Chapter 2 The automata
Playing
with life
The
essence of a fluid
Let’s
use metaphors
A game
of chance
Traffic
Flock
dynamics
Automata can be played!
Genetic algorithms
Referencias y comentarios:
·
For a detailed description of the concept of a
cellular automata and its many applications, see
® Cellular
Automata Modeling of Physical Systems, Bastien
Chopard and Michel Droz
(Cambridge University Press 1998); and
® A New
Kind of Science,
Stephen Wolfram (Wolfram Media 2002; see also the web site www.wolframscience.com).
El término “algoritmo”
en el que descansa este concepto de autómata, se refiere a la receta para
resolver un problema paso a paso, de modo que se adapta perfectamente al código
usado para realizar cálculos con el ordenador y también al esquema que inspiró
ese código. Proviene de Algoritmi, nombre latino del
matemático Muhammad ibn Musa al Juarizmi,
padre del álgebra e introductor del sistema decimal, que fundó en Bagdad la
Casa de la Sabiduría donde se tradujeron obras científicas y filosóficas del
griego y del hindú.
· Acerca del juego
de la vida:
® “Mathematical Games – The fantastic
combinations of John Conway’s new solitaire game life”, Martin Gardner, Scientific American 223, 120
(1970);
® Games of
Life – Explorations in Ecology, Evolution and Behaviour, Karl Sigmund (Penguin
Books 1995);
® Artificial
Life: An Overview, Christopher G. Langton (The MIT Press, Cambridge MA
1997).
® “Emerging properties of
financial time series in the Game of Life”, A.R. Hernández-Montoya et al., Physical Review E 84, 066104
(2011).
Los curiosos pero reacios
a embarcarse en simulaciones propias, pueden ver los juegos interactivos en www.bitstorm.org/gameoflife,
www.radicaleye.com and www.ibiblio.org/lifepatterns/.
·
On snowflakes and symmetries, see
® “Snow and ice crystals”,
Yoshinori Furukawa and John S. Weltlaufer, Physics
Today (December 2007), page 70, including an original comment by Descartes on
the matter.
·
The first automata of a Navier-Stokes fluid appreared in
® “Lattice-Gas Automata for
the Navier-Stokes Equation”, Uriel Frisch, Brosl Hasslacher, and Yves Pomeau, Physical
Review Letters 56, 1505 (1986).
® “Lattice Gases Illustrate the Power of Cellular Automata in Physics”, by Bruce Boghosian, Computers in Physics (November/December 1991), page
585, es una divulgación de este modelo y de sus extensiones, y de cómo simular
su comportamiento de modo eficaz en un ordenador.
Puede uno recrearse con
un autómata similar en
ccl.northwestern.edu, donde se detalla el procedimiento y, pulsando en “Run Lattice Gas…”, se entra en la
simulación que incluye la visualización de cómo se propagan ondas al variar la
densidad del fluido.
En www.realitygrid.org
se describen problemas hidrodinámicos complicados resueltos con métodos basados
en el uso de autómatas en el ordenador. Más información sobre autómatas y sus
aplicaciones, en www.moshesipper.com.
· Un libro relacionado recomendable para lectores con
formación matemática es
® The
Navier-Stokes Equations – A Classification of Flows and Exact Equations, Philip G. Drazin and Norman Riley, London Mathematical Society Lecture Notes 334 (Cambridge
University Press 2006).
· Para modelos reticulares dinámicos puede verse el
trabajo pionero en
® “Computer experiments on phase
separation in binary alloys”, Kurt Binder, Malvin H. Kalos, Joel L. Lebowitz and J. Marro, Advances in Colloid and Interface Science 10, 173 (1979) y
® “Microscopic observations on
a kinetic Ising model”, J. Marro and Raúl Toral, American Journal of Physics 54, 1114 (1986).
Una descripción
detallada del modelo de mezcla, incluyendo resultados de su simulación en el
ordenador y la discusión de teoría y de observaciones experimentales
relacionadas puede encontrarse en el artículo
® “Dinámica de transiciones de fase”, de Joaquín
Marro, Serie Universitaria, volumen
127, Fundación Juan March, Madrid 1980.
Para un compendio
reciente, que describe mejoras del modelo al considerar nodos vacantes,
tensiones elásticas y deformaciones del retículo, véase
® “Using kinetic Monte Carlo simulations
to study phase separation in alloys”, Richard Weinkamer,
Peter Fratzl, Himadri S.
Gupta, Oliver Penrose and Joel L. Lebowitz, Phase
Transitions 77, 433 (2004).
·
Para
modelos con arrrastre:
® “Nonequilibrium
discontinuous phase transitions in a fast ionic conductor model: co-existence
and spinodal lines”, J. Marro and J. Lorenzo Valles, Journal of
Statistical Physics 49, 121 (1987) and 51, 323 (1988);
® “Fast-ionic-conductor behavior of driven lattice-gas models”, J. Marro, Pedro L.
Garrido and J. Lorenzo Valles, Phase Transitions 29, 129 (1991).
· El libro clásico sobre le
método MC es:
® Monte
Carlo Methods,
Malvin H. Kalos and Paula
A. Whitlock (Wiley−VCH, New York 2009).
·
For natural series of random numbers, see
www.fourmilab.ch/hotbits/ and www.random.org.
The
algorithmic generators of artificial series are well illustrated on www.math.utah.edu/~pa/random/random.html.
Sometimes
series with non-uniform distribution are of interest; see
www.fortran.com/fm_gauss.html.
For
the description of important types of generators and hardware realizations, see
en.wikipedia.org.
On
generation of random series based on quantum properties, see
® “Random numbers certified by Bell’s
theorem”, Chris Monroe et al., Nature
464, 1021 (2010).
· El modelo básico sobre tráfico fue propuesto en
® “A cellular automaton model for freeway
traffic”, Kai Nagel and Michael Schreckenberg, Journal de Physique I France 2,
2221 (1992).
The
data as presented here are in
® The
Physics of Traffic, Boris S. Kerner (Springer-Verlag, Berlin 2005) and
® Introduction to Modern Traffic Flow Theory and Control, Boris S. Kerner (Springer, NY 2009).
See
also simulations at vwisb7.vkw.tu-dresden.de/~treiber/microapplet/.
For
specific cases, see
® “Realistic multi-lane traffic rules for
cellular automata”, Peter Wagner, K. Nagel, and Dietrich E. Wolf, Physica A 234,
687 (1997),
® “Nondeterministic Nagel-Schreckenberg traffic model with open boundary conditions”,
S. Cheybani, Janos Kertesz, and M. Schreckenberg, Physical
Review E 63, 016108 (2000), and
® “Jamming transitions induced by a slow
vehicle in traffic flow on a multi-lane highway”, Shuichi Masukura,
Takashi Nagatani, and Katsunori
Tanaka, Journal of Statistical Mechanics:
Theory and Experiments P04002 (2009).
· Sobre movimiento de animales, ver simulaciones en
www.dcs.shef.ac.uk/~paul/publications/boids/index.html,
www.red3d.com/cwr/ boids/, www.lalena.com/ai/flock/, Physics Today, October 2007,
and ptonline.aip. org/journals/doc/phtoad-ft/vol_60/iss_10/28_1.shtml?bypassSSO=1
for flocks and their applications;
www.permutationcity.co.uk/alife/termites.html
for termites;
iridia.ulb.ac.be/~mdorigo/aco/aco.html and alphard.ethz.ch/Hafner/pps/pps2001/ antfarm/ant_ farm.html
for ant colonies.
· El modelo de fuerzas entre organismos simples se
introduce en
® “Phase transition in the collective
migration of tissue cells: experiment and model”, Balint
Szabó, G. Szőlősi,
B. Gönci, Zs. Jurányi, D. Selmeczi, and Tamás Vicsek, Physical Rev. E 74, 061908
(2006); there is some interesting supplementary material, including a video, in
angel.elte.hu/~bszabo/collectivecells/supplementa rymaterial/supplementarymaterial.html,
and a related comment at physicsworld. com/cws/article/news/26485.
·
For recent work on animal dynamics showing phenomena
which is described in other parts of this book, see
® Celia Anteneodo
and Dante R. Chialvo, “Unraveling the fluctuations of
animal motor activity”, Chaos 19,
1 (2009);
® Vitaly Belik,
Theo Geisel, and Dirk Brockmann, “Natural human
mobility patterns and spatial spread of infectious diseases”, Physical Review X 1, 011001
(2011); and
® Filippo Simini, Marta C. González, Amos Maritan,
and Albert-László Barabási,
“A universal model for mobility and migration patterns”, Nature 486, 96 (2012).
·
The life of Turing has been depicted in a novel,
together with that of Kurt Gödel, in
® A Madman
Dreams of Turing Machines (Knopf, New York 2006) by the astrophysicist Janna
Levin, and the works of Turing have been compiled in www.alanturing.net.
·
The first popularisation of von Neumann’s ideas
appeared in
® “Man viewed as a machine”, John G. Kemeny, Scientific
American 192, 58 (1955).
More
recently:
® “An implementation of von Neumann’s
self-reproducing machine”, Umberto Pesavento, Artificial Life 2, 337 (1995);
® “Self-replicating loop with universal
construction”, Daniel Mange et al., Physica D 191,
178 (2004);
® “Self-reproducing machines”,
V. Zykov et al., Nature
435, 163 (2005).
·
The concept of genetic algorithm was introduced
explicitly by
® John Holland (1929); see his book
Adaptation in natural and artificial systems (MIT Press Cambridge, MA 1992). A
classic book on the subject is
® Introduction
to Genetic Algorithms, by Melanie Mitchell (MIT
Press, Cambridge, MA, 1996).
® Tim J. Hutton describes a DNA automaton
that shows evolution in “Evolvable self-replicating molecules in an artificial
chemistry”, Artificial Life 8,
341 (2002).
Nota: véanse las referencias y
enlaces que se incluyen en las dispositivas del curso, que a menudo completan
las anteriores.