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Abstract. Using computer simulations, we study metastability in a two-dimensional Ising ferromagnet
relaxing toward a nonequilibrium steady state. The interplay between thermal and nonequilibrium fluc-
tuations induces resonant and scale-invariant phenomena not observed in equilibrium. In particular, we
measure noise-enhanced stability of the metastable state in a nonequilibrium environment. The limit of
metastability, or pseudospinodal separating the metastable regime from the unstable one, exhibits reentrant
behavior as a function of temperature for strong nonequilibrium conditions. Furthermore, when subject
to both open boundaries and nonequilibrium fluctuations, the metastable system decays via well-defined
avalanches. These exhibit power-law size and lifetime distributions, resembling the scale-free avalanche
dynamics observed in real magnets and other complex systems. We expect some of these results to be
verifiable in actual (impure) specimens.

PACS. 64.60.My metastable phases – 05.70.Ln Nonequilibrium and irreversible thermodynamics –
64.60.Qb nucleation – 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion

1 Introduction and model definition

Many natural phenomena are characterized by the pres-
ence of metastable states slowing down the dynamics [1–4].
Metastability is a dynamic phenomenon not included in
ensemble formalism [1], and its microscopic understanding
still raises many fundamental questions. Studying simple
models is therefore most useful. In particular, the two-
dimensional Ising model has been subject to a number
of analytical and numerical studies regarding metasta-
bility [1–11]. All these studies concern systems relaxing
toward an equilibrium steady state. In this case the prop-
erties of the metastable state and its decay can be un-
derstood in terms of the system free energy functional.
However, most interesting (and challenging) is the case
in which the system converges toward a nonequilibrium
stationary state [12]. Nonequilibrium conditions are more
likely found in nature, and they characterize the evolu-
tion of most real systems. Far from equilibrium there is no
free energy concept, and little is known on the properties
of metastable states in this case. In particular, metasta-
bility in a nonequilibrium environment is relevant to the
behavior of real magnetic particles, where dynamic im-
purities dominating the particle behavior cause break-up
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of detailed balance [6]. The aim of this paper is therefore
to shed some light on the effects that a nonequilibrium
perturbation has on the dynamic and static properties of
metastable states in a simple system.

We structure the paper as follows. After introducing
next our model and some of its known features, we study in
Section 2 bulk metastability far from equilibrium. We find
that the interplay between thermal and nonequilibrium
noises induces stochastic resonance phenomena, as char-
acterized by the mean lifetime of the metastable state and
the pseudospinodal. Section 3 is devoted to explore the ef-
fect that open boundary conditions (a particular case of
quenched disorder present in real nanoparticles) have on
the system relaxation. In this case, the metastable sys-
tem decays via scale-free avalanches which resemble the
power-law avalanche dynamics observed in real magnets
and other complex systems. The last section summarizes
our conclusions.

Our model is one of the simplest nonequilibrium Ising
ferromagnets. Consider a two-dimensional square lattice
of side L with periodic boundary conditions. We de-
fine on each of its nodes i ∈ [1, N ≡ L2] a spin vari-
able si = ±1. Spins interact among them and with an
external magnetic field h via the Hamiltonian function
H = −∑′

sisj − h
∑N

i=1 si, where the first sum runs over
all nearest-neighbors pairs. In addition, we endow this
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model with a stochastic single spin-flip dynamics with
transition rate,

ω(s → si) = p + (1 − p)
e−β∆Hi

1 + e−β∆Hi
, (1)

where s and si stand for the system configuration before
and after flipping the spin at node i, respectively, ∆Hi

is the energy increment in such flip, and β = 1/T . In
this paper we use a random sequential updating scheme.
For any 0 < p < 1 two different heat baths compete in
(1): with probability p the spin flip is performed as if the
system were in contact with an infinite temperature reser-
voir, while with probability (1−p) the flip is performed at
temperature T . Therefore, for 0 < p < 1 a nonequilibrium
steady state sets in asymptotically, characterized by a non-
Gibbsian measure [12]. This is the simplest way of induc-
ing nonequilibrium behavior in lattice systems [12], and
it is assumed that this kind of stochastic, non−canonical
perturbation for p > 0 may actually occur in real materials
due to microscopic dynamic disorder and/or impurities,
etc [6]. The zero-field model exhibits a second-order phase
transition between a low-temperature ordered phase and
a high-temperature disordered one [13]. This happens at
a critical temperature Tc(p) < Tc(p = 0) ≡ Tons, where
Tons ≈ 2.2691 is the Onsager temperature. Order disap-
pears for p > pc ≈ 0.17 even for T = 0 [13]. On the other
hand, for p = 0 we recover the usual equilibrium Ising
model with Glauber dynamics.

2 Escape from metastable states and limit
of metastability

For small h < 0 and T < Tc(p), an initial system
with all spins up, si = +1 (i = 1, . . . , N), quickly re-
laxes to a metastable state with positive magnetization,
m = N−1

∑N
i=1 si > 0. Such state eventually decays af-

ter a long time toward the true stable state, which corre-
sponds now to m < 0. The relaxation time, also known
as mean lifetime of the metastable state, τ(T, p, h), is a
main feature characterizing the metastable system and its
decay. More in detail, we define τ(T, p, h) as the mean
first-passage time (in Monte Carlo steps per spin, MCSS)
to m = 0. We measured this observable for values of T
and p such that T < Tc(p) and a magnetic field h = −0.1.

For intermediate and low temperature, the local sta-
bility of the metastable state is very strong, and the decay
process is extremely slow, giving rise to mean lifetimes as
large as 1040 MCSS (see Fig. 1). For this reason, simu-
lations reported here required in practice using advanced
Monte Carlo methods involving rejection-free techniques.
In particular, we used the s-1 Monte Carlo with absorbing
Markov chains (MCAMC) algorithm, and the slow forcing
approximation [7,8]. The combination of both techniques
has proven an invaluable tool for simulating systems with
slow dynamics.

Figure 1 shows τ(T, p, h) as a function of T for
L = 53 and p ∈ [0, 0.01]. Rather amazing, we observe
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Fig. 1. Metastable lifetime results as a function of T for L =
53, h = −0.1 and, from top to bottom, p = 0, 0.001, 0.005
and 0.01. The nth curve (from top to bottom) is rescaled by
a factor 10−2(n−1). These results are obtained after averaging
over Nexp = 1000 experiments.

that the nonequilibrium metastable lifetime exhibits non-
monotonous temperature dependence: τ(T, p, h) increases
with temperature at low T for a fixed p > 0, showing a
maximum at a non-trivial temperature Tmax(p), and then
decreasing as temperature drops. That is, the local stabil-
ity of the metastable state at low T and p > 0 (nonequilib-
rium environment) is enhanced by the addition of thermal
noise. This behavior resembles the noise-enhanced stabil-
ity (NES) phenomenon reported in experiments on un-
stable systems [14], and it is in contrast with the sim-
ple Arrhenius curve observed in equilibrium systems, i.e.
τ ∼ exp(∆F/T ), where ∆F is the free energy barrier as-
sociated to the equilibrium metastable state (see p = 0
in Fig. 1). Remarkably, adding nonequilibrium noise (in-
creasing p) for a fixed T results always in a shorter τ , so
only thermal NES is observed [15].

This stochastic resonance phenomenon suggests a non-
linear cooperative interplay between thermal and nonequi-
librium fluctuations. That is, although both noise sources
introduce disorder in the system when applied indepen-
dently, their combined effect results in a resonant stabi-
lization of the metastable state at low temperature.

One can further characterize metastable states far
from equilibrium by studying the limit of metastability.
When the magnetic field |h| is increased, the strength of
the metastable state decreases. That is, the local mini-
mum in the potential energy landscape associated to the
metastable state becomes less pronounced. Upon further
increasing |h|, such local minimum eventually disappears.
At this point the former metastable state becomes un-
stable: Its relaxation toward the final stable configuration
is no longer hampered by any potential energy barrier.
The magnetic field strength h∗ at which the metastable-
unstable transition occurs is called pseudospinodal [16],
and we measure it in what follows.

To do so, we need a simple criterion to conclude that
our model exhibits a metastable state for a given point
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Table 1. Spin classes for the two-dimensional Ising model with
periodic boundary conditions. The last column shows the en-
ergy cost of flipping the central spin.

Class Central spin Number of up neighbors ∆H
1 +1 4 8J + 2h
2 +1 3 4J + 2h
3 +1 2 2h
4 +1 1 −4J + 2h
5 +1 0 −8J + 2h
6 –1 4 −8J − 2h
7 –1 3 −4J − 2h
8 –1 2 −2h
9 –1 1 4J − 2h
10 –1 0 8J − 2h

(T, p, h) in parameter space. Metastability is characterized
in general by the presence of free energy barriers hamper-
ing the evolution toward the truly stable state. In this
case, relaxation is an activated process controlled by large
fluctuations. On the other hand, an unstable state decays
without any hindrance. In both cases, for a given experi-
ment j of a total of Nexp runs, relaxation from the initial
state s1 ≡ {si = +1, i = 1, . . . , N} will proceed through
certain path in phase-space, σj ≡ {s1, s(j)

2 , . . . , s(j)
Γ(j)}. Here

s(j)
l is the l-th configuration, starting from s1, of a total

number of Γ (j) configurations which make up the path
in experiment j. At any stage sl(j) of this path, we can
define (see below) a net tendency Λ(sl(j)) of the system
to evolve toward the stable state. A state sl(j) such that
Λ(sl(j)) < 0 belongs to the metastable basin. In this way,
we may divide relaxation paths in two different types. On
one hand, metastable paths, in which at least one config-
uration s(j)

l ∈ σj exists such that Λ(s(j)
l ) < 0, and on the

other hand, unstable paths, such that Λ(s(j)
l ) > 0 ∀s(j)

l ∈ σj

(in both cases we exclude the final stable configuration).
The function Λ(s) can be defined by noting that any

spin in the system can be associated to a unique spin class,
defined by the spin state, s = ±1, and the number of its
up nearest neighbors, n ∈ [0, 4]. For periodic boundary
conditions, there are 10 different spin classes, as shown
in Table 1. The energy cost ∆H(s, n) of flipping any spin
within a class is the same. That is, the rate (1) only de-
pends on s and n, which define the class. Now, if nk(s)
is the number of spins in class k when the system is in
configuration s, and ωk ≡ ω(s, n) is the transition rate for
this class, the function

G(s) =
5∑

k=1

nk(s)ωk. (2)

gives the number of up spins which flip per unit time in
state s (note that classes k ∈ [1, 5] correspond to a central
up spin, see Tab. 1). Since h < 0, G(s) is the growth
rate of the stable phase. Similarly [8], the stable phase
shrinkage rate is given by S(s) =

∑10
k=6 nk(s)ωk. The rates

G(s) and S(s) determine the tendency of the system to
evolve toward the stable or metastable states at a given
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Fig. 2. Monte Carlo results for h∗(T, p) as a function of T for
L = 53 and, from top to bottom, p = 0, 0.01, 0.03, 0.0305,
0.0320, 0.0350, 0.04 and 0.05. Notice the change of asymptotic
behavior in the low temperature limit for p ∈ (0.03, 0.0305).
Inset: The probability of the metastable state, as defined in
the main text, as a function of h < 0 for L = 53, T = 0.7Tons

and p = 0. Data here correspond to an average over 500 in-
dependent demagnetization experiments for each value of h.
Error bars are smaller than the symbol sizes.

phase-space point s, respectively. Therefore we may write
Λ(s) ≡ G(s) − S(s).

For fixed T , p and h < 0, given the stochasticity of the
dynamics, one needs to be concerned with the probabil-
ity of occurrence of metastability, defined as φ(T, p, h) ≡
nmet/Nexp, where nmet(T, p, h) is the number of experi-
ments out of the total Nexp in which the relaxation path in
phase space belongs to the class of metastable paths. This
is shown in the inset to Figure 2. The limit of metastability
or pseudospinodal field, h∗(T, p), is defined in this scheme
as the field for which φ(T, p, h∗) = 0.5; this is shown in
Figure 2 for a system with L = 53 [17].

Remarkably, we find an instability separating two dif-
ferent low-temperature behaviors for h∗(T, p), depend-
ing on the amplitude of nonequilibrium fluctuations. For
small enough values of p, namely, p ∈ [0, 0.03], which
includes the equilibrium case, p = 0, the field h∗(T, p)
monotonously grows and extrapolates to 2 as T → 0. For
larger p, namely, p ∈ [0.0305, 0.17), however, h∗(T, p) → 0
in the low temperature limit, exhibiting a non-trivial max-
imum at intermediate T . The value p = πc ≈ 0.03025
separates the two types of asymptotic behavior.

The p < πc regime can be understood on simple
grounds. In this case, h∗(T, p) increases as T drops, mean-
ing that we need a stronger field to destroy metastability
as T decreases. In a metastable state, the system tendency
to maintain spin order competes with and overcomes the
tendency of the individuals spins to line up with the ex-
ternal magnetic field. Since both T and p induce disorder,
one naively expects that decreasing T and/or p (i.e. in-
creasing order), a stronger magnetic field will be needed
to destroy the metastable state, as confirmed in Figure 2
for p < πc.
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On the other hand, the behavior for p > πc is more
intriguing. Consider for instance the case p = 0.05 > πc

and |h| = 0.25. According to Figure 2, we can define two
different temperatures, T1 < T2, such that metastability
is only observed for T ∈ [T1, T2]. The fact that h∗ goes
to zero as T → 0 for p > πc means that, at low tempera-
ture, the nonequilibrium fluctuations parameterized by p
are strong enough to destroy on their own the metastable
state. Based on the above naive argument, one would ex-
pect that increasing T adds disorder to the system, so
no metastable states should in principle show up. How-
ever, we observe metastability for intermediate tempera-
tures, T ∈ [T1, T2]. This reentrant behavior of the pseu-
dospinodal field suggests once more a resonant interplay
between thermal and nonequilibrium fluctuations in the
system: although both T and p add independently disor-
der to the system, their nonlinear interplay determine the
existence of regions in parameter space (T, p, h) in which
no metastable states are observed at low and high tem-
perature, but instead emerge at intermediate T .

Both phenomena reported here, i.e. the non-
monotonous T -dependence of the metastable-state mean
lifetime and the reentrant behavior of the pseudospin-
odal field, are expressions of an underlying stochastic res-
onance phenomenon. Interesting enough, however, they
present an essential difference. That is, while the resonant
stabilization of the metastable state lifetime (a dynamic
phenomenon) is observed for any p > 0, the reentrant
behavior of the pseudospinodal field (a thermodynamic
observable) only emerges for strong nonequilibrium con-
ditions, p > πc. The origin of this difference is not clear.

3 Avalanches during relaxation

The previous observations concern the bulk metastability.
However, in real magnets, one needs in practice to cre-
ate and to control fine grains, i.e., magnetic particles with
borders whose size ranges from mesoscopic to atomic lev-
els, namely, clusters of 104 to 102 spins, and even smaller
ones. Though experimental techniques are already accu-
rate for the purpose, the underlying physics is much less
understood than for bulk properties. In particular, one
cannot assume that such particles are neither infinite nor
pure. That is, they have free borders, which results in a
large surface/volume ratio inducing strong border effects,
and impurities. Motivated by the experimental situation,
we also studied a finite two−dimensional system subject
to open circular boundary conditions. The system is de-
fined on a square lattice, where we inscribe a circle of
radius r; sites outside this circle do not belong to the sys-
tem (their bonds to spins in the system are broken). We
mainly report in the following on a set of fixed values for
the model parameters, namely, h = −0.1, T = 0.11 Tons

and p = 10−6. This choice is dictated by simplicity and
also because (after exploring the behavior for other cases)
we came to the conclusion that this corresponds to an in-
teresting region of the system parameter space, where: (i)
many metastable states emerge slowing down the system

relaxation, (ii) the effects of p and T are comparable, and
(iii) clusters are compact and hence easy to analyze.

The effects of free borders on the metastable-stable
transition have already been studied for equilibrium sys-
tems [11]. In this case, the system evolves to the stable
state through the heterogeneous nucleation of one or sev-
eral critical droplets which always appear at the system’s
border. That is, the free border acts as a droplet con-
denser. This is so because it is energetically favorable for
the droplet to nucleate at the border. Apart from this,
the properties of the metastable-stable transition in equi-
librium ferromagnetic nanoparticles do not change quali-
tatively as compared to the periodic boundary conditions
case [11]. In our nonequilibrium system we observe sim-
ilar behavior. However, the structured fluctuations that
the nonequilibrium metastable system shows as it evolves
towards the stable state subject to the combined action
of free borders and the nonequilibrium perturbation are
quite unexpected.

As illustrated in Figure 3a, the relaxation of mag-
netization occurs via a sequence of well−defined abrupt
jumps. That is, when the system relaxation is observed
after each MCSS, which corresponds to a ‘macroscopic’
time scale, strictly monotonic changes of m(t) can be
identified that we shall call avalanches in the following.
To be precise, consider the avalanche beginning at time
ta, when the system magnetization is m(ta), and finish-
ing at tb. We define its size and duration, respectively,
as ∆m = |m(tb) − m(ta)| and ∆t = |tb − ta|. Our in-
terest is on the histograms P (∆m) and P (∆t). Figure 3b
shows the large avalanche size distribution P (∆m) for par-
ticle sizes r = 30, 42, 60, 84 and 120, after an extrin-
sic noise [18] (i.e. some trivial, exponentially distributed
small fluctuations apparent in the magnetization plateaus
in the inset to Fig. 3a) has been subtracted. A power
law behavior is clearly observed. The measured power
law exponents, P (∆m) ∼ ∆

−η(r)
m , show size-dependent

corrections to scaling of the form η(r) = η∞ + a1r
−2,

with η∞ = 1.71(4). The duration distribution also ex-
hibits power law behavior, P (∆t) ∼ ∆

−α(r)
t , and again

α(r) = α∞ + a2r
−2 with α∞ = 2.25(3). In both case,

size and duration, the power law ends with an exponen-
tial cutoff, P (∆) ∼ exp(−∆/∆̄). Remarkably, size and
duration cutoffs also scale algebraically with system size,
∆̄ ∼ rβ , with βm = 2.32(6) and βt = 1.53(3). Similar fi-
nite size corrections to exponents and cutoffs have been
also found in experimental systems [19,20]. The observed
power laws imply that avalanches are scale-free (up to cer-
tain maximum size and duration) in our nonequilibrium
ferromagnet subjected to open boundary conditions. We
also measured avalanches for p = 0 in the circular mag-
netic particle, and for p �= 0 in the periodic boundary con-
ditions system. In both cases only small avalanches occur
and the distributions are exponential-like, thus indicating
the absence of scale invariance. That is, the combined ac-
tion of free boundaries and nonequilibrium impurities is
behind the large, scale-free avalanches, and essentially dif-
fers from the standard bulk noise driving the system and
causing small, exponentially distributed avalanches.
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Fig. 3. (a) Time variation of the magnetization showing the
decay from a metastable state for a r = 30 particle; avalanches
are seen here by direct inspection. Time is in Monte Carlo
Steps per Spin (MCSS), and τ0 ∼ 1030 MCSS. The inset shows
a detail of the relaxation. (b) Large avalanche size distribu-
tion P (∆m) for the circular magnetic nanoparticle and, from
bottom to top, r = 30, 42, 60, 84 and 120. (For visual con-
venience, curves have been shifted vertically.) The inset shows
the avalanche duration distribution for the same system sizes.

Scale-invariant (or 1/f) noise has been found in many
complex systems, ranging from electronic devices to super-
conducting vortices, human cognition, earthquakes, and
radiation from white dwarfs, to mention some. The hy-
pothesis that some underlying mechanism is common
to many situations is therefore appealing. Many possi-
ble generic mechanisms have been proposed in literature,
most of them based on possible underlying critical phe-
nomena. After much effort, there is no full agreement on
a globally coherent explanation, however. We have shown
above that our simple model of metastable magnetic par-
ticle exhibits scale-free avalanches during the decay pro-
cess. Remarkably, the properties of these structured fluc-
tuations in our oversimplified model are indistinguishable
in practice from what one measures in many natural phe-
nomena showing 1/f noise. For instance, size corrections
similar to the ones observed here for η(r) and α(r) have
been reported in avalanche experiments on rice piles [19],
and our values for η∞ and α∞ are amazingly close to
those reported in some magnetic experiments for quasi-

two dimensional systems [18]. Moreover, our cutoff val-
ues follow the precise trend observed, for instance, in
magnetic materials. All these facts indicate that our sim-
ple model may contain the fundamental ingredients char-
acterizing a whole class of natural systems in which a
series of transitions between many different, short-lived
metastable states characterize the dynamics (see Fig. 3a).
Most interesting, we tested the presence of an underlying
critical point responsible of the observed scale-invariant
avalanches, with negative results (no divergent correla-
tion time and/or length scales were found). Therefore,
a non-critical dynamic mechanism seems to be responsi-
ble of this complex behavior, and preliminary studies [10]
show that a superposition of many different scales that
emerges due to the interplay of nonequilibrium fluctu-
ations and free borders might give rise to the observed
scale-free avalanches.

4 Conclusion

We have studied in this paper the escape from metastable
states in a two-dimensional Ising ferromagnet evolving to-
ward a nonequilibrium steady state. Relaxation in this
case is considerably enriched as compared to equilibrium.
In particular, we have shown that the stability of the
metastable state at low T is enhanced by the addition
of thermal noise. In particular, the mean lifetime of the
metastable state has a peak as a function of T for any
p > 0 (nonequilibrium conditions). This resonant stabi-
lization of the metastable state is reminiscent of the noise-
enhanced stability phenomenon measured in experiments
with unstable systems [14], and it is in contrast with the
simple Arrhenius curve observed in equilibrium systems.

In addition, the limit of metastability or pseudospin-
odal magnetic field h∗(T, p), that separates the metastable
and unstable regions in parameter space, exhibits reen-
trant behavior as a function of temperature for strong
nonequilibrium conditions. That is, for p > πc ≈ 0.03025,
metastability is not observed for low and high tempera-
ture, but instead emerges for intermediate temperatures.

These results point out to an underlying stochastic res-
onance phenomenon due to the nonlinear cooperative in-
terplay between thermal and nonequilibrium fluctuations.
That is, although both noise sources introduce indepen-
dently disorder in the system, their combined effect results
in higher levels of order at low temperature, as deduced
from the resonant stabilization of τ(T, p, h) and the reen-
trant behavior of h∗(T, p, h).

We also observe that, under the action of both the
nonequilibrium impurity and free borders, the metastable-
stable transition proceeds by avalanches. These are power-
law distributed, up to certain size-dependent cutoffs. We
do not detect, however, any underlying critical point re-
sponsible of the observed scale invariance. This fact, to-
gether with the striking similarities between the statistical
properties of the structured fluctuations in our model and
those of avalanches observed in many real complex sys-
tems, suggests a non-critical common mechanism respon-
sible of the ubiquitously observed 1/f noise in systems



108 The European Physical Journal B

characterized by a rich, varied set of transitions between
many short-lived metastable states.

A theoretical understanding of the observed behav-
ior seems challenging. The nonequilibrium character of
our model prevents in principle any formulation of the
metastable problem in terms of free-energy functions con-
trolling the nucleation of stable-phase droplets inside the
metastable sea. Understanding the macroscopic potential
characterizing the complex collective behavior observed in
this far-from-equilibrium model is a major open challenge.
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