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Abstract. We report on the computer study of a lattice system that relaxes
from a metastable state. Under appropriate nonequilibrium randomness,
relaxation occurs by avalanches, i.e., the model evolution is discontinuous and
displays many scales in a way that closely resembles the relaxation in a large
number of complex systems in nature. Such apparent scale invariance simply
results in the model from summing over many exponential relaxations, each with
a scale which is determined by the curvature of the domain wall at which the
avalanche originates. The claim that scale invariance in a nonequilibrium setting
is to be associated with criticality is therefore not supported. Some hints that
may help in checking this experimentally are discussed.
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1. Introduction

Scaling behaviour described by a simple power law is ubiquitous in nature. This is
endowed a great theoretical interest on the assumption that it reveals prevalence of some
underlying feature [1]–[7]. Power-law distributed events have no typical size, known as
‘scale invariance’. The spectral density also reveals multiplicity of scales in many time
series, i.e., the mean square fluctuation goes inversely with frequency, known as ‘1/f
noise’.

The concept of scale invariance originated in equilibrium statistical mechanics.
This predicts dramatic extension of correlations near critical points; any microscopic
spontaneous fluctuation then triggers events of any possible size with the same
cause. Thermodynamic equilibrium is a special, pathological case, however, and deep
understanding of why complex—out of equilibrium—systems are capable of events of any
size, e.g., crashes in the stock market or disastrous earthquakes, is lacking.

Most of the cases already studied in detail, mainly those in the realm of physics,
now have a model explanation. For example, the structured noise perceived in amplifiers
besides a random spectrum [8] is explained based on the physics of the electron transport
in a vacuum tube [9]; and the Barkhausen noise [10] is associated with the discontinuous
motion of domain walls between pinned configurations in a disordered medium [11].
Specific models do not explain, however, the observed ubiquity and universality of
the phenomenon. Among the interesting approaches that investigate this aspect, we
mention SOC or self-adaptation into a critical condition [1]; the possibility that a system
naturally lies on the edge between order and chaos [12]; proximity to a standard critical
point [13]–[15]; and the hypothesis that natural selection induces evolution towards a
‘highly structured state’ [16].2 There is no full agreement yet on a globally coherent
explanation, however3.

We present here a new effort towards better understanding this problem. We analysed
in detail a minimal model of relaxation phenomena which shows not only many scales but
also some of the basic processes that typically characterize the natural phenomena of
interest. In particular, under appropriate conditions, the model evolution proceeds via

2 More specific mechanisms have also been proposed, including those in [17]–[25].
3 See the criticism in, e.g., [2, 4, 21], [25]–[28].
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avalanches, each following a time plateau, and this occurs in a way that closely resembles
the discontinuous variations with time of certain signals. For example, a similar relaxation
process has been described concerning the current through resistors [21], the magnetization
while a varying field induces domain rearrangements [29, 30, 11], the energy released in
earthquakes [2, 31], and the erosion of rocky coasts [32].

The versatility of the model allowed us to determine the conditions in which
avalanches are power-law distributed. Analysis of these cases reveals that the decay
(from an initial metastable state) rather consists of successive exponential relaxations,
each with a characteristic well defined size. We demonstrate that a broad distribution of
sizes occurs, but that this is not to be associated with long-ranged correlations but with
certain randomness. This provides some microscopic support to the old suspicion that
observed electronic and magnetic 1/f noises simply consist of a superposition of many
different typical scales, each with a different origin. This was argued in [17]–[20]; see
also [21] and references therein.

The fact is that our model describes a random combination of event sizes which
produces an effective situation which is reminiscent of (equilibrium) critical behaviour.
Our study does not support, however, a critical condition—nor chaotic behaviour—as a
source for the many scales in the model. This may have important practical implications.

In spite of its mathematical simplicity, our explanation for the observed many scales
is not physically trivial. That is, we describe a time plateau before each avalanche takes
place, which is to be associated with entropic metastability. On the other hand, we
conclude on the existence of dynamic (non-critical) correlations. Furthermore, it ensues
that the many scales definitely require randomness in a nonequilibrium setting.

We claim that our findings are consistent with some recent observations, and that it
should be possible to test them in purposely designed experiments.

2. Model and its motivation

Consider the square two-dimensional lattice with binary spin variables at the N sites
inside a circle of radius R. Interactions are according to the Ising ferromagnetic energy
function, H = −

∑
〈ij〉 sisj − h

∑
i si, where the first sum is over nearest-neighbour pairs

of spins. Assume open circular boundary conditions, i.e., bonds leaving the circle are
broken. Any configuration �s ≡ {si = ±1} evolves stochastically with time by spin flips
with rate

ω (si → −si) = p + (1 − p)
e−∆Hi/T

1 + e−∆Hi/T
, (1)

where ∆Hi stands for the flip energy cost (we set the Boltzmann constant to unity).
This amounts to perturbing at random, with probability p, a canonical tendency to the
equilibrium state corresponding to temperature T and energy H . This is an efficient,
non-trivial way of implementing a complex nonequilibrium situation. That is, dynamics
involves a conflict—between finite and ‘infinite’ temperature, which asymptotically drives
the system for any p > 0 towards a nonequilibrium steady state. This essentially differs
from the equilibrium situation for p = 0 [33]. Consequently, similar models with competing
temperatures have been studied during the last decade as a paradigm of systems far from
equilibrium [34].
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The singular behaviour that ensues for p �= 0 (in the presence of open boundaries)
is, in fact, our main motivation for studying this system. That is, setting p > 0, even as
small as p � 10−6, induces a series of successive time plateaus or short-lived ‘halt states’
during the evolution that are not observed for p = 0. Therefore, (1) in practice provides
one of the simplest scenarios one may think of for analysing in detail a whole class of
relaxation phenomena. That is, a principal feature of both this simple model and the
cases mentioned in section 1 is that relaxation proceeds by nonequilibrium variations that
are realized as jumps between locally stable states.

The present system may be interpreted—though this is not essential to the conclusions
below—as an oversimplified model of a small ferromagnetic particle. This, which is
relevant to the technology of dense magnetic media [35]–[37], requires one to deal with a
large surface/volume ratio and, consequently, with impurities. In actual specimens, these
typically cause perturbations, e.g., diffusion of defects will dynamically disturb the local
fields, which one may ideally represent by the random term in (1). In fact, a similar ansatz
has already helped the understanding of ionic diffusion during magnetic ordering [38],
and it has been useful to model microscopic quantum tunnelling [39] and non-localized
perturbing interactions and fields [33].

Whichever the specific interpretation is, the model contains a microscopic random
perturbation which drives it out of equilibrium. This nonequilibrium randomness, which
is also likely to characterize the phenomena of interest (fault slips, electron transport,
magnetic domain arrangements, . . .) happens to induce the most interesting behaviour
during relaxation. In order to show this, we performed a series of computer simulations.
They typically begin with all spins up, si = +1 ∀i at t = 0. For a negative value of the
field h, this is a metastable state. In fact, for a low enough value of the temperature T ,
the stable state corresponds to m ≡ N−1

∑
i si � −1. That is, most of the spins need to

flip to point down along the field direction in any stable configuration. For appropriate
values of the parameter set (T, h, p)—see below, such a decay consists of a sequence of
transitions through short-lived states. This is illustrated in figure 1 for a particle of
approximately 103 spins at T = 0.25 (which is about one-tenth of the critical temperature
of the corresponding infinite system), h = −0.1 (one-tenth of the exchange energy), and
a very small value for the perturbation, p = 10−6.

The same behaviour ensues for a broad range of values for (T, h, p). To be more
precise, one needs both domain walls and clusters to be well defined. Otherwise, the
jumps are difficult to observe and/or one obtains poor statistics. In order to assure
compact configurations and clusters, it a sufficiently low choice for T turns out to be
necessary. On the other hand, the parameter p can take a considerable range of values,
provided that its effects are comparable to the ones from other stochastic sources. This
was observed to occur already for p = 10−6, which is the value we used in most of our
simulation runs (see [40] for other choices). The other model parameter, h, just aims
at producing metastability, so that only its sign is really relevant. Summing up, the
behaviour described here is robust within a broad region of parameter space, so that no
fine-tuning of parameters is needed.

3. Some details of relaxation

Taking the MCS as the relevant, macroscopic timescale, one identifies (e.g. in figure 1)
strictly monotonic changes of m(t) that we call ‘avalanches’. Let us define the avalanche
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Figure 1. Typical evolution in which the magnetization is observed to decay by
jumps to the final stable state. This is for a single particle of radius R = 30 (∼103

spins) at low temperature, and for small values of h and p (see the main text).
The time axis shows t − τ0 in MCS (Monte Carlo steps per site) with τ0 = 1030

MCS; this is of the order of the duration of the initial metastable state. The inset
shows a significant detail of the relaxation.

duration ∆t ≡ |ta − tb| and size ∆m ≡ |m(ta) − m(tb)|, and the associated distributions
P (∆t) and P (∆m). We monitored these functions after deducting a trivial noise [11],
namely, small thermal events of typical size [40]

∆̄ =
1

ln[1 + p + (1 − p)e−2|h|/T ]
. (2)

These events correspond to the short-length fluctuations that are evident by direct
inspection in the inset of figure 1.

The distribution P (∆m) that results after deducting small events is illustrated in
figure 2. This nicely fits

P (∆m) ∼ ∆−τ(R)
m (3)

with

τ (R) = τ∞ + a1R
−2, (4)

where τ∞ = 1.71(4). Figure 3 depicts the corresponding duration distributions. They
follow

P (∆t) ∼ ∆
−α(R)
t (5)

with

α (R) = α∞ + a2R
−2, (6)
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Figure 2. Log–log plot of the size distribution P (∆m) of large avalanches for an
ensemble of independent particles of radius (from bottom to top) R = 30, 42, 60,
84 and 120, respectively. Plots of the duration distribution P (∆t) versus c∆γ

t for
each R are also shown (×), with c ≈ 0.5 and γ ≈ 1.52 (see the text). For visual
convenience, the curves are shifted vertically by 4n with n = 0 to 4 from bottom
to top. Running averages have been performed for clarity purposes.

where α∞ = 2.25(3). In both cases, size and duration, the apparent power law ends with
an exponential tail,

P (∆) ∼ exp(−∆/∆̄∗). (7)

The cut-offs that we observe follow ∆̄∗ ∼ Rβ with βm ∼ 2.32(6) and βt ∼ 1.53(3),
respectively (see the inset to figure 3).

We also determined that observing a power law requires both free borders and the
nonequilibrium condition. That is, the distributions P (∆) look approximately exponential
if the system has periodic borders and/or one sets p = 0 in equation (1). This is discussed
below. Another main result is that the observed apparent power laws are here a sum of
exponential contributions.

To prove the latter result, we followed the demagnetization process in a large circular
particle. The main interest was in the interface between the rich and poor spin-up regions
at low temperature. One observes curved interfaces due to the faster growth of the
domain near the concave open borders. In fact, the critical droplet always sprouts at the
free border [41]. Then, given that curvature costs energy, the large avalanches tend to
occur at the curved walls, which then transform into rather flat interfaces. We confirmed
this by estimating the mean avalanche size 〈∆m〉 and interface curvature 〈C〉 as a function
of magnetization m. The curvature C is defined here as the number of rising steps at the
stable–metastable interface4. We plot in figure 4 our results for these observables. After
averaging over many runs, definite correlations show up. That is, as one could perhaps
have imagined, the event size is determined by the interface curvature just before the
avalanche occurs.

4 That is, the number of up spins flanked, respectively, by two ups and by two downs at the sides along the
interface. This definition requires well defined compact clusters, as for low temperature.
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Figure 3. Log–log plot of the duration distribution P (∆t) for the same ensembles
of particles as in figure 2. For visual convenience, the curves are shifted vertically
by 2n with n = 0 to 4 from bottom to top. Running averages have been performed
for clarity purposes. Inset: log–log plot of the size (top) and duration (bottom)
cut-offs ∆̄∗ versus R. Lines are power-law fits.
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Figure 4. Semilogarithmic plot of 〈∆m〉 (solid line) and 〈C〉 (dotted line) as a
function of magnetization, after averaging over 3500 independent runs. Notice the
non-trivial structure uncovering a high degree of correlation between the mean
size of avalanches, 〈∆m〉, and the average curvature 〈C〉 of the interface at which
the avalanche originates.

This is confirmed by monitoring P (∆m|C), the conditional probability that an
avalanche of size ∆m develops at an interface region of curvature C. We studied this
in great detail by simulating an interface of constant curvature evolving by (1). Figure 5
shows that P (∆m|C) has two regimes for given C. The first one corresponds to the
small thermal events mentioned above, namely, those of typical size given by (2). The
second regime exhibits, in contrast to the situation in figure 2, (stretched-) exponential
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Figure 5. Semilogarithmic plot of P (∆m|C), the size distribution for avalanches
developing at a wall of constant curvature, C; C increases from bottom to top.
Here, Nm ≡ 1

2N∆m. (For visual convenience, the curves are shifted vertically by
10n with n = 0 to 4 from bottom to top.) Running averages have been performed
for clarity purposes.

behaviour, namely P (∆m|C) ∼ exp[−(∆m/∆̄m)η] with η ≈ 0.89. That is, a wall of
curvature C induces avalanches of typical size ∆̄m(C).

This fact turns out most relevant because, due to competition between the randomness
induced by free borders and that induced by p in (1), the interface tends to exhibit a
broad range of curvatures with time. More specifically, relaxation proceeds via a series
of different configurations, each characterized by a typical curvature of the interface and
by the consequent typical form of the critical droplet inducing the avalanche. Therefore,
what one really observes when averaging over time is a random combination of many
different avalanches, each with its typical well defined (gap-separated) size and duration,
which results in an effective distribution. The fact that this combination depicts several
decades (more the larger the system is) of power-law behaviour can be understood on
simple grounds.

Let Q(A) be the probability of A, and P (x|A) = A exp(−Ax) the probability of
an event of size x given A. Assume that A can take a finite number of equally spaced
values Ak, k = 0, 1, 2, . . . , n, in the interval [Amin, Amax], so that Ak = Amin + kδ with
δ = (Amax −Amin)/n (alternatively, one may assume randomly distributed Aks), and that
all of them have the same probability, Q(A) = constant. One obtains that

P (x) =
δe−xAmin

1 − e−xδ

[

Amin − Amaxe
−(n+1)xδ − δ

1 − e−nxδ

1 − exδ

]

. (8)

The fact that even such a simple, uncorrelated ansatz describes qualitatively the data is
illustrated in figure 6. That is, the superposition of a large but finite number of exponential
distributions, each with a typical scale, yields an effective global distribution which is
consistent with apparent scale invariance. This distribution extends in practice up to a
cut-off, which is also observed in experiments. This cut-off, which corresponds to the
slowest exponential relaxation, is given by exp(−xAmin). There is no evidence that a
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Figure 6. Solid lines are predictions from equation (8) for n = 200, Amin = 0.007
and Amax = 1. The symbols stand for the avalanche duration (lower curve) and
size (upper curve) when R = 60, i.e., two of the data sets in figures 2 and 3.
In this particular case, the finite-size exponent is τ(R = 60) = 2.06(2), allowing
direct comparison with equation (8).

more involved computation would modify this qualitative conclusion. However, taking
into account dynamic correlations as revealed by figure 4 is certainly needed in order to
improve quantitative predictions. In particular, equation (8) predicts a size-independent
exponent τ(R) = τ∞ = 2, somewhat different from the observed asymptotic τ∞ = 1.71(4).

Consider now P (∆t|∆m), i.e., the probability that the avalanche of size ∆m lasts
a time ∆t. We confirmed that this exhibits well defined peaks corresponding to large
correlations, i.e., avalanches of a given size have a preferred duration and vice versa.
Assuming ∆m ∼ ∆γ

t , we obtain γ = βm/βt = 1.52(5). Using this relation, one may obtain
the duration distribution by combining (8) with P (∆m)d∆m = P (∆t)d∆t. A comparison
of the resulting curve with data in figure 6 leads to γ � 1.52, in agreement with the
value obtained from the cut-off exponents β. More generally, a scaling plot of P (∆t)
versus c∆γ

t , with c some proportionality constant, must collapse onto the corresponding
curve P (∆m) for each R. This is confirmed in figure 2 for γ � 1.52, further supporting
the scale-superposition scenario. On the hypothesis that both P (∆m) and P (∆t) were
true power-law distributions, one would obtain the scaling relation (α − 1) = γ(τ − 1).
However, our values above for α and τ would imply here that γ � 1.76. This misfit is a
consequence of the fact that, according to our point in this paper, none of the distributions
P (∆) exhibits true scaling behaviour.

4. Discussion

The model studied in this paper has been demonstrated to relax only via well defined
near-exponential events. Each has its own scale, but many of them randomly combine
into a distribution that exhibits a power-law portion. This occurs in the model because
of two of its features, namely, p �= 0 and free borders. Otherwise, i.e., p = 0 and/or
periodic boundary conditions, the apparent power law does not emerge, but one observes
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a well defined mean. Therefore, the cause for a relatively broad range of possible different
scales is the underlying nonequilibrium randomness that characterizes the model. The
question is whether this picture also applies to reported scale-free fluctuations in many
natural phenomena, where it is difficult to investigate separate elementary events. We
show below that there are some indications—but not a proof—that this may be the case.
We also remark in this section some important features of our picture that one should
look for in experiments.

We first remark that analysing the fluctuations of interest requires a previous scrutiny
of data in the model separating small from larger events. The former are random events
of well defined size according to equation (2). The latter are more structured, correlated
events or ‘avalanches’. This separation is theoretically motivated [2, 11], and it is also
supported by experiments [28, 42]. The avalanches are then accurately described by an
apparent power law. This involves an exponent and a cut-off both depending on the size
of the system. Interesting enough, there is a well defined limit for a macroscopic particle.
That is, even though free borders (a surface effect) are essential to the phenomena,
increasing the particle to macroscopic will not prevent one from observing all scales,
including very large, say macroscopic avalanches.

Failing in separating accurately small from large events will, in general, result in
a non-significative distribution. On the other hand, though the described behaviour is
robust within a broad region of parameter space, unambiguously observing the relevant
phenomena requires some care in order to have compact enough clusters and well defined
interfaces. As indicated in section 1, prevalence of one ingredient over the others may
importantly hamper statistics which may obscure the situation. These two facts—together
with other agents [43] (see below)—seem to produce both power-law and exponential
distributions in closely related situations as described, for instance, in [2].

There is no indication that the apparent scale invariance that we observe is to
be associated with chaos, e.g., sensitivity to the initial condition. Nor is our picture
consistent with a critical condition. Criticality implies a diverging correlation length,
which is not detected in our simulations. Instead, the many scales in the model are
simply due to the underlying nonequilibrium randomness mentioned above. A balance
between random and nonequilibrium features has already been claimed to be essential
for SOC in different settings [2, 15], [43]–[46]. Our study suggests this is the essential
physics in a family of situations. That is, even though details may vary, e.g., from
random interface rearrangements in magnets to slip complexity in earthquakes, there is
always some microscopic randomness which induces multiple short-lived situations. This
constantly halts the decay and, ultimately, leads to apparent scale invariance.

We find it remarkable—even though it does not prove anything—that the statistical
properties of the avalanches in our model are indistinguishable in practice from what has
been reported for some detailed laboratory experiments. For instance, size corrections
similar to the ones in (4) and (6) for τ and α, respectively, have been reported in avalanche
experiments on rice piles [43]. Moreover, our values for the infinite case are strikingly
close to the ones reported in magnetic experiments, e.g., τ∞ = 1.77(9),α∞ = 2.22(8) and
γ = 1.51(1) in [11] for quasi-two-dimensional systems (see also [42]). On the other hand,
our cut-off values in (7) follow the precise trend observed in magnetic materials [47, 48].
More qualitatively, one may argue that the available literature on the Barkhausen noise,
which is rather proclive to a hypothetical critical point, provides meaningful indications of
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consistency with our non-critical behaviour, as reported elsewhere [40]. If this is granted,
the many transitions through halt states in our picture would correspond to topological
rearrangements of domain walls in the Barkhausen case. In fact, there is also in this
case a domain finite size and a nonequilibrium perturbing drive (the varying field), that
would induce a condition similar to our ‘nonequilibrium randomness’ constantly changing
the scale.

Avalanches in our model do not continue indefinitely in time but disappear when the
system reaches the stable state. This contrasts in principle with the stationary character
of some experimental signals. However, it does not prevent our comparison. To illustrate
this, imagine that we flip the magnetic field sign in our model every time the system
reaches the final stable state. This would give rise to a cyclic steady process, much in
the spirit of hysteresis experiments in magnets. Avalanches observed in this cyclic state
have the same properties as the ones reported here. In particular, our conclusions on the
origin of the apparent scaling of distributions remain unchanged, while the process is now
cyclically stationary.

No doubt it would be interesting to study the possible occurrence of ‘short-lived halt
states’ in nature. These are associated in the model with flat interfaces. That is, once the
initial metastability breaks down, the particle becomes inhomogeneous, and flat interfaces
have a significant probability to form after each avalanche (which aims at minimizing
interfacial energy). As this is the most stable configuration against small perturbations,
the system remains some time with constant magnetization m(tb).This may be described
as an entropic metastability. There is no real energy barrier but an unstable situation
such that a given microscopic random event suffices to initiate the next avalanche.

Interesting enough, this picture gives more hope to the goal of predicting large events.
That is, we claim that catastrophes are not a rare random emergence in an strongly
correlated bulk, which, consequently, have the same cause as the small events [1]–[4].
Instead, events are characterized by their size, and each size follows from some specific
microscopic configuration. The configurations that, under appropriate conditions, may
originate large events qualitatively differ from the ones corresponding to smaller events.
In summary, there is some specific cause for each event which depends on its size.
Consider for instance a stock market; its evolution is also characterized by discontinuous,
sudden jumps between different locally stable states. In order to predict a crash in
this system, assuming that our picture applies, one should look for the simultaneous
occurrence of a large flat interface (predisposition of the players) and macroscopic free
borders (some large external perturbation). Studying the statistical properties of the
many events will then only inform on the relative probability of each microscopic relevant
configuration.

A detailed description of the escape mechanism from entropic metastability could
relate our picture to other approaches. We mention in this respect that, after averaging
over many independent particles, the lifetimes of the halt states during the relaxation
of our model depict an exponential distribution. Therefore, they show a typical scale.
This scale turns out to be much shorter than the timescale for the system relaxation,
as reported to characterize the supposed nonequilibrium criticality which is assumed to
underlie much 1/f noise; see, for instance [2]. An even more detailed look, which requires
averaging over time intervals, reveals in our model that this scale definitely decreases with
t from, say, macroscopic (�105 MCSs) to microscopic (∼10 MCSs). This feature, which
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is already evidenced by (direct inspection of) figure 1, is one that could perhaps be easily
detected in experiments.

Finally, we remark that there are other possible explanations for 1/f noise based
on non-critical mechanisms; see, for example, [21]–[26]. These are less general than
the mechanism proposed here, and often restricted to some very specific situation.
Furthermore, some of these descriptions may be interpreted in the light of a superposition
of many different typical scales, as in our mechanism. A similar origin for electronic 1/f
noise was suggested in the past (see, for instance [17]–[21]), though the present paper is,
to our knowledge, the first one establishing an explicit relation between elementary events
(avalanches) and microscopic physical processes.
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Schmittmann B and Schmüser F, 2002 Phys. Rev. E 66 046130
Hurtado P I, Garrido P L and Marro J, 2004 Phys. Rev. B 70 245409
Hurtado P I, Marro J and Garrido P L, 2004 Phys. Rev. E 70 021101

[35] Novoselov K S, Geim A K, Dubonos S V, Hill E W and Grigorieva I V, 2003 Nature 426 812
[36] Simonds J L, 1995 Phys. Today 48 26
[37] Shi J, Gider S, Babcock K and Awschalom D, 1996 Science 271 937
[38] Garrido P L, Marro J and Torres J J, 1998 Phys. Rev. B 58 11488
[39] Marro J and Vacas J A, 1997 Phys. Rev. B 56 8863
[40] Hurtado P I et al , 2005 at press
[41] Cirillo E and Lebowitz J L, 1998 J. Stat. Phys. 90 211
[42] Zheng G-P, Li M and Zhang J, 2002 J. Appl. Phys. 92 883
[43] Frette V, Christensen K, Malthe-Sorenssen A, Feder J, Jossand T and Meakin P, 1996 Nature 379 49
[44] Dhar D, 1999 Physica A 264 1
[45] Dickman R et al , 2000 Braz. J. Phys. 30 27

Dickman R et al , 2002 Physica A 306 90
[46] Alava M, 2002 J. Phys.: Condens. Matter 14 2353
[47] Bahiana M et al , 1999 Phys. Rev. E 59 3884
[48] Durin G and Zapperi S, 2000 Phys. Rev. Lett. 84 4705

doi:10.1088/1742-5468/2006/02/P02004 13

http://dx.doi.org/10.1103/PhysRevLett.64.1670
http://dx.doi.org/10.1103/PhysRevLett.64.2168
http://dx.doi.org/10.1103/PhysRevLett.88.178501
http://dx.doi.org/10.1103/PhysRevLett.90.188501
http://dx.doi.org/10.1103/PhysRevLett.93.098501
http://dx.doi.org/10.1007/BF01009348
http://dx.doi.org/10.1103/PhysRevLett.73.1320
http://dx.doi.org/10.1103/PhysRevE.50.3474
http://dx.doi.org/10.1103/PhysRevE.55.2255
http://dx.doi.org/10.1103/PhysRevE.66.046130
http://dx.doi.org/10.1103/PhysRevB.70.245409
http://dx.doi.org/10.1103/PhysRevE.70.021101
http://dx.doi.org/10.1038/nature02180
http://dx.doi.org/10.1103/PhysRevB.58.11488
http://dx.doi.org/10.1103/PhysRevB.56.8863
http://dx.doi.org/10.1023/A:1023255802455
http://dx.doi.org/10.1063/1.1488249
http://dx.doi.org/10.1038/379049a0
http://dx.doi.org/10.1016/S0378-4371(98)00313-6
http://dx.doi.org/10.1016/S0378-4371(02)00488-0
http://dx.doi.org/10.1088/0953-8984/14/9/324
http://dx.doi.org/10.1103/PhysRevE.59.3884
http://dx.doi.org/10.1103/PhysRevLett.84.4705
http://dx.doi.org/10.1088/1742-5468/2006/02/P02004

	1. Introduction
	2. Model and its motivation
	3. Some details of relaxation
	4. Discussion
	Acknowledgment
	References

