent from the case of propagation in an urban medium, as considered
in section 7.2. The two problems are not logically separated but the treatment of
radio waves propagation in urban areas involves obstacles with typical sizes much
larger than the wavelength. Thus, it is rather a diraction problem, involving
departures from geometrical optics caused by the nite wavelength of the waves
and actual scattering analysis enters the game only once the small scale roughness
of the buildings or the corners are taken into account.

For the scattering of waves by systems whose characteristic sizes are small
compared to the wavelength, it is convenient to think of the incident elds as
inducing a response that oscillates in denite phase relationship with the incident
wave and radiates energy in directions other than the direction of incidence. If
the medium contains randomly distributed such small scatterers, the picture of
multiple scattered waves is very dierent from that we normally associate with
waves. Although the medium is a purely elastic, the wave can have a diusive-
like behavior or become localized, showing up no more spatial periodicity or
possibility for transport.

Our wave propagation model is particularly well adapted to investigate numer-
ically wave propagation in random media beyond what is analytically possible.
Here we consider a two-dimensional medium with two dierent refraction indices
n: the background sites have a value of n0 = 1, whereas the randomly distributed
scatterers have n1 > 1.

Dierent media may be designed. For instance we could choose a dierent
value of n for each scatterer, or even a dierent value of n for each lattice site.
Figure 62 shows the typical pattern of energy issued from a point source located
in a random medium composed of 2% of scatterers. Note that the dynamics of
our model is time-reversal invariant and that the new propagation pattern we
observe is not due to some form of dissipation.

The pattern shows large uctuations and further analysis or comparison with
classical diusion involve an averaging over dierent spatial congurations. To
avoid the excess of computation generated by an averaging process over succes-
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Figure 62: Snapshot of energy propagation pattern in a random medium com-
posed of a background of refraction index n0 = 1 and containing 2% of randomly
distributed scatterers (black dots), all with n1 = 10. The source is placed at the
center of the sample and oscillates with a period of 16 time steps. The pattern
shows large uctuations and the diusive, or sub-diusive, behavior only emerges
after an averaging over the congurations.

124



10
1

10
2

10
3

Time [iterations]

10
1

10
2

10
3

10
4

Π

Pure Wave Propagation

10 % of impurities

1 % of impurities

Pure diffusion

Figure 63: Transition from the wave to the diusive transport in a 1-dimensional
geometry. The strip-like domain size is 409664 and the refraction index ratio of
background sites over impurities is 1=10. The square root of the second moment of
the energy distribution  is ploted in function of time. Between the two extreme
cases, homogeneous medium and pure diusion, we observe a smooth transition
for random media (1% and 10%) from the wave regime / t to the diusive regime
/ t1=2.

sive conguration, we consider a two-dimensional system with a one-dimensional
symmetry. The averaging is achieved by a reduction over the \irrelevant" dimen-
sion. We consider the propagation of the energy issued from a \line-pulse" in a
two-dimensional long strip-like medium (typically of size 4096  64). The line
source is placed in the middle and radiates synchronously two oscillations of a
wave with a given period T = 6. Two free parameters determine the medium: 
the density of randomly distributed scatterers and n1 the scattering strength, or
refraction index of the scatterers.

In order to extract the propagation properties of a wave traveling in such a
disorder media, we study the average behavior of the square root of the energy
distribution second moment

(t) =

sZ
A2(~r; t)r2d2r

where r is the distance to the source and A the amplitude of the wave at position
~r. Thus  is .

The results are shown in gure 63. It can be seen that for the homogeneous
medium, a pure wave propagation is characterized, as expected, by (t) / t.
For random non-dissipative media the dynamics switches to a behavior given
by (t) / p

t which is typical of a diusive transport regime. The cross-over is
smooth and happens earlier in case of increasing disorder, or increasing scattering
strength.
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Figure 64: Sub-diusive (or localized) behavior obtained with a stronger disorder:
n1 = 30 and an impurity density of 20%. We have  / t with   0:24.

For sake of comparison we also show the behavior of (t) in the case of true
diusion, with the model discuss in section 5.3.2. However, for the diusion case,
 must be changed: instead of the \energy" A2 we take the local eld value
 =

P
i fi. The good agreement between classical diusion and wave diusion

(or weak localization) is shown in gure 63.
Strong localization is presented in [160] as a tendency for the diusion coef-

cient to fall towards 0. The measurement of the quantity  with a signicant
increase of the amount of disorder shows a behavior  / t where  < 1=2, as
ilustrated in gure 64.

It is interesting to note that, when the reextion index n1 is large, the scater-
ers behaves as energy conserving reectors (i.e. with  = 0 and n = 1 in equa-
tion 147). Thus, each site has  = 1 with probability 1   and  = 0 with
probability . If the averaging process over propagation patterns is replaced by a
spatial averaging of the disorder (i.e. the averaging is done before propagation is
simulated), we obtain that the strong localization case behaves as a propagation
in an absorbing media with  = 1  .
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