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Metastability, nucleation, and noise-enhanced stabilization out of equilibrium
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We study metastability and nucleation in a kinetic two-dimensional Ising model that is driven out of
equilibrium by a small random perturbation of the usual dynamics at temperature 7. We show that, at a
mesoscopic/cluster level, a nonequilibrium potential describes in a simple way metastable states and their
decay. We thus predict noise-enhanced stability of the metastable phase and resonant propagation of domain

walls at low 7. This follows from the nonlinear interplay between thermal and nonequilibrium fluctuations,
which induces reentrant behavior of the surface tension as a function of 7. Our results, which are confirmed by
Monte Carlo simulations, can be also understood in terms of a Langevin equation with competing additive and

multiplicative noises.
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Relaxation in many natural systems proceeds through
metastable states [1-9]. This is often observed in condensed
matter physics [5], and also in various other fields, from
cosmology [6] to biology [7] and high-energy physics [8]. In
spite of such ubiquity, the microscopic understanding of
metastability still raises fundamental questions. A main dif-
ficulty is that this is a dynamic phenomenon not included in
the ensemble formalism. Even so, metastable states may be
regarded in many cases as equilibrium states for times short
compared with their relaxation time, and one may derive
macroscopic properties from restricted ensembles [1], or ob-
tain fluctuation-dissipation theorems [9]. In the long run,
however, metastable states eventually decay, triggered by
rare fluctuations. This relaxation can be described in terms of
free-energy differences as far as one is dealing with systems
evolving towards equilibrium steady states [3]. However, as
a rule, natural systems are open to the environment, which
induces currents of macroscopic observables or competitions
between opposing tendencies that typically break detailed
balance [10]. Consequently, in many cases, stationary states
are not equilibrium states, but are strongly influenced by dy-
namics, which adds further challenge to the microscopic un-
derstanding of metastability.

In this paper we report on the nature of metastability in a
full nonequilibrium setting. In order to focus on the basic
physics, we study the simplest nonequilibrium model in
which metastable states are relevant, namely an Ising model
with dynamic impurities. We show that introducing a non-
equilibrium condition has dramatic effects on metastable dy-
namics. In particular, we find noise-enhanced stabilization of
metastable states, resonant propagation of domain walls, and
other novel low temperature physics not observed in equilib-
rium. Surprisingly, these nonequilibrium phenomena can be
understood via extended nucleation theory, starting from a
nonequilibrium potential or free energy at a mesoscopic-
cluster level. This is possible because the excitations respon-
sible for the metastable-stable transition result from the com-
petition between a surface and a bulk term, as in equilibrium.
We thus anticipate that a similar approach can be used to
understand metastability in many other nonequilibrium sys-
tems in which a surface-bulk competition is a dominant
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mechanism. Our results are also relevant for metastable nan-
odevices where nonequilibrium impurities play a fundamen-
tal role [10].

Consider a two-dimensional square lattice of side L with
periodic boundary conditions. We define a spin variable s;
=+1 at each node, i € [1,N=L?]. Spins interact among them
and with an external magnetic field & via the Ising Hamil-
tonian function, H=-2;s;s;—hZ;s;, where the first sum
runs over all nearest-neighbor pairs. We also define a sto-
chastic single spin-flip dynamics with transition rate

w(s —s)=p+(1-p)V(BAH,)), (1)

where s={s;} and s’ stand for the configurations before and
after flipping the spin at node i, respectively, AH; is the
energy increment in such flip, and S=1/T. The function in
Eq. (1) is chosen here as W (x)=(1+¢*)"!, which corresponds
to the Glauber rate. However, similar results hold also for
the Metropolis rate, and possibly for many other local,
detailed-balanced dynamical rules V.

For any 0 <p <1 two different heat baths compete in Eq.
(1): One is at temperature T, which operates with probability
(I-p), and the other induces completely random spin flips
(as a bath at infinite temperature would do) with probability
p. As a result of this competition, a nonequilibrium steady
state sets in asymptotically [10-13], which cannot be char-
acterized by any Gibbsian measure. For =0, the model ex-
hibits an order-disorder continuous phase transition at tem-
perature T,(p) <T.(p=0)=T,,, where T, =2/In(1+2),
and the order washes out for any p>p.,=(y2-1)?=~0.17,
even at 7=0. This phase transition belongs to the Ising uni-
versality class, a result that has led to the belief that two-
temperature nonequilibrium Ising models behave in general
as their equilibrium (p=0) counterpart. We show below that,
in what concerns metastability, essential differences indeed
exist.

We remark that our motivation here for the random per-
turbation p is that it is the simplest microscopic mechanism
that induces nonequilibrium behavior. However, similar dy-
namic impurities play a fundamental role in some natural
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FIG. 1. (Color online) Escape configurations for L=128, p
=0.01, h=-0.25, and 7/T,,,=0.1, 0.3, and 0.7, respectively, from
left to right.

systems. As a matter of fact, an equivalent mechanism has
been used to model the macroscopic consequences of rapidly
diffusing local defects [10] and quantum tunneling [11] in
magnetic samples and, more generally, the origin of scale-
invariant avalanches [14].

For small <0 and T<T,(p), an initial homogeneous
state with all spins up is metastable. It will eventually decay
toward the stable state of magnetization m=N"12;5,<0. In-
spection of escape configurations (Fig. 1) shows that this is a
highly inhomogeneous process triggered by (large) compact
clusters of the stable phase. These excitations then grow or
shrink in the metastable sea depending on the competition
between their surface, which hampers cluster growth, and
their bulk, which favors it. In equilibrium (p=0), this com-
petition is controlled by the cluster interfacial free energy, or
surface tension. Far from equilibrium (0<<p <1), despite the
lack of a proper bulk free-energy function, one may define
[13] an effective surface tension oy(T,p), that captures the
properties of the nonequilibrium interface. This is based on
the assumption that the normalization of a probability mea-
sure for interface configurations can be interpreted as a sort
of nonequilibrium partition function [13]. Similar assump-
tions have been shown to yield excellent results for nonequi-
librium phase transitions [15]. Interestingly enough, (T, p)
exhibits nonmonotonous temperature dependence for any
0<p<1 with a maximum at a nontrivial value of 7 [13,16].

Consequently with the surface-bulk competition driving
the relevant excitations, it is straightforward to write down
an ansatz for an effective free-energy cost of a cluster of
radius R, F(R)=2QRao,— QR?2m|h|]; see [3,4]. We may
then derive the zero-field spontaneous magnetization
mo(T,p) within a mean-field approximation [12] and the
cluster form factor (7,p) from o via the Wulff construc-
tion [13]; y is a weakly varying parameter, very close to 1,
that stands for small corrections to classical nucleation
theory [4]. The critical cluster radius, such that supercritical
(subcritical) clusters tend to grow (shrink), thus follows as
R.=0y/(2mg|h|). Estimates of R, in Monte Carlo (MC)
simulations (see [17] for details) are shown in the inset to
Fig. 2 together with the analytical predictions. The agree-
ment is excellent for temperatures well below T.(p) and,
most important, R.(T,p,h) exhibits nonmonotonous 7 de-
pendence for any p>0.
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FIG. 2. (Color online) Cluster distribution P(C) for T=0.2T,,
L=53, h=-0.1, and, from bottom to top, p=0.001, 0.005, 0.01,
0.02, with y=0.815, 0.82, 0.83, 0.85, respectively. Lines are theo-
retical predictions and points are MC results. Inset: R, vs T,/ T for
L=53, h=-0.1, and, from top to bottom, p=0, 0.001, 0.005, and
0.01. The nth curve (from bottom to top) has been rescaled by a
factor 100~V (main plot), or shifted (4—n) units (inset) in the
axis.

Our ansatz above also implies a Boltzmann-like distribu-
tion, P(C)=M"! exp[—ﬁ]-'(\ﬂm)] for the fraction of
stable-phase clusters of volume C=QR? in the metastable
phase. The normalization M=20/(1-m), with ©
=E§;C exp[-BF(NC/Q)] and c*:mzf, is defined so that
the metastable state has the mean-field magnetization
m(T,p,h) [12]. Figure 2 depicts our results for P(C). Again,
theoretical predictions compare very well to MC results. For
p=0.001, MC data reveal a nontrivial structure in P(C) that
is not captured by our continuous theory. This is due to the
lattice structure which, for low 7 and small p, gives rise to
resonances for clusters with complete shells, ie., 2X2,
3X2, 3X3; see Fig. 2. For larger p and/or T, fluctuations
wash out this effect. Also interesting in Fig. 2 is that the
nonequilibrium perturbation p enhances fluctuations and fa-
vors larger clusters.

The assumed F(R) also involves a force per unit area
which controls the growth of supercritical droplets. In par-
ticular, the propagation velocity of a large cluster should
obey the Allen-Cahn expression vy=2I""mg|h|/ o [2], where
I'" is a nonuniversal constant. Our estimates for v, in MC
simulations of a flat propagating interface (an infinitely large
cluster) [17] are in Fig. 3. The fact that v, exhibits the ex-
pected nonmonotonous 7' dependence means that cooling the
system favors domain wall propagation in a nonequilibrium
setting. Moreover, oy~ a(p)T at low T, with a(p)=In[(1
—\p)/(p+p)] [13,16,17], so that we expect vo=~[I/a(p)]
X(T,,s/ T) in this regime, where I' is a different nonuniversal
constant and we assumed my(T—0,p)=~ 1. This is nicely
confirmed in simulations, see the inset to Fig. 3.

The nucleation rate 7 for critical clusters determines the
metastable-state  lifetime. From our hypothesis, 7
=Al|h|? exp[-BF(R,)], where A(p) is a nonuniversal ampli-
tude and =3 for random updatings [3]. The relaxation pat-
tern depends on the balance between two different length
scales, namely L and the mean cluster separation
Ro(T,p,h)=(vy/T)"? (typically, R.<Ry, L). For Roy>L
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FIG. 3. (Color online) vy vs Tyn/ T for h=—=0.1 and p=0, 0.001,
0.005, 0.01, 0.02, 0.03, 0.04, 0.05 (from bottom to top). Curves are
linear fits to data. Inset: Slope of linear fits vs p. The line is the
theoretical prediction, with I'~0.0077.

[single-droplet (SD) regime], nucleation of a single critical
cluster is the relevant excitation, and the metastable-state
lifetime is 7gp=(L*Z)~!. For R,<L [multidroplet (MD) re-
gime], the metastable-stable transition proceeds via the
nucleation of many critical clusters, and Ty
=[Qv(2)I/(3 In2)]~'® [3]. The crossover corresponds to the
dynamic spinodal point, |hpsp|(T,p)=Qyop/(6myTIn L),
such that the SD (MD) regime holds for |h|<|hpgp| (|h
>[hpsp))-

We measured 7 in MC simulations using rejection-free
methods [17,18]. This is in Fig. 4 together with our predic-
tions. Interestingly enough, we observe that 7 increases with
T for fixed p>0 at low 7. That is, the local stability of
nonequilibrium metastable states is enhanced by the addition
of thermal noise. This behavior resembles the noise-
enhanced stability (NES) phenomenon reported in experi-
ments on unstable systems [19], which is in contrast with the
simple Arrhenius law observed in equilibrium. Remarkably,
only thermal NES is observed: Increasing p for fixed T
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FIG. 4. (Color online) Lifetime 7 vs T for the same p and con-
ditions as for the inset in Fig. 2. The nth curve (from top to bottom)
is rescaled by a factor 107201 Solid lines are theoretical predic-
tions for (from top to bottom) y=1, 0.85, 0.77, 0.65. Amplitudes
A(p) €[1073,1072]. Top inset: |hpgp| vs T for (from top to bottom)
p=0, 0.001, 0.005, 0.01, 0.02. Bottom inset: 7 vs D, as derived
from Langevin equation, for h=-0.1 and u € [0,6 X 1073], increas-
ing from top to bottom.
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always results in shorter 7. This complex phenomenology is
captured by our simple ansatz, which traces back the NES
phenomenon to the low-7 anomaly in o,. More generally, the
stochastic resonance in 7 (and v,) stems from a nonlinear
cooperative interplay between thermal and nonequilibrium
noises. Although both noise sources induce disorder when
applied independently, their combined effect results in a
resonant stabilization of the metastable phase at low 7. This
nonlinear effect is also reflected in the morphology of the
metastable-stable transition. In particular, |hpgp| inherits the
nonmonotonous 7" dependence of oy, see top inset to Fig. 4,
resulting in a novel MD regime at low T not observed in
equilibrium. This is confirmed by direct inspection of escape
configurations, e.g., Fig. 1.

One may get further physical insight by rewriting the rate
(1) as p+(1-p)W(x)=V(x"), with x;=BAH, and x'
=BAH;. The resulting effective temperature To(x;,p)
=} then follows as T./T=xfx+In[(1-p)/(1+pe*)]}".
For any p>0, T.; changes from spin to spin and depends on
the local order (e.g., the number of broken bonds for a given
spin): the smaller the number of broken bonds, the higher the
local order, and the larger the effective temperature. There-
fore, for p>0, the strength of fluctuations affecting a spin
increases with the local order parameter. This is the finger-
print of multiplicative noise, and it allows us to write a
Langevin equation that captures the essential physics. In its
simplest, zero-dimensional form, this equation is d,¥=¢
— P +h+ D+ uP&(t), where &) is a Gaussian white noise
with (&(1))=0 and (&(r)&(t')y=28(t—t'), D is the strength of
the thermal noise, & is a magnetic field, and w is the renor-
malized version of the nonequilibrium parameter p. This
equation describes a Brownian particle in an asymmetric bi-
modal potential, V(¢)=—%¢2+i¢4—h¢, subject to fluctua-
tions that increase with ¢? and whose amplitude remains
nonzero as D —0 for any >0 [17]. A full description of the
problem, including the compact excitations observed in
simulations, would of course involve the spatially extended
version of this equation. However, the above toy mean-field
equation already contains the essential competition between
thermal (D) and nonequilibrium (u«) fluctuations in a meta-
stable potential that characterizes our system. The steady dis-
tribution of the stochastically equivalent Fokker-Planck
equation in the Stratonovich sense is  Py(¥)
= A2\ u(D+pg))]" exp[-D™'W(P)], where W(y)=5[¢
—(1+d) In (d+¢?)]-hd"*tan™" (pd~""?), with d=D/pu and A
a normalization constant. The extrema of the effective poten-
tial W(i) are the same as those of V(i), namely i
=2 cos(6)/\3, with 6=1[cos ! (-3\27h)+2kn], and &
=0,1,2. For h<O0, ¢, ¢, and ¢, correspond to the meta-
stable, stable, and unstable extrema, respectively, and the es-
cape time from the metastable minimum is 7(D,u,h)
= 2|V (o) V" (4) T2 expl [ W) - W(W) 1}, where V"
=@ V(x). Identifying D with temperature, this approach re-
covers the thermal NES phenomenon for 7 observed in the
microscopic model (see the bottom inset to Fig. 4).

Summing up, we have shown that introducing a nonequi-
librium condition has important effects on metastable dy-
namics. The nonlinear interplay between thermal and non-
equilibrium fluctuations, as captured by o, results in
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resonant low-7 phenomena, e.g., noise-enhanced stabiliza-
tion of the metastable state and resonant domain wall propa-
gation, that are not observed in equilibrium, but are likely to
characterize a broad class of actual systems dominated by
dynamic impurities. Surprisingly, these far-from-equilibrium
phenomena can be understood using nucleation theory, based
on a nonequilibrium potential at a mesoscopic/cluster level.
This is possible because the relevant excitations driving the
metastable-stable transition result from a competition be-
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tween a surface and a bulk. This suggests that our approach
may prove useful for studying metastability in many other
nonequilibrium systems where a surface-bulk competition
plays a significant role.
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