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Revisiting canonical integration of the classical pendulum around its unstable equi-
librium, normal hyperbolic canonical coordinates are constructed and an identity
between elliptic functions is found whose proof can be based on symplectic geom-
etry and global relative cohomology. Alternatively it can be reduced to a well
known identity between elliptic functions. Normal canonical action-angle variables
are also constructed around the stable equilibrium and a corresponding identity is
exhibited. © 2010 American Institute of Physics. �doi:10.1063/1.3316076�

I. PENDULUM NEAR THE SEPARATRIX

The theory of Jacobian elliptic functions, for reference, see Ref. 1, yields a complete calcu-
lation for the motion of a pendulum as a function of time. This is revisited here, to exhibit a few
interesting properties of the elliptic integrals.

Write the pendulum energy, with inertia moment I and gravity constant g2 �rather than the
usual g�, in the canonical coordinates �B ,�� or as

B2

2I
− Ig2�1 − cos �� =

def

H�B,�� , �1.1�

where the origin in � is set at the unstable equilibrium: the definition implies that g has dimension

of inverse time and the Lyapunov exponents of the unstable equilibrium are �g. B =
def

I�̇ and � are
canonical coordinates for the motions.

It is well known that near the unstable equilibrium of the pendulum B=0, �=0, it is possible
to define a canonical transformation, mapping the origin into itself, introducing new local coordi-
nates �p ,q�, such that

B = Rc�p,q�, � = Sc�p,q� , �1.2�

with R, S holomorphic in a polidisk �p�, �q��� with ��0, and in terms of which the motion near
B=�=0 is described by a Hamiltonian G depending on the product pq only, of the form
U�p ·q�=H�B ,�� with �dU /d�pq���0�=g.

The purpose of this paper, which includes an unpublished note2 where a proof of the latter
statement via the theory of elliptic functions was derived, is to provide an alternative proof of the
main formula, Eq. �5.1�. The interest of the new derivation is that it is deductive in nature and it
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yields an interesting application of the theory of global relative cohomology classes: the latter
allows to perform calculations discarding systematically a large number of quantities that can be
shown immediately that will give, if kept and evaluated, no eventual contribution.

The approach of both proofs presented in this paper is not the simplest if one is just interested
to know the existence of normal hyperbolic coordinates: the existence of R, S could be easily
established without deriving their “explicit” expressions for p and q in terms of elliptic functions.
Here we also correct a few errors in the earlier attempt made in Ref. 3, Appendix 9 �where the
main formula was not derived�.

The natural correspondence between the hyperbolic fixed point of the pendulum and its
elliptic fixed point is briefly reported in Appendix C and leads to the construction of the normal
canonical coordinates for the small oscillations, hence to the action-angle variables.

II. SOLUTION IN TERMS OF ELLIPTIC INTEGRALS

Motions near the unstable equilibrium have a quite different nature depending on the sign of
the total energy H�B ,��=U: the ones with U�0 are “oscillations” �their motions do not encom-
pass the full perimeter of the circle� while the ones with U�0 are “librations.” Therefore, it will
not be possible to find global action-angle coordinates: motions near the separatrix �which with
our conventions has U=0� require other coordinates to be expressed in a simple way.

Introduce the variables that appear in the theory of Jacobi’s elliptic functions,

k� = �1 − k2, h� =
k

�1 + k2
, h = �1 − h�2,

�2.1�

U = 2g2I
1

k2 , u = t�U

2I
g0 = g

�

2h�K�h�
,

where K�k� =
def

�0
�/2�1−k2 sin2 ��−1/2d�. Hence the separatrix has k=+� and U=0; and the data

above the separatrix correspond to U�0 �or k�0�. Note that g0�0�=g because K�0�=� /2 �as
U=0 corresponds to k=� and h�=1, h=0�; the following formulas become singular as U→0, but
the singularity is only apparent and it will disappear from all relevant formulas derived or used in
the following.

Other important quantities in the elliptic functions theory are, see Ref. 1, �8.198.1��, �8.198.2�,
and �8.146�,

x� =
def

	�h� = e−�K�h��/K�h� = 
 + 2
5 + 15
9 + ¯ . ,

�2.2�


 =
def1

2

1 − �h�

1 + �h�
=

�n=0
� 	�h��2n + 1�2

1 + 2�n=1
� 	�h�4n2 ,

where 	�k�� denotes here what in Ref. 1 would be q�k�� �Ref. 1, �8.146.1� and �8.194.2��.
In terms of the above conventions we have, directly from the definitions of am, en, sn, dn

�Jacobi’s elliptic functions �Ref. 1, �8.14���, and from the equations of motion,

��t� = 2am�u,ik�, u =
tg

k
, B�t� = I�̇ =

2Ig

k
dn�u,ik� �2.3�

�Ref. 1, �8.143� and �8.141��. So that the action B is given as a function of time,
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B�t� =
2Ig

k dn	u

h
,h�
 = 2Ig

cn	− i
u

h
,h


k dn	− i
u

h
,h
 �2.4�

�Ref. 1, �8.153.9� and �8.153.3�� assuming that initial data are assigned with �=0.
The t dependence of B�t� is naturally expressed via the argument u /h=gt /khK�h�, if the

second of Eq. �2.4� is used, since kh�h�, see Eq. �2.1�. This explains the important role that the
quantity

g0�x�� =
def

g0 �
�

2

g

khK�h�
=

�

2

g

h�K�h�
�2.5�

will play in the following analysis. The g0�x�� admits a rather simple product expansion, �Ref. 1,
�8.197.1� and �8.197.4��,

g0�x�� = g�
n=1

� 	1 + x�n

1 − x�n
2

, �2.6�

and its logarithmic derivative is 4�n=1
� �nx�n−1 /1−x�2n� so that x��d /dx��log g0�x�� is �1 /2�

��d2 /dz2�log �4�z ,x�� �z=0, where �4�z ,x�� �Ref. 4, pp. 463 and 489� is a Jacobi’s theta function.
It is also convenient to remark that in a motion with energy U it will be

H�B�t�,��t�� � U = 2g2I
1

k2 . �2.7�

III. POWER SERIES REPRESENTATION

From the theory of elliptic functions the evolution B�t�, ��t� with any initial data above the

separatrix �i.e., with ��0�=0 and B�0�= I�̇�0� corresponding to a given value of h, with U�0�,
can be expressed as B�t�= R̄� ,�� and ��t�= S̄� ,�� with =eg0t, �=e−g0t and, taking into account
Ref. 1, �8.146.11�,

R̄�,�� = − 4g0I�
n=1

�  �− 1�n	n−1/2�2n−1 + �2n−1�
1 − 	2n−1 � �3.1�

with 	�	�h�. Definitions in Eqs. �2.1� and �2.2� yield

g0�	� = g
�

2

1
�1 − h2K�h�

= g	1 +
1

4
h2 + ¯
 , �3.2�

which is analytic in h2 by Ref. 1, �8.113.1� near h=0.
Equation �2.2� implies that 	=
+O�
5� is analytic in 
 near 
=0 so that h2=16
+ ¯

=16	+¯. Therefore,

g0 = �1 + 4	 + 12	2 + ¯�g �3.3�

is analytic in 	 near 	=0.

The evolution of � is then a consequence of Eq. �3.1� which leads to an expression for S̄ by

the remark that R̄=g0I��−����S̄ �just expressing that B is I times the derivative of ��: namely,
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S̄�,�� = − 4�
n=1

�
�− 1�n	n−1/2

1 − 	2n−1

2n−1 − �2n−1

2n − 1
�3.4�

and, after developing in powers of 	 the denominators and resuming,

S̄ = 4�
m=0

�

�arctan�	m��	� − arctan�	m�	�� ,

�3.5�

R̄ = 4Ig0�
m=0

� 	 	m�	

1 + �	m�	�2
+

	m��	

1 + �	m��	�2
 .

The first formula reminds of one found by Jacobi which he commented by saying that “inter
formulas elegantissimas censeri debet,” �Ref. 4, p. 509� �i.e., “it should be counted among the
most elegant formulae”�.

Note that g0 depends only on 	, see Eq. �3.2�, which would be surprising if the mechanical
interpretation was not taken into account. Equation �3.5� exhibits the convergence of the map
�B ,��↔ �	 ,�, since 	�1 in the region above the separatrix: in the latter region Eq. �3.5� provides
a convergent expansion of the solution.

IV. HYPERBOLIC COORDINATES

Motions with initial coordinate ��0��0 also admit a rather simple representation. Remark

that all pendulum motions with �̇�0 �hence different from the two equilibria� pass at some time

through a phase space point with �=0. If �̇ is their velocity at that moment we can find a quantity

	, such that �̇, � are given by Eq. �3.5� with =�=1 Therefore, they can be represented, at least

as long as U�0, �̇�0, by introducing the dimensionless variables q�=�	, p�=��	 and allowing
�,  to be arbitrary. Then the motions will be t→ �p�eg0t ,q�e−g0t� showing that the motion can be
represented by the following two functions:

S� = 4�
m=0

�

�arctan��p�q��mq�� − arctan��p�q��mp��� ,

�4.1�

R� = 4Ig0�
m=0

� 	 �p�q��mp�

1 + ��p�q��mp��2 +
�p�q��mq�

1 + ��p�q��mq��2
 .

The motions t→ �p�eg0t ,q�e−g0t� solve the equations of motion if p�, q� �i.e., , �� are positive. But
the equations of motion are analytic, hence the formulas �4.1� together with t→ �p�eg0t ,q�e−g0t�,
with g0=g0�p�q��, give solutions of the pendulum equations independently of the sign of p�, q�,
provided the series converge. The convergence requires �p�q���1: which represents many data, in
particular, those in the vicinity of the separatrix.

Hence in the domain where �p�q���1 the motion is linearized in the sense developed in Ref.
5 but it is not yet in symplectic coordinates.

The coordinates can be called “hyperbolic” being suitable to describe motions near the sepa-
ratrix �where p�q�=0�. We also see that time evolution preserves both volume elements dBd� and
dp�dq�; which means that the Jacobian determinant ��B ,�� /��p� ,q�� must be a function constant

over the trajectories, hence a function D�x�� of x� =
def

p�q�. Note that D�x�� has dimension of an
action.

It is then possible to change coordinates setting p=a�x��p�, q=a�x��q� and choose a�x� so that
the Jacobian determinant for �B ,��↔ �p ,q� is �1. A brief calculation shows that this is achieved
by fixing
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a2�x�� =
1

x�
�

0

x�
D�y�dy , �4.2�

which is possible for x small because, from Eqs. �3.5� and �2.2�, it is D�0�=32Ig�0. Therefore,
the variables, which will have the dimension of a, hence of a square root of an action,

p = p�a�x��, q = q�a�x�� , �4.3�

have Jacobian determinant 1 with respect to �B ,�� and the map �B ,��↔ �p ,q� is area preserving,
hence canonical. The Hamiltonian, Eq. �1.2�, becomes a function U�x� of x= pq and the derivative
of the energy with respect to x has to be g0�x�� �because the p, q are canonically conjugated to B,
��. Note that x has the dimension of an action, while p, q are, dimensionally, square roots of
action.

This allows us to find D�x��: by imposing that the equations of motion for the �p ,q� canonical

variables have to be the Hamilton’s equations with Hamiltonian U�x� =
def

U�x���H�B ,�� it follows
that dU�x� /dx=g0�x��, i.e., �dU�x�� /dx���dx� /dx�=g0�x�� or dU�x�� /dx�=g0�x����d /dx��
��x�a�x��2��=g0�x��D�x�� by the above expression for a�x��. The just obtained relation, together
with Eq. �2.2�, gives

D�x�� = g0�x��−1 d

dx�
U�x�� , �4.4�

which is an explicit expression for the Jacobian ��B ,�� /��p� ,q�����R ,S� /��p� ,q��
=��p ,q� /��p� ,q�� �note that the Jacobian between �B ,�� and �p ,q� is identically 1 by construc-
tion�. Equation �4.4� is dimensionally correct because x� is dimensionless so that U�x�� has the
correct dimension �i.e., energy�.

The function U�x�� is in Eq. �2.7� where k2=h�2 /h2, by Eq. �2.1�, is related to x�=	�h� by Eq.
�2.2�, so that �Ref. 1, �8.197.3� and �8.197.4��

U�x��2g2 = I
1

k2 = 2g2I
h2

h�2 = 32Ig2x��
n=1

� 	 1 + x�2n

1 − x��2n−1�
8

. �4.5�

To complete the determination of the canonical hyperbolic coordinates it remains to find an
expression for D�x��, U�x� in terms of the elliptic functions to obtain the canonical variable and the
Hamiltonian in closed form �rather than as power series as done so far�.

V. DETERMINATION OF THE JACOBIAN: REMARKS

It is remarkable that the function a2 defined above, hence such that D�x��=d /dx��x�a2�x���,
seems to be simply

a2�z� = 8I
d

dz
g0�z� , �5.1�

in a common holomorphy domain, for both sides, around z=0. This is suggested by the agreement
of the first 200 coefficients of the expansion of the two sides in powers of z: however, this is not
a proof and the relation, Eq. �5.1�, holds because it can be seen to be equivalent to an identity on
elliptic functions, as discussed in Appendix B below, or it can be independently derived from
symplectic geometry, as discussed in Appendix A below.

Remarks:

�1� The expansion of D�x�� in powers of x� can be derived from Eqs. �4.5� and �2.6�, while that
of a2�x�� is obtained from Eq. �5.1� and, again, Eq. �2.6�.
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�2� It is perhaps natural to guess that the function a�x��2 should be closely related to g0�x��; this
is a guide to its determination as it becomes, then, natural to look for it among the derivatives
of g0 with respect to x�. By dimensional analysis all x�-derivatives of Ig0 have the same
dimension as a2.

Looking also at the derivatives of g0 as candidates for a2 is an idea due to one of us �P.G.�.
This follows a similar line of thought which led to a conjecture on the canonical integrability of
the “Calogero lattice,”6 whose proof was discovered in two subsequent works �Refs. 7 and 8�.

Other peculiarities are, setting 32Ig=1, g=1, the following.

�1� The function g0�x��, U�x��, hence �d /dx��g0�x��, D�x��, have Taylor coefficients in powers of
x� which are all positive integers as it follows from the relations �4.5� and �2.6�, while
U�x�−x seems to have alternating sign Taylor coefficients,

U�x� − x = 2x2 − 4x3 + 20x4 − 132x5 + 1008x6 + ¯ , �5.2�

where U�x� is obtained by power series inversion of x=x�a�x��2 and from U�x�=U�x��
together with Eq. �4.5�.

�2� The function U�x��, energy of the pendulum expressed as a function of x�, has also the form

U�x�� = 32Ig0
2�p�Ux��p�� + q�Vx��q����p�Vx��p�� + q�Ux��q��� =

def

x�f�x�� , �5.3�

which, remarkably, has by Eq. �4.5� to depend only on x�, and has the form x�f�x�� for some
f . This is not a priori evident, unless the mechanical interpretation is kept in mind, from the
expressions found for U, V, namely,

Ux��z� = �
�=0

�
x�2�

1 + �x�2�z�2 , Vx��z� = �
�=0

�
x�2�+1

1 + �x�2�+1z�2 . �5.4�

�3� The existence of an analytic canonical map integrating, near the hyperbolic point, the system
with energy Eq. �1.1� into one with Hamiltonian U�pq�=gpq+O��pq�2�, is well known: it
can be established without an explicit calculation by perturbation analysis, see Ref. 3, Ap-
pendix A3, for instance.

APPENDIX A: A DEDUCTIVE PROOF OF EQ. „5.1…

A first proof for this formula can be based directly on the equalities on symplectic forms,

dB ∧ d� = D�	�dp� ∧ dq� =
d

d	
�	a�	�2�dp� ∧ bq�. �A1�

In principle, the computation of dS��p� ,q��∧dR��p� ,q�� should provide the value of the
function D. But the computation gets too involved. The idea is to compute only the class of the
volume forms in the relative cohomology of the function 	= p�q�. This type of computation is well
known in the theory of limit cycles of plane vector fields,9,10 but is perhaps more novel in the
context of Hamiltonian dynamics.

Recall that any holomorphic 2-form ��p� ,q��dp�∧dq� has a unique decomposition,

��p�,q��dp� ∧ dq� = ��	�dp� ∧ dq� + d	 ∧ d� . �A2�

Remark that the function ��	�=�n=0
� �nn�p�q��n is obtained from ��p� ,q��=�n,m=0

� �nmp�mq�n

by collecting all terms in the series of equal exponents for both variable p� and q� and �
=�n�m=0

� �nmp�nq�m / �m−n�. This is a consequence of the identity
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p�nq�mdp� ∧ dq� = d�p�q�� ∧ d	 p�nq�m

m − n

 �A3�

by linearity.
The class of cohomology of the 2-form ��p� ,q��dp�∧dq� relative to the function 	 is defined

as the quotient of the holomorphic 2-forms modulo the 2-forms of type d	∧d� for � holomorphic.
It is conveniently represented by ��	�dp�∧dq� �or equivalently by the function ��	��. In the local
version near an isolated singularity, this is a very special case of a general theory due to Brieskorn
and Sebastiani.11

There is another equivalent representation of the cohomology class of a 2-form
��p� ,q��dp�∧dq�. Write

��p�,q��dp� ∧ dq� = d�f�p�,q��p�q��� , �A4�

with

� =
1

2
d log	q�

p�

 =

1

2
dq�

q�
−

dp�

p�
� . �A5�

Then this yields

��p�,q�� = f�p�,q�� +
1

2
	p�

� f

�p�
+ q�

� f

�q�

 , �A6�

which defines a 1-1 linear correspondence between �m,n�mnp�mq�n and �m,nfmnp�mq�n by

�mn = fmn�1 + 1
2 �m + n�� . �A7�

Remark that this 1-1 transformation defines by restriction a 1-1 correspondence between ��	�
=��nn�p�q��n and F�	�=�fnn�p�q��n. In other words, the cohomology class of the 2-form
��p� ,q��dp�∧dq� is uniquely defined by the function F�	� or equivalently by ��	�.

The application to our problem of finding an expression for a�	� can be implemented by
remarking that

D�	�dp� ∧ dq� =
d

d	
�	a�	�2�dp� ∧ dq� =

d

d	
�	a�	�2�d	 ∧ � = d�	a2�	��� . �A8�

So that, by Eq. �A1�, the cohomology class of the symplectic form dB∧d� with respect to 	 �i.e.,
D�	�� corresponds to the function a�	�2 via Eq. �A7�, and we can use the formulas �3.1� to
compute it.

The symplectic form can be written as

dB ∧ d� = dR��p�,q�� ∧ dS��p�,q�� = d�R��p�,q��dS��p�,q��� , �A9�

and this yields

R��p�,q��dS��p�,q�� = 16Ig0�	� · ��
m=0

+�  �p�q��mp�

1 + ��p�q��mp��2 +
�p�q��mq�

1 + ��p�q��mq��2��
· ��

l=0

+�  �p�q��ldq�

1 + ��p�q��lq��2 −
�p�q��ldp�

1 + ��p�q��lp��2�� �A10�

modulo d�p�q��.
In this double sum, it is convenient to first isolate the terms corresponding to both I=m=0

finding,
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16Ig0�	� p�

1 + p�2 +
q�

1 + q�2� dq�

1 + q�2 −
dp�

1 + p�2�
= 16Ig0�	� p�dp�

�1 + p�2�2 −
q�dq�

�1 + q�2�2 +
p�dq� − q�dp�

�1 + q�2�2�1 + p�2�� . �A11�

The term

16Ig0�	� p�dp�

�1 + p�2�2 −
q�dq�

�1 + q�2�2� �A12�

gives 0 in the relative cohomology. The term

16Ig0�	�
p�dq� − q�dp�

�1 + q�2��1 + p�2�
= 32g0�	�

p�q�

�1 + q�2��1 + p�2�� �A13�

contributes with

32Ig0�	�p�q��
i=0

+�

�p�q��2i� , �A14�

and hence

32Ig0�	�
1

1 − �p�q��2� �A15�

in calculating the relative cohomology by Eqs. �A4� and �A7�.
The other terms of the double sum can be written as

�
l,m;l+m�1

	 �p�q��l+m

�1 + ��p�q��mp��2��1 + ��p�q��lq��2�
+

�p�q��l+m−1q�2

�1 + ��p�q��mq��2��1 + ��p�q��lq��2�
p�dq�

− �
l,m;l+m�1

	 �p�q��l+m

�1 + ��p�q��mp��2��1 + ��p�q��lq��2�
+

�p�q��l+m−1p�2

�1 + ��p�q��mp��2��1 + ��p�q��lp��2�
q�dp�,

�A16�

hence they have the form

P�q�,p��p�dq� + Q�q�,p��q�dp� = ��q�,p���p�dq� + q�dp�� + ��q�,p���p�dq� − q�dp�� ,

�A17�

with �= �P+Q� /2, �= �P−Q� /2. Notice then that the term ��q� , p���p�dq�+q�dp�� gives 0 in
relative cohomology. The term ��q� , p���p�dq�−q�dp�� yields

8Ig0�	� �
l,m;l+m�1

�p�dq� − q�dp�� · 	 2�p�q��l+m

�1 + ��p�q��mp��2��1 + ��p�q��lq��2�

+
�p�q��l+m−1q�2

�1 + ��p�q��mq��2��1 + ��p�q��lp��2�
+

�p�q��l+m−1p�2

�1 + ��p�q��mp��2��1 + ��p�q��lp��2�
 . �A18�

The series formed by the addends
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�p�q��l+m−1q�2

�1 + ��p�q��mq��2��1 + ��p�q��lq��2�
+

�p�q��l+m−1p�2

�1 + ��p�q��mp��2��1 + ��p�q��lp��2�
�A19�

does not contain any monomials with equal exponents for both p� and q�, hence it does not
contribute to the relative cohomology. The only term left is

8Ig0�	� �
l,m;l+m�1

	 2�p�q��l+m

�1 + ��p�q��mp��2��1 + ��p�q��lq��2�
�p�dq� − q�dp�� , �A20�

which contributes

16Ig0�	� �
l,m;l+m�1

	l+m�
i=0

+�

	�2�l+m�+2�i�p�dq� − q�dp�� = 16Ig0�	� �
l,m;l+m�1

	l+m

1 − 	2�l+m�+2 �p�dq� − q�dp�� .

�A21�

This last double sum can be computed using new indices l and k= l+m and this yields

16Ig0�	��
k=1

+�

�
l=0

k
	k

1 − 	2�k+1� �p�dq� − q�dp�� . �A22�

This contributes to the relative cohomology, in the correspondence Eq. �A7�,

32Ig0�	��
k=1

+�
�k + 1�	k

1 − 	2�k+1�	� . �A23�

After adding the contribution from the l=m=0 term and changing k+1 into k, this yields

32Ig0�	��
k=1

+�
k	k−1

1 − 	2k� . �A24�

Finally, one should notice that the logarithmic derivative of g0 can be expressed, as commented
after Eq. �2.6�, by

dg0�	�
d	

= 4g0�	��
k=1

+�
k	k−1

1 − 	2k , �A25�

leading to the equality, recalling Eq. �A8�,

a2�	� = 8I
dg0�	�

d	
. �A26�

APPENDIX B: ALTERNATIVE PROOF OF EQ. „5.1… VIA AN IDENTITY BETWEEN
ELLIPTIC FUNCTIONS

Alternatively the formula can be reduced to a well known identity between elliptic functions.
Calling E�k�=�0

�/2�1−k2 sin2 ��1/2d�, it is E�h�=hh�2�dK�h� /dh�+h�2K�h� see Ref. 1,
�8.123.2�, and E�h�K�h��+E�h��K�h�−K�h�K�h��=� /2, see Ref. 1, �8.122�; the latter “Legend-
re’s relation,” �Ref. 4, p. 520�, combined with dh� /dh=−h /h�, yields the identity

h�h2	K�h�
dK�h��

dh�
− K�h��

dK�h�
dh�


 =
�

2
. �B1�

This can be used to obtain an expression for d log x� /dh: keeping in mind x�=e−�K�h��/K�h�, it is
�d log x� /dh��=−���1 /K�h���dK�h�� /dh��− �K�h�� /K�h�2��dK�h� /dh��� which is transformed
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into �d log x� /dh��=log x���1 /K�h����dK�h�� /dh��− �1 /K�h���dK�h� /dh���.
Form Eq. �B1� it follows, therefore,

d

dh�
log x� =

�

2

log x�

h�h2K�h�K�h��
d

dh
log x� = −

�

2

log x�

hh�2K�h�K�h��
, �B2�

and the corresponding derivatives with respect to h are obtained by multiplying both sides by
−h /h�.

To establish Eq. �5.1� consider the relation

d

dh
�hh�2dK�h�

dh
� − hK�h� = 0, �B3�

see Ref. 1, �8.124.1�. This implies by simple algebra, and keeping in mind that h /h�=−dh� /dh, the
following identity:

hK�h� = h�3 d

dh
	hh�2	−

1

h�

d

dh
K�h� +

h

h�3K�h�

 , �B4�

which is a known linear equation, solved by K�h�. This can be rewritten, since h /h�=−dh� /dh, as

h

h�3K�h� =
d

dh
	hh�2	−

1

h�

d

dh
K�h� −

1

h�2

dh�

dh
K�h�

 =

d

dh
	hh�2K�h�2 d

dh

1

h�K�h�

 . �B5�

Remarking that 2h /h�4��d /dh��h2 /h�2�, Eq. �B5� implies, multiplying both sides by 2 /h�K�h�,

d

dh
	 h

h�

2

=
2

h�K�h�
d

dh
	hh�2K�h�2	 d

dh

1

h�K�h�


 =

2�

h�K�h�
d

dh
	hh�2K�h�K�h��

�K�h��/K�h�
	 d

dh

1

h�K�h�



�B6�

and by the first of Eq. �B2� multiplied by dh� /dh=−h /h� this is, using k2=h2 /h�2,

d

dh

1

k2 =
�2

h�K�h�
d

dh
	 dh

d log x�
	 d

dh

1

h�K�h�


 =

�2

h�K�h�
d

dh
	x�

d

dx�

1

h�K�h�

 , �B7�

and multiplying by 2Ig2�dh /dx�� it follows

2Ig2 d

dx�

1

k2 = 8I
�g

2

1

h�K�h�
d

dx�
	x�

d

dx�

�g

2

1

h�K�h�
 , �B8�

and setting a�x��2 =
def

8I�d /dx����g /2��1 /h�K�h���8I�d /dx��g0�x�� the last relation is
�d /dx��U�x��=g0�x���d /dx���x�a�x��2� so that Eqs. �4.4� and �4.2� imply Eq. �5.1�.

APPENDIX C: PENDULUM AT THE STABLE EQUILIBRIUM: ACTION-ANGLE
COORDINATES

From the above results it is straightforward to find the canonical transformation that converts
the pendulum Hamiltonian in its normal form around the stable equilibrium point. The Hamil-
tonian is now given by Eq. �1.1� with the substitution: g= igs. It is natural to define ks= ik in order
to use the same set of equations from the unstable case. The system energy is then Us=2gs

2 /ks
2 and

large values of ks correspond now to small oscillations around the equilibrium point.
Finally, it is convenient to define

ks� = �1 − ks
2, hs��ks� =

ks

�ks
2 − 1

, hs = �1 − hs�
2,
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h��k� =
1

hs��ks�
, h�k� =

ihs�ks�
hs��ks�

, �C1�

and one finds

g0
�s��hs� = − ig0�h� =

�

2

gs

K�hs�
,

�C2�
xs��hs� = e−�K�hs��/K�hs� = − x��h� ,

where we have used Ref. 1, �8.128�.
With these conventions, and going through computations similar to the ones performed to

study the unstable point, the relations found for the latter can be converted into the corresponding
ones for the equilibrium point. In particular, by choosing p�=�xs� cos�g0

�s�t� and q�
=�xs� sin�g0

�s�t� the transformation given by Eq. �4.1� is now

Ss� = 4i�
m=0

�

�− 1�m�arctan��p�2 + q�2�m�p� + iq��� − arctan��p�2 + q�2�m�p� − iq���� ,

�C3�

Rs� = − 4Ig0
�s��

m=0

�

�− 1�m	 �p�2 + q�2�m�p� + iq��
1 − ��p�2 + q�2�m�p� + iq���2 +

�p�2 + q�2�m�p� − iq��
1 − ��p�2 + q�2�m�p� − iq���2
 ,

where the relation Rs�=g0
�s�I�p��q�−q��p��Ss� holds. Moreover, the energy can be written �see Eq.

�4.5��

Us�xs�� = 2gs
2I

1

k2 = 32Igs
2xs��

n=1

� 	 1 + xs�
2n

1 + xs�
�2n−1�
8

. �C4�

The transformation �B ,��→ �p� ,q�� is not canonical. The canonical variables �p ,q� can be found
by looking for a function as�xs�� �which depends on the constant of motion xs��, such that �p ,q�
= �as�xs��p� ,as�xs��q�� and the Jacobian of the transformation is one. It is, as in the hyperbolic case,

as
2�z� = − 16I

d

dz
g0

�s��z� , �C5�

Finally, the normal form of the Hamiltonian now reads

Us�x� = 32Igs
2W	 x

64Igs

 , �C6�

where

W�z� = z�1 − 2z − 4z2 − 20z3 − 132z4 − 1008z5. . .� , �C7�

which can be compared with the hyperbolic case expression, Eq. �5.2�,

U�x� = − 32Ig2W	−
x

32Ig

 . �C8�

Action-angle coordinates �A ,���R+�T around equilibrium are related to �p ,q� by p
=�2A cos �, q=�2A sin �.
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