Chapter
4
Critical worlds
Opalescent
Correlated
and ordered
Classes
of universality
Percolate
The
forest is burning
Homogeneous nature
Referencias y comentarios:
·
For phase diagrams of H20 and CO2:
www.chemicalogic.com/download/phase_ diagram.html and
www.chemguide.co.uk/physical/phaseeqia/phasediags.html.
·
An excellent and classic reference for the theory of
phase changes and critical phenomena in systems in equilibrium is
®
Introduction to
Phase Transitions and Critical Phenomena, H. Eugene Stanley (Clarendon Press;
out of print, but accessible on the internet).
El comportamiento de funciones matemáticas en sus puntos
críticos, que es relevante para comprender mejor el comportamiento de magnitudes
físicas en los puntos críticos de diagramas (termodinámicos) de fase y en otros
contextos, como se discute más adelante en este capítulo, se ilustra en
descartes.cnice.mecd.es.
·
An experiment that shows the phenomenon of critical opalescence is described in the web site
www.physicsofmatter.com/notthebook/criticalopal/opalframe.html. Un fenómeno
relacionado con la opalescencia crítica hace que predominen ciertas longitudes
de onda en la luz que, proveniente del Sol, es dispersada por la atmósfera, lo
que origina el color azul característico del cielo en condiciones normales, el
color rojizo en los atardeceres, y el tono amarillento del disco solar. Para
una explicación sencilla del color del cielo, puede verse enebro.pntic.mec.es.
·
The simulation mentioned in class is described in
detail in
®
“Microscopic observations on a kinetic Ising model”,
Raúl Toral and J. Marro, American Journal of Physics 54, 1114 (1986). Note that here
the two spin states play the role of occupied/empty, dead/living, or A/B states
in the models that we use in chapter 2 to understand other phenomenologies.
·
A good general reference to percolation phenomena is
®
Introduction to
Percolation Theory, Dietrich Stauffer and Amnon
Aharony (Taylor and Francis, Londres
1994).
For popular algorithms, see
®
J. Hoshen and R. Kopleman, Physical Review B 14, 3438
(1976), and
®
P. Leath, Physical
Review B 14, 5056 (1976).
For interactive simulations: www.physics.buffalo.edu/gonsalves/java/percolation.
html, pages.physics.cornell.edu/sethna/statmech/computerexercises/percolation/
percolation.html and www.physics.buffalo.edu/gonsalves/java/percolation.html.
A related Fermi’s paradox is in
®
T.
Kuiper and G.D. Brin, American Journal of Physics 57, 13 (1989). See also
®
Complexity and criticality, Kim
Christensen and Nicholas R Moloney (Imperial College
Press, UK 2005).
·
Simulation of forest fires, in
www.sciencedaily.com/releases/1998/09/9809180709 16.htm and
polymer.bu.edu/java/java/blaze/blazeapplet.html.
·
On universality and renormalization, see the famous
book by H Eugene Stanley quoted above and, by the same author,
® “Scaling,
universality, and renormalization: Three pillars of modern critical phenomena”,
H Eugene Stanley, Reviews of Modern
Physics 71, S358 (1999). In the same journal, see the
classical papers by Michael E. Fisher, 30, 615 (1967) and by Leo P. Kadanoff et
al., 39, 395 (1967). Also interesting:
®
“Renormalization
group theory: the basis and formulation in statistical physics”, M.E. Fisher, Reviews of Modern Physics 70, 653
(1998);
®
“Problems
in Physics with Many Scales”, Kenneth G. Wilson, Scientific American 241, 158 (1979); and
®
“Teaching
the renormalization group”, Humphrey J. Maris and Leo P. Kadanoff, American Journal of Physics 46,
652 (1978).
Nota: véanse
las referencias y enlaces que se incluyen en las dispositivas del curso, que a
menudo completan las anteriores.