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Abstract

We studied the computational properties of an attractor neural network (ANN) with di1erent
network topologies. Though fully connected neural networks exhibit, in general, a good perfor-
mance, they are biologically unrealistic, as it is unlikely that natural evolution leads to such a
large connectivity. We demonstrate that, at 5nite temperature, the capacity to store and retrieve
binary patterns is higher for ANN with scale-free (SF) topology than for highly random-diluted
Hop5eld networks with the same number of synapses. We also show that, at zero tempera-
ture, the relative performance of the SF network increases with increasing values of the distri-
bution power-law exponent. Some consequences and possible applications of our 5ndings are
discussed.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

There is a growing interest in evolving complex networks, in particular, networks
with scale-free (SF) topology [1,2,5]. SF occurs in many di1erent contexts, includ-
ing the www and the Internet, e-mail and scienti5c-citation networks, ecological, pro-
tein and gene interaction networks, etc. In these examples, the degree k of a vertex,
i.e., the number of arcs linking it to other vertices, is power-law distributed, P(k) ∼
k−� (see Fig. 1). This implies that the network includes a relatively large number
of nodes with small connectivity, de5ning what we call the network boundary, and
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a few nodes, the hubs, with a large connectivity, comparable to the network size N .
As a consequence, SF networks exhibit the interesting small-world property, that is,
the average path length between two nodes is very small compared to the network
size.
Evolving networks with such complex topology are also common in biology. Neu-

ronal networks, for instance, seem to exhibit the small-world property. This was re-
cently demonstrated in a set of in vitro experiments of growing cultured neurons [6].
Although an impressive amount of work has been done in the last few years concern-
ing SF networks, it has only recently been reported on the speci5c consequences of
such an architecture on the performance of auto-associative neural networks [3,7]. The
authors in [7] show that a SF neural network is able to store and retrieve P patterns
with a lower computer-memory cost than the fully connected Hop5eld neural network.
They also 5nd a similar performance with a (biologically unrealistic) nearest-neighbor
hypercubic Ising lattice. The authors in [3] study the zero temperature behavior of
di1erent topologies, namely, the BarabHasi–Albert (BA) SF, small-world and random
diluted networks, and a better performance for the random diluted case than for the
other topologies is reported. However, for the relative large mean connectivity these
authors use (〈k〉=50), the BA network has not the SF property [7], so that this result
lacks interest.
We here report on the in uence of topology on the associative-memory task of

the network as a function of temperature. In particular we focus on two main issues,
namely, on the robustness of the network performance against thermal noise for varying
topology, and on the e1ect of varying the SF connectivity distribution P(k) on the
network performance.

2. De�nition of models

Consider the BA evolving network [1] with N nodes and �(N−�0) links. Here, �0 is
the initial number of nodes generating the network, �6 �0 is the number of links that
are added during the evolution at each time step, and N is the 5nal number of nodes
in the network. This will latter be generalized to consider other SF networks. In order
to have a neural system with the chosen topology, we place a binary neuron, si = 1
or 0, at each node i, and then “store” P binary random patterns, �	 ≡ {�	i = 1 or 0},
	=1; : : : ; P, with mean activity level 〈�	i 〉= 1

2 . This is done in practice by associating
a synaptic intensity !ij at each link according to the Hebbian learning rule,

!ij =
1
N

P∑

	=1

(2�	i − 1)(2�	j − 1): (1)

A meaningful direct comparison of this SF neural network (SFNN) and the standard
Hop5eld neural network cannot be made because the second case involves N 2 synap-
tic connections. A hypercubic Ising lattice has the same number of synapses than the
SFNN; however, real neural systems are known to exhibit more complex neuron con-
nectivity than the Ising network. Consequently, we compare the performance of the
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Fig. 1. Left: Connectivity probability distributions for a SF network with �=3 (5lled circles) and for a HDH
network (open circles). Right: Connectivity probability distributions generated for a SF network by tuning
the exponent �. Each data point corresponds to an average over 100 networks with N = 4000 neurons each.
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Fig. 2. Left: Overlap curves for varying temperature (in arbitrary units) for a BA network (5lled squares)
and a HDHN (5lled circles). Data correspond to an average over 100 realizations of a network with N=1600
neurons, P=1 and �=�0 =3. Right: Local overlap m(k) for a BA network as a function of the connectivity
k for increasing values of the temperature (successive decreasing curves).

SFNN with that of a highly diluted Hop5eld network (HDHN). The HDHN is ob-
tained from the standard Hop5eld network by randomly suppressing synapses until
only �(N − �0) of them remain, i.e., the number of synapses scales as N and not as
N 2. To maintain the SF behavior in the BA network, the value of � must be very
small compared to the network size, that is, ��N [5]. The connectivity distribution of
the HDHN is illustrated in Fig. 1 (left). The main di1erences between this distribution
and the corresponding one for a SF network is that the latter has no typical connec-
tivity value. More speci5cally, the SF network distribution is a power-law while the
HDHN distribution has a maximum and an Gaussian decay and, consequently, may be
characterized by a (typical) mean connectivity.
A relevant magnitude to monitor in order to compare the performance of di1erent

topologies is the overlap function, de5ned for pattern � as

m� ≡ 2
N

∑

i

(2��i − 1)si: (2)

The performance of the two networks is compared in Fig. 2 for P = 1 and � = 3.
This clearly shows that, excluding very low temperature, the retrieval of information
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Fig. 3. Left: Zero temperature performance of a Molloy–Reed SFN for �=1:5; 2; 2:5; 3 (solid lines) compared
to the performance of di1erent HDHN with the same number of synapses (dashed lines), and as a function
of the number of stored patterns P. Right: Relative di1erence in the performance for the cases showed in
the left panel.

as characterized by m� is better for the SFNN than for the HDHN. In both cases, the
retrieval of information deteriorates as P is increased. However, we also observe that, at
5nite temperature, the performance of the SFNN increases signi5cantly if one considers
only the retrieval of information concerning neurons with a connectivity degree higher
than certain value, k0; i.e., the hubs [8]. This can be understood on simple grounds
by computing the local overlap m1

i with one pattern for neuron i and averaging over
all neurons with the same connectivity k. The resulting mean overlap for a given
connectivity m(k) is plotted in Fig. 2 (right) for di1erent temperatures. This shows
that, even at high temperature, the local overlap for hubs is close to one whereas it
is very small for the boundary ( uctuations in the lower curves are due to the small
number of hubs present in the network for the relative small network size we are
using). This 5nding re ects the “negative” role of the boundary and the “positive” role
of the hubs on the SFNN performance during each retrieval experiment when thermal
 uctuations are considered. This observation is in agreement with the T = 0 behavior
reported in [3].
Another important issue is how the exponent of the distribution in uences the per-

formance of SF network for associative memory tasks. In order to analyze this, we
studied networks characterized by di1erent power-law exponents. With this end, we
used a Molloy–Reed (MR) SF network [4] with P(k) ∼ k−�, where � is a tunable
parameter. As illustrated in Fig. 1 (right), the number of neurons in the network with
a high connectivity increases as � is decreased.
Even more interesting is when one compares the behavior of the MR network with

that of the HDHN in the limit T = 0 (cf. Fig. 3). As thermal  uctuations are then
suppressed, the network performance is only perturbed by the interference among the
stored patterns. In order to consider the limit of interest, we started with one of the
stored patterns, and computed the state of each neuron according to the deterministic
rule si(t+1)=�(hi(t)). Here, �(x) is the Heaviside step function, and hi ≡

∑(i)
j wijsj

is the local 5eld associated with neuron i with the sum over all neurons j connected
to it. At the end of the network evolution, we recorded the overlap, m5nal, with the
starting pattern as a function of the total number of stored patterns P. In order to
visualize the di1erence in performance between the two types of networks, we de5ned
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Pm5nal ≡ mSFNN
5nal − mHDHN

5nal . Fig. 3 shows how this di1erence in performance varies
with the number of stored patterns. The graph illustrates that the SFNN has a better
and better performance as compared with the HDHN as the number of stored patterns
is increased. This e1ect is enlarged as � is increased. This can be understood by
considering the di1erent decays of P(k) for large k in both SFNN and HDHN, and
the fact that for increasing values of �, the relative position of 〈k〉 moves to the left
for both topologies, but due to the power-law decay the e1ect of the hubs remains for
the SFNN.
Summing up, the topology of a neural network has a key role in the processes of

memorization and retrieval of patterns. In particular, neural networks with scale-free
topology may exhibit a better performance than Hop5eld-like networks with the same
number of synapses distributed randomly over the network. Our study can be useful to
understand the role of regions with di1erent connectivity degrees in real neural systems
during memorization and retrieval of information. In particular, it may improve our
understanding of how  uctuations or perturbations in the typical number of synapses
of some brain areas can a1ect the processing of information and memorization in
these regions. Our study also suggests the convenience of developing new methods to
store the more relevant information into the hubs, increasing in this way the e1ective
network-performance and eQciency. It would be desirable to check our 5ndings against
experimental observations on real neural systems focusing on the topology which is
built up by natural selection.
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