Chapter 5 Chance and necessity
The ordinary probability
When the party is over
A rare dissemination
Potentially abnormal
Growing
Tumours
Enormous molecules
Referencias y comentarios:
·
La ley de los grandes números se desarrolla
con detalle en en.wikipedia.org, mathworld.wolfram.com y www.stat.berkeley.edu,
el teorema del límite central en video.google.es (vídeo explicativo de éste y
otros conceptos en la teoría de la probabilidad) y en.wikipedia.org, y la
construcción de histogramas se ilustra en w3.cnice.mec.es, o bien pueden
consultarse estos conceptos en un libro o manual sobre probabilidad como, por
ejemplo, el de
® William Feller, An introduction to probability theory
and its applications, dos volúmenes, Wiley, NY 1968 y 1971.
En línea puede verse www.dartmouth.edu.
También: www.mathcs.carleton.edu.
Nótese que este capítulo no puede
considerarse, en absoluto, como una introducción a la teoría de probabilidades,
pues no se hace una descripción sistemática del tema, de modo que ha de
completarse en este sentido con alguna de estas referencias.
· The importance of the mesoscopic world
to understand the mystery of life was highlighted by
® Mark Haw in Middle World: The Restless Heart of Matter
and Life (Palgrave Macmillan, 2006).
· For Brownian motion, visit the Center
for Polymer Studies which illustrates random walks in one and two dimensions in
the site polymer.bu.edu/java/; see also galileo.phys.virginia.edu/classes/109N/more_stuff/applets/brownian/brownian.hml.
The
original experiment is described in
® “Einstein, Perrin, and the reality of atoms: 1905
revisited”, by Ronald Newburgh, Joseph Peidle and Wolfgang Rueckner, American Journal of Physics 74,
478 (2006).
The
mathematical theory is in
® Dynamical theories
of Brownian motion, by Edgard Nelson (Princeton University Press, 1967)
whose second edition is posted at www.math.princeton.edu/ ~nelson/books.html.
Further
details on diffusion:
® “The dichotomous history of diffusion”, by T.N.
Narasimhan, Physics Today (July
2009), page 48.
· The classical book for stochastic
processes in science is
® Stochastic
Processes in Physics and Chemistry by Nicolaas G. Van Kampen (Elsevier,
2007).
· For experimental reports and theory on anomalous
diffusion, see
® “Lévy flight search patterns of wandering albatrosses”, Gandhimohan
M. Viswanathan et al., Nature 381,
413 (1996);
® “Revisiting Lévy flight search patterns of wandering
albatrosses, bumblebeees and deer”, Nature
449, 1044 (2007), also by Gandhimohan M. Viswanathan et al.;
® “Scale-free dynamics in the movement patterns of
jackals”, R.P.D. Atkinson et al., Oikos
98, 134 (2002);
® “Anomalous diffusion spreads its wings”, Joseph Klafter
and Igor M. Sokolov, Physics World,
page 29, August 2005;
® Diffusion and
reactions in fractals and disordered systems, Daniel ben-Avraham and Shlomo
Havlin (Cambridge University Press 2000);
® “Strange kinetics of single molecules in living cells”,
Eli Barkai, Yuval Garini, and Ralf Metzler, Physics Today 65, 29 (August 2012)
® “Einstein relation in superdiffusive systems”, Giacomo
Gradenigo et al., Journal of Statistical
Mechanics: Theory and Experiments L06001 (2012).
Also,
it is interesting to note here that Nassim N. Taleb has developed on the impact
of rare events in the financial markets —with possible extension to many
fields—, and on our tendency to rationalize them too simply a posteriori, in
® The black swan —
The impact of the highly improbable, by Nassim N. Taleb (Random House
2010).
· For a description of power laws and
their properties:
® “A brief history of generative models for power law and
lognormal distributions”, Michael Mitzenmacher, Internet Mathematics 1, 226 (2003), and
® “Power laws, Pareto distributions and Zipf’s law”, Mark
E. J. Newman, Contemporary Physics 46,
323 (2005).
® “The scaling laws of human travel”, Dirk Brockmann et
al., Nature 439, 462 (2006).
· On the processes of growth, see the classic
® D'Arcy W. Thompson, On
Growth and Form (Cambridge University Press 1917; revised edition, Dover
1992).
See
also
® Lianel G. Harrison, The
shaping of life – The generation of biological pattern (Cambridge
University Press 2011).
· On growth of tumors, see
® “Pinning of tumoral growth by enhancement of the immune
response”, Antonio Brú et al., Physical
Review Letters 92, 238101 (2004)
® “Tumor growth instability and the onset of invasión”,
Mario Castro, Carmen Molina-París and Thomas S. Deisboeck, Physical Review E 72, 041907 (2005);
® “Modeling the effect of deregulated proliferation and
apoptosis on the growth dynamics of epithelial cell populations in Vitro”, Jörg
Galle et al., Biophysical Journal 88,
62 (2005);
® “Self-scaling tumor growth”, Jürgen Schmiegel, Physica A 367, 509 (2006);
® “Stochastic models for tumoral growth”, Carlos Escudero,
Physical Review E 73, 020902R
(2006)
· Complex molecules are described at
www.johnkyrk.com/dnaanatomy.html and
www.umass.edu/microbio/rasmol/teacher2.htm, y recomendamos el libro
® Estructura de proteínas, por Carlos
Gómez-Moreno Calera, Javier Sancho Sanz y otros, en Ariel Ciencia, Barcelona
2003.
· For the self-avoiding random walk:
polymer.bu.edu/java/java/saw/sawapplet.html and mathworld.wolfram. com/self-avoidingwalk.html.
Nota: véanse
las referencias y enlaces que se incluyen en las dispositivas del curso, que a
menudo completan las anteriores.